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INTRODUCTION 
 

Ethylene is a chemical building block that is heavily employed in the petrochemical 

sector. Ethylene is traditionally obtained by cracking of the hydrocarbons from petroleum 

using steam (Kniel et al. 1980) and is recovered from refinery cracked gas (Zimmermann 

and Walzl 2000). In recent years, researchers have focused on sustainable alternatives to 

ethylene to decrease greenhouse gas (GHG) emissions and reduce the dependency on fossil 

fuels (Melander and Qvint 2016).  

Bioethanol is a renewable and environmentally friendly source for energy and high-

value derivatives. Additionally, bioethanol’s catalytic dehydration is a sustainable 

alternative for bio-ethylene production (Fan et al. 2013). Bioethanol dehydration could be 

a more sustainable and less expensive pathway for bio-ethylene production compared to 

the oil-based pathway (Becerra et al. 2017).  

First-generation (1G) bioethanol is produced from sugar-rich and renewable 

feedstock resources, such as sugarcane, corn grains, potatoes, wheat, cassava, and sugar 

beet, among other crops (Hettinga et al. 2009; Kagyrmanova et al. 2011; Haro et al. 2013; 

McKechnie et al. 2015; Mohsenzadeh et al. 2017; Zacharopoulou and Lemonidou 2017). 

On the other hand, second-generation (2G) bioethanol may provide an opportunity to 

develop sustainable biorefineries (Adekunle et al. 2016; Vallejos et al. 2017; Mendes et al. 

2020). Compared to gasoline production, bioethanol production has a positive net-energy 
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output (64% to 86%) and can reduce GHG emissions by 11% to 145% (Werpy and Petersen 

2004). Due to its added-value and potential market demand, bioethanol is one of the best 

candidates as a base for biorefinery products (Huang et al. 2011; Pérez et al. 2020). Second-

generation bio-ethylene is made from non-alimentary carbohydrates by the conversion of 

low-cost agroforestry residues that favor its valorization (Alvarez-Castillo et al. 2012). The 

main routes to convert carbohydrate biomass to bioethanol, bio-ethylene, and polyolefins 

are displayed in Fig. 1. 

 

 
 

Fig. 1. The production process to make bio-ethylene and polyolefins from carbohydrate biomass 
(adapted from Grassi et al. 2015). 

 

Ethanol is an important industrial commodity, and its chemical potential to generate 

an ethylene platform is enormous and among the top opportunities from carbohydrate 

biorefineries. The bio-ethylene from 1G or 2G ethanol is chemically identical to the oil-

based one, but it is produced from a different carbon source. Technological improvements 

are necessary to attain the commercial scale production from 2G ethanol. The high yield 

catalysts need to be improved and the costs of the feedstocks and processes need to 

decrease (de Andrade Coutinho et al. 2013). 

The northeast region of Argentina (NEA) is the largest forested area of the country. 

The Province of Misiones, with 405,824 ha planted (mostly pines), has an important forest-

industrial activity. It accounts for 46% of the country's sawmills, which produce large 

amounts of lignocellulosic residues (sawdust, bark, others). These lignocellulosic residues 

create pollution, increase the risks of fire, increase the presence of pests, and the disposal 

of the residue occupies valuable space (Vallejos et al. 2017; Pérez et al. 2020). Currently, 

the concept of biorefinery and biomass residue valorization can add value to the forest-

industrial cycle due to the large quantities of waste materials that are rich in sugars, lignin, 

lipids, and proteins (Area and Vallejos 2012; Area and Park 2017). Agro-industrial and 

forest industrial lignocellulosic residues are valuable feedstocks for ethylene production 

from 2G bioethanol.  

This work analyzes the stages, possible derivatives, uses, and applications of 2G 

bio-ethylene production within a biorefinery framework. An extensive bibliographic 

review was carried out, and the potential replacement of fossil-fuel-based ethylene from 

2G bio-ethylene was evaluated. The technical, economic, and environmental implications 

of the production of ethylene from biomass were established, considering the biomass 

available in Argentina's NEA region as a case study. 
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BIO-ETHYLENE MARKET 
 

Ethylene is a highly reactive unsaturated hydrocarbon (alkene), which makes it a 

potential chemical building block. Ethylene can typically react as a short-chain olefin, from 

which it can produce mixtures of different compounds during its production process, which 

should be further separated (Zimmermann and Walzl 2000). Ethylene is primarily used in 

the transportation, textiles, packaging, and electronics industries, among others (Wiley-

VCH 2016). Currently, there is a strong demand for ethylene use in bioplastic production 

(Martinz and Quadros 2008; Mendieta et al. 2019). The ability to close the biorefinery 

scheme can be valuable to produce derivatives such as bio-polyethylene (bioPE), bio-

polyvinyl chloride (bioPVC), bio-polyethylene terephthalate (bioPET), bio- polypropylene 

(bioPP), and others (Area and Park 2017; Brodin et al. 2017). In addition to the production 

of polymers, bio-ethylene can be used in the chemical industry as an intermediate 

compound in the synthesis of alcohols, olefins, acetaldehyde (C2H4O), ethylbenzene, and 

vinyl acetate, among others (Zimmermann and Walzl 2000). The industrial processes with 

high ethylene consumption are the polymerization to low-density polyethylene (LDPE) and 

high-density polyethylene (HDPE), the chlorination to 1,2-dichloroethane, the oxidation to 

ethylene oxide (EO), the sequential reaction to form ethylbenzene that is dehydrogenated 

to styrene, the oxidation process to C2H4O, and the hydration reaction to ethanol, among 

others (Zimmermann and Walzl 2000). 

The current annual global production capacity of ethylene is over 140 to 150 million 

tons (Alonso-Fariñas et al. 2018; Oliveira et al. 2019). The ethylene market size was 

approximately $160,000 million USD in 2015 and it is estimated to exceed $235,000 

million USD in 2024 (Global Market Insights 2016). The selling price of ethylene 

fluctuated between 2018 and 2019. It decreased by 15% to 35%, reaching $1,000 USD/t in 

May 2019 (ICIS 2020), mainly due to the decrease in oil prices (Min-hee 2019; Hall 2020). 

