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Hevea brasiliensis is the most relevant source of natural rubber-based 
products in the world, and it is mostly found in Southeast Asia. This species 
is highly functional because its seeds can be utilized as a starting material for 
many essential applications related to polymer engineering and technology. 
The main practical compositions are its shell and kernel. The importance of 
each composition is varied based on the content of each structure. The kernel 
is predominantly composed of oil, where the oil can be utilized for the 
production of biofuel and to impart flexibility in many polymer-based 
composites. Furthermore, the carbon and lignocellulosic contents are heavily 
represented in the shell of the rubber seed, making the shell useful as a 
natural resource for carbon-derived applications.  
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INTRODUCTION 
 

Hevea brasiliensis or natural rubber tree is a tropical plant originating from the 

Amazon, Brazil (Corpuz 2013) and extensively cultivated in Southeast Asia including 

Malaysia, Indonesia, Philippines, and Thailand (Guardiola-Claramonte et al. 2010). Hevea 

brasiliensis grows in a humid and temperate climate, maturing in a span of five years and 

is able to produce its rubber for up to 20 years. This particular species can grow up to 130 

feet tall with a typical economical lifespan of 25 to 40 years per tree; it is normally 

replanted every 25 to 30 years to ensure the productivity and usability of the latex produced 

(Teoh et al. 2011; Brahma et al. 2017). However, this planned procedure is subject to 

environmental changes such as soil fertility, global warming, and total rainfall (Herrmann 

et al. 2016). Natural rubber (NR) can be extracted from more than 3,000 species of plants 

including Ficus elastica (Moraceae), Parthenium argentaturn and Taraxacum koksaghyr 

(Compositae). Limited sources of NR are found in many other species such as Euphorbia 

intisy (Euphorbiaceae), Cryptostegia grandiflora, and Cryptostegia madagascariensis 

(Asclepiadaceae), Funtumia elastica, and Landolphia. However, Hevea brasiliensis is the 

most important commercial source of NR (Siler et al. 1997; Collins-Silva et al. 2012).  

Natural rubber contains natural polymers that are versatile due to their inherent 

properties such as high flexibility and strength, excellent resistivity to many chemicals, and 

good electrical insulation (Vijayaram 2009). Thus, NR is extensively used in the 

manufacturing of more than 40,000 products of medical, automotive, aerospace, logistic, 

and textile industries (Mooibroek and Cornish 2000). NR is often referred to as the dry 

state of a latex, which is a milky colloidal dispersion containing natural rubber particles 

extracted from the latex vessels or the cells of rubber-producing plants (Yip and Cacioli 

2002; Venkatachalam et al. 2013). Latex in Hevea brasiliensis trunk is transported via a 
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network of connected vessels, and it is harvested easily by a special incision on its trunk 

(Arias and van Dijk 2019). Malaysia has approximately 1,021,540 hectares of rubber 

plantations that are capable of producing more than 120,000 tons of rubber seeds annually 

(Gimbun et al. 2013). Table 1 compares the different values of rubber seed yield in some 

Asian countries.  Rubber seed is an abundant natural by-product in rubber plantations, 

where the main product is raw rubber. Malaysia is one of the largest rubber producers in 

the world, and rubber seed is considered agricultural waste (Hameed and Daud 2008). One 

dehiscent rubber fruit comprises four seeds, which fall to the ground when the fruit harvests 

and splits (Nwokolo 1996). Each tree yields approximately 800 seeds twice per annum, 

and one plantation produces 500 to 2000 kg of seed per hectare every year (Onoji et al. 

2016; Cheah et al. 2017; Yubao et al. 2017).  

 

Table 1. Estimated Yield of Rubber Seed in some parts of Asia 

Country or Region Estimated Average Rubber 
Seed Yield 

Reference 

Malaysia 500 kg/ha yr Cheah et al. 2017 

Indonesia 5 million tons/ yr Ulfah et al. 2018 

China 2000 kg/ha yr Yubao et al. 2017 

 
Rubber seed is an ovoid-shaped and light-weighted substance that weighs 

approximately three to six grams, depending on age of the seed and moisture content 

(Shafiq and Ismail 2021). A fresh rubber seed is constituted of 35% shell, 40% kernel, and 

25% moisture (Onoji et al. 2016). Both shell and kernel consist of organic substituents, 

where the rubber seed shell (RSS) is mainly composed of ash (0.82%), lignin (2.98%), 

hemicellulose (24.56%), and cellulose (71.64%) (Ekebafe et al. 2010). The rubber seed 

kernel (RSK) is made up of moisture, protein, fat, ash, and carbohydrate (Chanjula et al. 

2010). Hassan et al. (2014) reported the trace amount of cellulose content that is made up 

of 3.6% extractives, 26.9% hemicellulose, and 69.5% cellulose.  

 

Main Usage 
Both rubber seed shell (RSS) and rubber seed kernel (RSK) have their own 

dominant area of uses due to various natural compositions. However, rubber seed as a 

whole contains sufficient nutrients as food for human and animals. With a protein content 

of 17.41 to 27 g per 100 g of seed, consumption of 300 g of rubber seeds daily would 

provide sufficient protein intake for an adult (56 g for males and 46 g for females) (Eka et 

al. 2010). Furthermore, a high amount of minerals and fat justifies the potential use of 

rubber seed as food. However, the discovery of toxic cyanogenetic glucoside in rubber seed 

may disqualify its used as a food source. Fortuna and co-workers (2015) mentioned that 

fresh rubber seeds can contain up to 186 ppm of cyanogenic glycoside, which is known as 

Linamarin. Linamarin can be hydrolyzed to produce glucose, acetone cyanohydrin, and 

hydrogen cyanide (Fortuna et al. 2015; Bolarinwa et al. 