There are several polymer derivatives of ethylene that are used in various 

applications. Polyethylene (PE) is used in packaging, stretch films, containers, drums, 

pallets, and other applications (Wiley-VCH 2016). Ethylene oxide is used to produce 

polyester fibers, resins, and polyester films, among others (Graham et al. 1989). 

Polypropylene (PP) is used to produce films, sheets, foamed products, industrial products, 

reinforced products, and containers, among others (Kikuchi et al. 2017). Polyethylene 

terephthalate (PET) is mainly in the production of soda bottles and many other packaging 

materials (Spencer 1994). Polyvinyl chloride (PVC) is used to manufacture packaging 

containers and bottles (Spencer 1994; Wiley-VCH 2016). Polystyrene (PS) is used to 

produce electronic and electrical equipment (Thakur et al. 2018).  

Polyethylene accounts for 60% of the global ethylene demand, followed by EO. 

Both PE and EO are used to make ethylene glycol (ICIS 2010). The common prices for PE 

derivatives are between $1,100 USD/t and $1,300 USD/t for LDPE (ICIS 2019; Santagata 

et al. 2020) and $1,150 USD/t to $1,400 USD/t for HDPE (ICIS 2019). The reported market 

prices for ethylene glycol and PP are approximately $0.4 USD/t to $1.4 USD/t and $1,500 

USD/t, respectively. (ICIS 2013; Taylor et al. 2015; Echemi 2021).  

Besides polymer production, ethylene is used in many applications. To give some 

examples, it is used to control the ripening of fruit, to promote crop growth in agriculture, 

in the production of specialty glass for the automotive industry, as an anesthetic in medical 

applications, as a refrigerant, and as oxy-fuel gas in metal works (Keller et al. 2013).  

The hydrocarbon cracking process to obtain ethylene requires intensive fossil 

energy use, which has a large environmental impact. Steam cracking might create an 
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economic impediment for further developments of bio-based ethylene production. 

Nevertheless, research on technologies for the dehydration of ethanol in ethylene continues 

to advance. On the other hand, small-scale production could be an interesting niche since 

full-scale crackers (using either naphtha or natural gas) would not be commercially viable. 

In this sense, bio-ethylene production might be commercially viable due to the possibility 

of using the current conversion and production equipment, besides the necessity of process 

optimization. To meet this demand, several companies have researched and patented 

various technologies for the dehydration of ethanol into ethylene (Chieregato et al. 2016). 

Moreover, there is less need for development of the supply chain and logistics for the 

provisions of raw materials and inputs (Wyman et al. 2017). The current global demand 

for 1G bio-ethylene market is 127 million tons per year. Approximately 0.2% of this 

demand (0.25 million tons per year) comes from biomass resources (Kagyrmanova et al. 

2011; Broeren 2013).  

In the polymer field, the non-biodegradable, versatile, and chemically stable bio-

PE and bio-PET materials have gained interest in recent years (de Jong et al. 2012b; Hottle 

et al. 2013; Iwata 2015; Mendieta et al. 2019). Coca-Cola’s commercial bottling plant 

currently utilizes bio-PET (Taylor et al. 2015). Toyota also uses bio-PET for the production 

of the interior surfaces and liner material in their vehicles (de Jong et al. 2012a). Bio-

polyethylene can substitute petroleum-based PE in several applications (Mendieta et al. 

2019), so bio-PE may soon become the most widely used bio-based plastic (Taylor et al. 

2015). Currently, the prices of fossil-fuel-based PE are lower and they can be processed 

more easily than bio-PE materials (Taylor et al. 2015). Therefore, process improvements 

in the manufacturing of bio-PE and bio-PET are necessary to ensure they can compete with 

fossil-fuel based plastics. 

 

 
2G BIOETHANOL PRODUCTION 

 

Ethylene production by 2G bioethanol dehydration, using forest or agro-industrial 

waste is a sustainable alternative to oil-based one (Santos-Panqueva et al. 2017). 

Gasification of lignocellulosic biomass is a thermochemical route to produce bioethanol. 

Using chemical catalysts, the synthesis gas generates ethanol together with a mixture of 

alcohols. Another option to produce ethanol is the fermentation of the synthesis gas 

(Wagner and Kaltschmitt 2013). Compared with the SHF and SSF routes, gasification has 

some handicaps. It requires high temperatures, and both the moisture content of the raw 

material and the contaminants of the synthesis gas must be removed because of their 

negative impact on the performance of catalysts and fermentation broths. Therefore, the 

biochemical route is the most efficient one (Silva-Ortiz et al. 2020).  

The ethylene production process consists of pretreatment, enzymatic hydrolysis, 

fermentation, recovery by distillation, and dehydration (Yakovleva et al. 2016). There are 

challenges to achieve commercial-scale production by 2G bioethanol dehydration, such as 

the selection of a suitable treatment of the lignocellulosic biomass to obtain a cellulosic 

fraction, the conversion process of cellulose to ethanol, and the fermentation selectivity. 

These processes have direct effects on the bioethanol yield and production cost (Saha 2003; 

Zhu et al. 2011; Broeren 2013). Moreover, efficiency increases if both pentose and hexose 

are converted in bioethanol (Sharma et al. 2020). 

The conditions and type of pretreatment depend exclusively on the chemical 

composition of the feedstock (Kruyeniski et al. 2019), which has a significant influence on 
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the enzymatic hydrolysis and following processes (Vallejos et al. 2017). For example, 

coniferous wood for 2G bioethanol production is attractive due to its abundance and high 

content of hexoses (Area et al. 2012; Kruyeniski et al. 2017). However, the pretreatment 

of coniferous wood can be hindered by its high lignin and extractives content and its highly 

crystalline cellulose (Stoffel 2016). 

Before the production of 2G bioethanol, it is critical to pretreat the lignocellulosic 

biomass. An efficient pretreatment should apply to various substrates using cheap and 

easily recoverable reagents, with low energy consumption, and low investment and 

maintenance costs, among other features (Almenares-Verdecía et al. 2008). The reactions 

must favor the formation of sugars, avoid their loss by degradation, and limit the production 

of inhibitory products (Kumari and Singh 2018). New research should focus on developing 

new low-cost and environmentally-friendly pretreatment techniques to produce a purified 

cellulosic material with high yield. The pretreatment process extracts the lignin and 

hemicellulose in order to increase the porosity of the material to improve cellulose 

accessibility to the enzymatic attack. The pretreatment process should also limit the 

degradation of other carbohydrates and, in the saccharification stage, avoid the formation 

of inhibitor products (Kruyeniski et al. 2019). 

The cellulose that is obtained from the pretreatment can be transformed into ethanol 

in two steps. Initially, cellulose is depolymerized to glucose by hydrolysis, and then these 

sugars are fermented into ethanol (Hahn-Hägerdal et al. 2006; Ximenes et al. 2011; Gu et 

al. 2014). Depending on the strains, the optimum temperature for the development of 

fermentation yeasts is usually between 25 °C to 35 °C (Palmqvist and Hahn-Hägerdal 

2000). Saccharomyces cerevisiae is the most common yeast for industrial production 

because of its capability to efficiently ferment glucose and other hexoses to bioethanol. S. 

cerevisiae can withstand temperatures up to 38 °C, but the fermentation performance 

decreases noticeably (Azhar et al. 2017). The high-temperature fermentation process is 

beneficial because it uses heat-tolerant microorganisms that do not incur cooling costs 

(Fonseca et al. 2008). Some microorganisms can withstand high temperatures. For 

example, Kluyveromyces marxianus is a thermotolerant yeast that can survive at 42 °C to 

45 °C, with the capacity to ferment both hexoses and pentoses (Yanase et al. 2010). The 

common pretreatment strategies of separate hydrolysis and fermentation (SHF) and 

simultaneous hydrolysis and fermentation (SSF) (Balat 2011) are shown in Fig. 2. 

In the SHF process, cellulose hydrolysis and glucose fermentation are 

accomplished separately, which allows each stage to occur at its optimum conditions. 

However, the separate conditions are disadvantageous for the generation of inhibition 

products, such as glucose for hydrolysis and ethanol for fermentation (Araque et al. 2008; 

Kruyeniski 2017). On the other hand, the SSF process requires only one reactor for 

hydrolysis and fermentation. The SSF process is advantageous because the sugar 

monomers that are released during the saccharification process are immediately fermented 

by the microorganisms, which decreases the risk of microbial contamination (Area et al. 

2012; von Schenck et al. 2013). Glucose is instantly fermented into ethanol (Becerra et al. 

2017), regardless of the optimum temperature and the pH parameters for the hydrolysis 

and fermentation processes. Therefore, the SSF process is the most feasible and cost-

effective alternative to produce bioethanol considering the low generation of inhibitory 

products and the utilization of only one fermenter in the whole process, which reduces the 

investment costs (Wingren et al. 2003; Arismendy et al. 2018; Olofsson et al. 2008). Table 

1 shows some examples of bioethanol yields using the SHF and SSF strategies.  
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Fig. 2.  The sequences of the 2G bio-ethylene production by the SHF and SSF strategies 

 

Table 1. Various Bioethanol Yield (BEY) Values Obtained from SHF and SSF 
Strategies from Softwoods 

Raw Material Origin Strategy BEY (%) Conditions Scale Reference 

Pinus 
pinaster 
Stumps 

Portugal SSF 97% 15 (FPU)/g pulp Cellic® 
Ctec2 (CTec2), 72 h, 38 

°C 

250 mL 
Erlenmeyer 
flasks, 50 

mL working 
volume 

(Mendes et 
al. 2020) 

S. cerevisiae 

Pinewood 
chips 

Italy SHF 96.1% CTec2, 48 h, 50 °C Bioreactor 
of 6 L 

capacity 

(Cotana et 
al. 2014) S. cerevisiae, 48 h, 32 °C 

Softwood 
kraft 

unbleached 
pulp 

Japan SSF 62.8% 15 (FPU)/g pulp EPEG-
SL, 72 h, 38 °C 

100 mL 
scale fed-

batch 

(Cheng et al. 
2017) 

S. cerevisiae 

Pinus radiata Chile SSF 95% 0.44 g of Cellic® Ctec3 
(Ctec3)/g of dry substrate, 

72 h, 40 °C 

Not 
specified 

(Valenzuela 
et al. 2016) 

Saccharomyces IR2-9 

Pinus 
sylvestris 

Finland SSF 87.8% 10 (FPU)/g pulp 

Celluclast® 1.5 L and 
Novozyme188 (200 nkat/g 

dry matter). 72 h, 40 °C 

250 mL 
Erlenmeyer 
flasks, 100 
mL working 

volume 

(von 
Schenck et 
al. 2013) 

S. cerevisiae IR2-9 

Pine waste Argen-
tina 

SHF 83% Trichoderma reseei (20 
FPU/g glucans), 48 h, 50 

°C 

50 mL 
Erlenmeyer 

flasks 

(Kruyeniski 
2017) 

S. cerevisiae, 48 h, 30 °C 
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High bioethanol yields are justified by low lignin content in the substrate 

(pretreated pulp), because of its low toxicity for both yeasts and enzymes (von Schenck et 

al. 2013). Mendes et al. (2020) reported ethanol yields of about 97% in the SSF strategy, 

using Pinus pinaster stumps. This was higher than that obtained by Cheng et al. (2017) 

(62.8%) in the same conditions (72 h, 38 °C, and enzyme charge). 

Several fungi and bacteria for the hydrolysis of lignocellulosic biomass were 

studied to evaluate the possibility of producing ethylene at a commercial level. However, 

it was discarded because the obtained yields of ethylene were significantly low using wild 

yeasts (Penicillium digitatum and Pseudomonas syringae). Studies that utilized enzymes 

at the laboratory scale resulted in negligible ethylene yields, which illustrates that this 

process is not commercially applicable (Manikandan et al. 2016).  

 

 

BIO-ETHYLENE PRODUCTION FROM 2G BIOETHANOL 
 

In the petrochemical industry, dehydration of ethanol to ethylene is a usual process 

(Kniel et al. 1980). Nevertheless, for the ethylene process, ethanol purity must be higher 

than 95 wt%. Besides, bioethanol has particularities that make necessary further treatment 

previous to ethylene processing. Unlike ethanol, both 1G and 2G bioethanol come from a 

fermentation broth that contains microorganisms, nutrients, and reaction by-products. The 

obtained bioethanol must be purified by removing contaminants and additional water. For 

this, several methods combine distillation, adsorption, extraction, among others, such as 

separation by membrane pervaporation (Feng and Huang 1997), extractive distillation 

(Mendoza- Pedroza et al. 2018), or heteroazeotropic distillation (Frolkova and Raeva 

2010), which have been exhaustively described in the literature. For ethylene production, 

in particular, Very High Gravity (VHG) fermentation emerges as an interesting option to 

explore and optimize when using SHF, since it can improve fermentation performance and 

purify ethanol simultaneously (Kang et al. 2014b). Considering that this is a stage of great 

energy consumption (Cardona et al. 2006), it is one of the steps that require optimization 

to contribute to the economic viability of bio-ethylene. 

Lignocellulosic biomass as a substrate could also contain reaction products from 

pretreatments, such as furfural and acetic acid, which could become bioethanol 

contaminant by carryover. However, a simulation carried out with the Aspen program 

showed that the impurity profile of ethanol feed does not have a significant effect on the 

quality of the obtained bio-ethylene (Mohsenzadeh et al. 2017). Experiences are needed to 

corroborate this supposition. 

The process to manufacture bio-ethylene involves an endothermic reaction that 

occurs under adequate temperature and with the aid of a catalyst (Mohsenzadeh et al. 

2017). The type of catalyst and the process conditions determine the extent of the side 

reactions. For example, the dehydrogenation of ethanol can produce C2H4O and hydrogen 

gas (H2). Ethylene can be dimerized and oligomerized to C4 olefins, which can be 

hydrogenated to saturated hydrocarbons (mainly ethane). Other reactions involve 

impurities in the feedstock, such as the dehydration of heavier alcohols. A variety of 

reaction byproducts can be found in ethanol dehydration, including acetic acid, ethyl 

acetate, acetone, methanol, short hydrocarbons (methane, ethane, propane, propylene, 

others), CO, and CO2, among others. These compounds impact the separation process and 

recovery costs.  
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Ethylene is formed by the highly endothermic intramolecular dehydration of 

ethanol, which eliminates one oxygen atom and two hydrogen atoms. The formation of 

ethylene occurs at temperatures between 350 °C and 500 °C, which promotes the use of 

adiabatic reactors because they provide suitable temperature sets and low investment costs 

(Kagyrmanova et al. 2011; Nitzsche et al. 2016). At low temperatures, intermolecular 

dehydration also produces diethyl ether, which can be sequentially dehydrated to form 

ethylene. Therefore, controlling these side reactions could reduce the costs associated with 

the removal of by-products (de Andrade Coutinho et al. 2013). 

Ethylene production from lignocellulosic biomass at the industrial level requires 

processes that attain the theoretical yield of 2 ethylene mol/glucose mol or 0.31 g/g by 

glucose fermentation to ethanol and subsequent acid-catalyzed ethanol dehydration to 

ethylene. Ideally, 1 mol of glucose can be converted to 2 mol of ethylene produced from 

ethanol, using enzymes for dehydration together with ethanol-producing microorganisms. 

However, more studies on the equilibrium of the dehydration reaction and the fermentation 

conditions are required to determine the technical feasibility of this process (Endres 2017; 

Pardo et al. 2018).  

In brief, the process to obtain marketable polymer-grade ethylene involves several 

stages. First, the concentrated ethanol must be pressurized at 1.14 MPa. Next, the feed 

stream must be preheated using the hot exhaust gas from the adiabatic reactor, after which 

it is cooled to 84 °C. The water in the gas stream at the top of a rapid cooling tower is then 

condensed at 1 MPa. The solution is cooled to 20 °C, and a fraction of the bottom liquid is 

recirculated. Next, the dry gas is compressed to 2.7 MPa in a three-stage compressor, 

removing the condensed water from each stage of the compressor. The CO2 is absorbed in 

a packed column, washed with NaOH, and the gas is washed with a water spray at the top 

of the column to remove the NaOH. The remaining water is then extracted in the ethylene-

rich gas with a molecular sieve. Finally, the gas is cooled to saturation and cryogenic 

distillation (84 stages and a pressure drop of 0.25 MPa, 75% efficiency) to remove the 

heavier impurities. 

The heaviest hydrocarbons are removed in the bottom flow, and the top product is 

ethylene, with a 99.1% recovery rate. The CO, CH4, and H2 are removed with a 75% 

efficiency from ethylene in a 20-stage downstream stripper with a 0.25 MPa pressure drop. 

The bottom product is polymeric ethylene. The overhead compounds are pressurized and 

partially condensed, while the low molecular weight compounds are vented, and the 

condensed ethylene is returned to the separator (Morschbacker 2009; Nitzsche et al. 2016). 

For the dehydration reaction, catalysts are necessary (Fan et al. 2013). Many 

laboratories are developing synthesized catalysts to achieve better ethanol conversion and 

ethylene selectivity rates (Wu and Wu 2017). These should soon allow the profitability of 

large-scale bio-ethylene production (Kagyrmanova et al. 2011) compared to steam 

cracking plants (Fan et al. 2013). The different catalysts that have been tested and 

developed to produce bio-ethylene are shown in Table 2. Alumina or alumina in 

conjunction with metal oxides as promoters, silica, clay, several metal oxides, phosphorus 

oxides, phosphates, molybdates, sulfuric acid, and zeolites, among others, have been 

studied as catalysts. Industrially, phosphoric acid and alumina have been used on a small-

scale and they have been used to increase the ethylene selectivity (de Andrade Coutinho et 

al. 2013).  
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Table 2. Catalysts Tested for the Ethanol Dehydration Reaction to Produce 
Ethylene 

Catalyst 
Max. Ethylene 
Selectivity (%) 

Ethanol 
Conversion 

(%) 

Reaction 
Temperature 

(°C) 
Stability Reference 

Zeolite HZSM-5 modified 
with 0.5%-La-2% P 

99.9 100 240 to 280 High 
(Hu et al. 

2010) 

Si/Al 99.0 100 
500 

High (Rossetti et al. 
2017) ϒ-Al2O3 80 100 Stable 

HZSM-5 98.8 99.0 250 

High 
(Sheng et al. 

2013) 

HT400 98.9 99 260 

HT500 98.5 98.6 275 

HT550 98.2 94.9 290 

La-modified HZSM-5 
zeolite 

98.5 99.5 260 High 
(Ouyang et al. 

2009) 

Phosphorus (P) modified 
H-ZSM-5 

98  99 450 High 
(Ramesh et al. 

2010) 

Al2O3 97.7 99.8 > 400 High 
(Tripodi et al. 

2019) 

Al2O3 97 99 450 High 
(Kagyrmanova 

et al. 2011) 

HZSM-5 zeolite 90 90 245-260 Stable 
(Moon et al. 

2019) 

Al2O3 
HZSM-5 
SAPO-34 

NiAPSO-34 

82.8 90.1 

350 to 475 Stable 
(Zhang et al. 

2008) 
93.1 97.3 

86.0 93.5 

92.3 96.5 

Zeolite ZSM-5 
80 99 400 

Low 
(Wu and Wu 

2017) 72 42 300 

 

Kagyrmanova et al. (2011) reported maximal ethylene selectivity when the 

concentration of ethanol in the feedstock was above 94 wt% between 370 °C and 400 °C. 

Ouyang et al. (2009) achieved a maximum ethylene selectivity of 98.5% and an ethanol 

conversion rate of 99.5%, which indicated that higher temperatures favored the dehydration 

reaction of ethanol and the yield of ethylene. 

Alumina is the most commonly used catalyst for the dehydration of bioethanol, as 

it can withstand temperatures above 450 °C, but it deactivates quickly at temperatures 

below 300 °C. Zeolites are used to carry out the reaction because they do not require high 

temperatures, but at low-temperatures coke formation can produce the catalyst deactivation 

(de Andrade Coutinho et al. 2013). For example, Sheng et al. (2013) reported maximum 

ethylene selectivity and ethanol conversion rates of 98.8% and 99%, respectively, when 

HZSM-5 was used as a catalyst at a temperature of 250 °C. 

The effluents contain a high amount of water from the dehydration reaction, as well 

as ethanol feedstock and heat-carrying fluid. Water can be separated in a quench tower, 

and the residual ethanol and water-soluble oxygenates can be re-heated and distilled. The 

residual ethanol and diethyl ether (low water solubility) can be recovered and recycled to 

the feedstock, while the C2H4O can be burned in the furnace. The gas from the top of the 

quench tower primarily contains ethylene (90% to 99.5%), hydrocarbons, H2, CO, CO2, 

and oxygenates. The ethylene can be washed with cool water in a second tower removes 

the oxygenates, and caustic washing can remove CO2 and acids (de Andrade Coutinho et 

al. 2013).  
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CONSIDERATIONS IN THE USE OF LIGNOCELLULOSIC BIOMASS FOR 
ETHYLENE PRODUCTION 
 
Technical Considerations 

In a biorefinery platform for ethylene production from biomass, either by 

biochemical or thermochemical pathways (Alonso-Fariñas et al. 2018), the high energy 

consumption could lead to high production costs. Several ethylene production processes 

have been developed and analyzed. Hackl et al. (2011) found that when one refinery was 

used for the bio-ethylene production process, the heat utility demand of the ethanol and the 

ethylene plants decreased from 131 MW to less than 80 MW. In a combined biorefinery, 

the flue gas can be integrated with the ethanol dehydration reactors, which will further 

reduce the utility demands (Hackl et al. 2011). 

In the biochemical process, the pretreatment and ethanol recovery stages consume 

a large amount of energy (Hackl et al. 2011; Nitzsche et al. 2016). The complexity of wood 

as raw material directly affects the integration mechanism (Mendieta et al. 2019) and the 

pretreatment cost (Rosales-Calderon and Arantes 2019). Energy integration strategies 

could be applied in these processes, with theoretical savings for heat demand of 31.5% 

(15.1 MW) and cooling demand of 39.5% (13.8 MW) (Nitzsche et al. 2016; Becerra et al. 

2017). Generally, the production of ethanol requires a large amount of energy. Among the 

strategies developed to make it cost-effective (Ferreira et al. 2018; Ayodele et al. 2020), 

the most important are heat, energy, and mass integration (Cardona and Sánchez 2007; 

Clauser et al. 2021). 

Among the different alternatives mentioned to integration, the most promising 

replaces the improvement of the individual sectors with a systemic approach, with a full 

scope of the process. In this way, it is possible to control the effect of the optimization 

proposed in each of the stages (Hackl and Harvey 2016; Valderrama et al. 2020). In this 

sense, it is possible to take advantage of the high heat content in the different stages, as the 

condensation in the ethanol purification at the output of ethylene reactors. Besides, the heat 

available in the cooling of the hydrolysis and fermentation processes can be leveraged in 

the ethanol production process, for example, in the pretreatment stage (Alonso-Fariñas et 

al. 2018). Nowadays, the facilities that use cogeneration and have residual heat can sell the 

excess. However, the profit of heat exchange reduces their advantages when ethanol 

production and dehydration to bio-ethylene processes are located in different locations 

(Hackl and Harvey 2016). 

Some of the improvements obtained through process integration are summarized in 

Table 3. Moreover, the high investment costs for development at the industrial scale should 

be taken into consideration. There are complicated factors to consider in the decision-

making process, such as the raw material, the pretreatment methods, the production costs, 

the production scale, and the yield, among others (Kang et al. 2014a; Brown 2015; de Assis 

et al. 2017; Meneses 2018). In order to attain competitive production costs, it is necessary 

to improve other key factors such as the development of new low-cost conversion 

strategies. Such strategies may include reducing the consumption of enzymes, reagents, 

and water, among others, in addition to new strategic policies for bio-based products. The 

production of derivatives and new products must be developed for the emerging bio-based 

markets (Mohsenzadeh et al. 2017; Tripodi et al. 2019). Biopolyethylene, which can be 

replaced in various uses by degradable bioplastics, is still essential in some medical and 

industrial applications. So, the processing of this classical derivative, and also of bio-PET, 

must also be improved. 
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Table 3. Integration Strategies for Ethanol and Ethylene Production 

Feedstock Strategy Improvement Ref 

Sugarcane  EI 
Energy reduction of 50% compared with no 

energy integration. 
(Oliveira et 
al. 2016) 

Sugarcane  EI 

With the integrated heat exchanger networks 
(HEN) it is possible to reach more than 70% of 

process steam reduction with energy 
integration. 

(Oliveira et 
al. 2018) 

Beechwood EI 
The demand for total energy was reduced by 

more than 32%. 
(Nitzsche et 

al. 2016) 

Molasses and 
sugarcane 
bagasse 

EI, MI 

53% reduction of heat exchange units and 
19.25% reduction of the cost of industrial 

cooling services. 
16.53% reduction of the process freshwater 

consumption. 

(Valderrama 
et al. 2020) 

Sugarcane 
bagasse 

EI, MI 
Potential reduction in steam consumption by 

almost 35%. 
(Dias et al. 

2011) 

Corn stover EI* Up to 47.6% savings of the total annual costs. 
(Nhien et al. 

2017) 

EI: Energy integration; MI: Mass integration. *Energy integration and intensification. 

 

While the development of a biorefinery plant presents some challenges, it does offer 

some considerable advantages (Fig. 3). 

 

 
 

Fig. 3. The advantages of converting wood waste product to bio-ethylene 
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Economic Considerations 
The reported selling price of 1G bio-ethylene is approximately $1,100 to $1,500 

USD/t (Budzinski and Nitzsche 2016; Nitzsche et al. 2016; Alonso-Fariñas et al. 2018; 

Jiang et al. 2019), but in some cases it may reach higher than $2,000 USD/t (Taylor et al. 

2015). According to recent investment information, the capital costs for bio-ethylene 

production, depending on the process, could range from $460 USD/t (Becerra et al. 2017), 

between $1,100 and $1,400 USD/t (Broeren 2013), $3,880 USD/t (Nitzsche et al. 2016), 

and $5,750 USD/t of ethylene per year (Budzinski and Nitzsche 2016). Some of the 

production costs are presented in Table 4. 

 
Table 4. Ethylene Production Costs as Reported by Several Studies 

Raw Material 
Capacity 

(ton of ethylene/ 
year) 

Year 
Production 

Cost 
(USD/t) 

Country Ref 

Beech wood 400,000a 2016 1,349b Germany 
(Nitzsche et al. 

2016) 

Cornb - 2009 2,060 USA 
(Broeren 

2013) 

Sugarcane - 2009 1,190 Brazil 
(Broeren 

2013) 

Sugarcane - 2009 1,220 India 
(Broeren 

2013) 

Sugar beets - 2009 2,570 
Europe 
Union 

(Broeren 
2013) 

Sweet sorghum - 2009 1,650 China 
(Broeren 

2013) 

Sugarcane 
bagasse 

500,000 2019 
1,006 to 

1,436 
Brazil 

(Oliveira et al. 
2019) 

Spruce – Salix – 
Corn stover 

200,000 2011 
1,012 to 
1,084c 

Sweden 
(Hackl et al. 

2011) 

Sugarcane 1,000,000 2012 1,347 Brazil 
(Cameron et 

al. 2012) 

Corn 9.9 to 38.9d 2013 
1,724 to 
1,762c 

Europe 
Union 

(Haro et al. 
2013) 

Biomass 9.9 to 38.9d 2013 
1,219 to 
1,182c 

USA 
(Haro et al. 

2013) 

Sugarcane 9.9 to 38.9d 2013 
1,053 to 
1,016c 

Brazil 
(Haro et al. 

2013) 
aRaw material per year. bMinimum selling price in €. cValues in €. dt/h. 

 

The prices and production costs of bio-ethylene are similar to those of oil-derived 

ethylene (Nitzsche et al. 2016; Santagata et al. 2020). However, the market price of bio-

ethylene derivates, such as polymers, is slightly higher than the market price of oil-derived 

ones (Taylor et al. 2015). Some researchers have reported a 30% to 60% premium in the 

price of bio-PE (Taylor et al. 2015; Nitzsche et al. 2016). Similarly, the price of bio-PET 

is not competitive with the usual price of PET (Taylor et al. 2015). However, the 

biorefinery concept looks very promising when considering the willingness of consumers 

to pay a higher price for biopolymers and bio-ethylene (Nitzsche et al. 2016). 

Sensitivity assessments developed for bio-ethylene production using sugarcane and 

beech wood as raw materials showed a strong dependence on the price of the raw material 

(Nitzsche et al. 2016; Oliveira et al. 2019) and the selling prices of the products (Nitzsche 
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et al. 2016). In these works, the cost of the raw material was important (more than $100 

USD/t in some cases). However, in developing countries, the costs of the feedstock and 

labor are lower than in developed countries, so bio-ethylene production may be an 

attractive alternative to add value to lignocellulosic wastes. For example, the raw material 

may comprise 60% to 75% of the production costs depending mainly on the final product 

(biomass or ethanol) and the geographic region, but in regions where the feedstock and 

labor are cheaper, like Brazil, India, and Argentina, the production costs could be reduced 

(Mohsenzadeh et al. 2017). 

Currently, mills like Braskem in Brazil (Broeren 2013; Oliveira et al. 2019), India 

Glycols Limited in India (Global Market Insights, 2016), and Greencol Taiwan 

Corporation in Taiwan (Chemicals-Technology 2020), produce 1G ethylene from 

sugarcane and molasses, with annual capacities between 100 and 200 kt. There are also 

projects in a developing stage like Dow/Mitsui in Brazil from sugarcane (with a project 

capacity of 300 kt/year) (Moser 2013). There are reports of several plants in China with 

annual capacities between 9 kt and 80 kt, but their status is unknown (Broeren 2013). 

 

Environmental Considerations 
Compared to fossil-fuel based ethylene, the production of bio-ethylene has great 

potential to reduce environmental impacts. However, new developments in the conversion 

and recovery processes are necessary to make commercial-scale production of bio-ethylene 

feasible. Some global progress has been made to make this a reality. In 2015, 17 sustainable 

development goals were listed by world leaders that sought to delay climate change, 

including improvements in sustainable energy generation, industry and innovation, 

responsible consumption, and sustainable use of biodiversity (Organización de las 

Naciones Unidas 2015; Mestre 2018). All these concepts align with the biorefinery 

schemes adapted to the circular bioeconomy (Näyhä 2012; Cristóbal et al. 2016). However, 

the bioeconomy amounts to only 11% of the economy of the European Union and 5% of 

that of the USA (Kuosmanen et al. 2020; The National Academies of Science, Engineering, 

and Medicine 2020). 

There are few studies on the life cycle assessment (LCA) of chemicals derived from 

biomass (Alonso-Fariñas et al. 2018). For bioethanol production, base-product of 2G bio-

ethylene, studies have shown a clear reduction in GHG emissions and ozone layer depletion 

(Morales et al. 2015). 

Compared to bio-ethylene, fossil-based ethylene production greatly contributes to 

global warming and photochemical ozone creation (Liptow et al. 2015). Carbon dioxide 

emissions can be reduced by approximately 2.5 tons per ton of produced bio-ethylene if 

fossil-fuel based chemicals are replaced by biobased ones (de Jong et al. 2012a). 

A LCA compared thermochemical and biochemical processes for bio-ethylene 

production from sugar beets, considering 11 potential impacts (Liptow et al. 2015). The 

LCA showed that the gasification pathway has a lower impact than the fermentation route. 

The bio-chemical option had a lower impact on human toxicity, freshwater aquatic 

ecotoxicity, and terrestrial ecotoxicity potential than the thermo-chemical route. For the 

remaining eight impacts, the thermochemical option was more sustainable (Alonso-Fariñas 

et al. 2018). Compared with fossil-fuel based PE, bio-PE can reduce environmental 

emissions (Ita-Nagy et al. 2020). Sugarcane-based bio-PE can reduce GHG emissions by 

more than 50% (Taylor et al. 2015). However, biomass conversion by both the 

fermentation and gasification processes should be further analyzed. Various GHG emission 

savings were reported for the different derivatives of bio-ethylene. 
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Achieving the commercial-scale development of biorefinery processes requires the 

involvement of private entities (producers and industry), state organizations (such as 

universities), and society (Wierny et al. 2015; Nguyen et al. 2020). Additionally, the laws 

that guarantee the regulatory framework must be approved (Mestre 2018), and the 

establishment of the LCA of both fossil-fuel based and bio-based products and materials 

must be encouraged (Nguyen et al. 2020). 

 
Availability of Raw Materials 

The productive characteristics of Latin America determine the development of 

biorefineries (Wierny et al. 2015). In 2017, the bioeconomy sector accounted for 

approximately 16% of Argentina’s gross domestic product (GDP) (Coremberg 2018). To 

increase the impact of bio-based products in the global economy, key factors such as 

government policies and intersectoral cooperation, among others, must be promoted in the 

country (Nizami et al. 2017). 

In Argentina, approximately 50% of the wood from sawmill production, pruning, 

thinning, and logging is discarded as waste. If an industrial strategy is developed to utilize 

this wood waste, it can be capitalized for other uses (Uasuf and Hilber 2012; de Assis et 

al. 2017; Clauser 2019; Körte et al. 2019). The forestry industry is the primary economic 

activity in the northeast region of Argentina (Area and Park 2017). Sawmills and lumber 

mills generate approximately 2.35 million dry tons of wood waste per year, most of which 

is slash pine and loblolly pine sawdust (Laharrague 2018). In the northeast region of 

Argentina, forest waste (without urban pruning) amounts to approximately 16 million tons 

per year (Peirano et al. 2019). 

 
Table 5. Recent Studies Carried out in Argentina Oriented to Obtain 2G 
Bioethanol 

Raw 
Materials 

Province Process Conditions Scale References 

Pine 
sawdust 

Misiones Organosolv 
pretreatment 

 
SSF Strategy 

EtOH/NaOH; 1 h, 
170 °C 

 
T. reesei (20 FPU/g 

glucans); 48 h, 50 °C 
S. cerevisiae; 72 h, 

30 °C 

Reactor of 
200 mL, 100 
mL working 

volume 

(Kruyeniski 
2017) 

Pine 
sawdust 

Misiones SHF/SSF 
Strategy 

Cellic® Ctec2  
S. cerevisiae, 
72 h, 37 °C 

250 mL 
Erlenmeyer 
flasks, 100 
mL working 

volume 

(Mendieta 
2020) 

Pine 
sawdust 

Misiones Pretreatment 
(Acid and 
alkaline) 

 
 

Enzymatic 
hydrolysis 

H2SO4; 1 h, 121 °C 
NaOH; 1 h, 121 °C 

 
Celluclast® 1.5 L 

(Sigma) 
96 h, 50 °C 

100 mL 
Erlenmeyer 
flasks, 50 

mL working 
volume 

(Rodríguez 
et al. 2017) 

Rice husks Chaco Pretreatment 
 
 

Enzymatic 

NaOH; 1 h, 121 ºC 
 

Ctec2 (30 FPU/g 
glucans, 

250 mL 
Erlenmeyer 
flasks, 200 
mL working 

(Arismendy 
et al. 2019) 
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hydrolysis and 
fermentation 

S. Cerevisiae, 
72 h, 37 °C 

volume 

Rice husks Chaco Pretreatment 
 
 

SHF/SSF 
Strategy 

NaOH; 1 h, 121 °C 
 

Ctec2 (30 FPU/g 
glucans), 

S. cerevisiae, 
72 h, 37 °C 

250 mL 
Erlenmeyer 
flasks, 100 
mL working 

volume 

(Arismendy 
et al. 2020) 

White 
grape marc 

Mendoza Acid 
pretreatment 

 
Saccharification 
and fermentation 

H2SO4 (diluted); 1 h, 
97  °C 

 
Ultrazym Premium 

DX enzyme; 20 h, 45 
°C 

S. cerevisiae; 20 h, 
28 °C 

500 mL 
Erlenmeyer 
flasks, 350 
mL working 

volume 

(Díaz 2018) 

Sawdust 
black carob 

Chaco Organosolv 
pretreatment  

 
Acid hydrolysis 

 
 

NaOH-EtOH-H2O; 1 
h, 121 ºC 

 
H2SO4; 1 h, 121 °C 

Reactor AISI 
316, 180 mL 

working 
volume 

(Dagnino et 
al. 2018) 

Sugarcane Tucumán Alkaline 
pretreatment 

 
SSF Strategy 

NaOH; 1 h, 121 °C 
 

Ctec2 and Cellic® 
Htec2, S. cerevisiae 

72 h, 35  °C 

100 mL 
Erlenmeyer 
flasks, 30 

mL working 
volume 

(Manfredi et 
al. 2018) 

Eucalyptus 
globulus 

Santa Fe Steam 
Explosion,  

 
Dilute sulfuric 

acid 
 

 H2SO4; 1 h, 173 and 
216  °C 

 
H2SO4; 1 h, 120 and 

140  °C 

Not 
specified 

(Vargas 
and 

Vecchietti 
2018) 

Melon 
residues 

San Juan Acid 
pretreatment  

 
Enzymatic 
hydrolysis 

 
 

Fermentation 

H2SO4 (diluted); 1 h, 
55  °C 

 
T. reesei (20 FPU/g 
pulp) ATCC26921; 

24 h, 45  °C 
 

S. cerevisiae; 72 h, 
35  °C 

 

1000 mL 
Erlenmeyer 
flasks, 700 
mL working 

volume 

(Montoro et 
al. 2020) 

Wheat 
straw and 

barley 
straw 

Buenos 
Aires 

SSF Strategy Ctec2 (20 FPU/g 
pulp) 

S. cerevisiae 
72 h, 30  °C 

100 mL 
Erlenmeyer 

flasks 

(Campos 
2018) 

 
Typically, these wood residues are used in boilers and, in the case of pulp and paper 

mills, are used for steam generation and electrical energy production (Arauco 2020). Some 

companies produce market chips and pellets destined for Brazil and Uruguay (GP Energy 

2020). Various wood residues have different low-value uses in each province. For example, 

bags of pet products from wood residues, without compacting (Noticias 2010; PinoPack 

2020), filler for bricks, firewood (Petri et al. 2016), and landfills (Petri et al. 2018), are 
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sold in Misiones, Formosa, and Chaco, respectively. No references for obtaining bio-

ethylene from biomass in Argentina were found. Several studies were conducted to obtain 

2G ethanol in conditions that can be used to produce bio-ethylene (Table 5). 

Among the parameters requiring optimization to increase yields, the time of the 

fermentation stage is a key factor for the subsequent processing steps. For example, 

(Arismendy et al. 2019) obtained the highest production of hydrolyzed sugars at 13 h in 

the enzymatic hydrolysis stage, (Díaz 2018) at 20 h, and (Montoro et al. 2020) at 24 h. The 

chosen pretreatment is another key factor. For example, the alkaline pretreatments are the 

most used because they favor the subsequent saccharification of cellulose. Temperature is 

also an important factor that must be taken into account so that the microorganisms used 

can carry out their work; for example (Mendieta 2020) and (Pabón et al. 2020) used the 

SSF strategy employing a temperature of 37 °C, being a temperature higher than that used 

in traditional fermentations. However, Manfredi et al. (2018) and Campos (2018) used 

temperatures of 35 °C and 30 °C, respectively. 

Numerous studies state the relevance of using lignocellulosic residues available in 

the region. Even if potential uses are identified, they are not currently developed. 

 

 

CONCLUDING STATEMENTS 
 
1. This review has shown that bio-ethylene production from 2G ethanol could have the 

potential to compete with fossil-fuel-based ethylene when some stages of the whole 

process are optimized. 

2. Biopolyethylene production is the more classical bio-ethylene market, but other 

significant markets are the control of the ripening of fruit, and the development of the 

crop growth in agriculture. Biopolyethylene also can be considered for the production 

of specialty glass for the automotive industry, as an anesthetic in medical applications, 

as a refrigerant, and as oxy-fuel gas in metal works.  

3. The production of bio-ethylene from 2G ethanol is an attractive alternative for regions 

with low-cost raw materials, such as the northeast region of Argentina. 

4. Different mass and energy integration strategies could be employed to substantially 

reduce production costs. 

5. The optimization required to obtain competitive costs includes reducing the 

consumption of enzymes, reagents, energy, and water, finding more efficient catalysts 

and purification techniques, and developing new strategic policies for bio-based 

products, among others. 

6. The production of bio-ethylene can reduce environmental concerns such as GHG 

emissions and the depletion of fossil-fuels. Therefore, more research and development 

in the conversion and recovery processes for bio-ethylene production are necessary. 
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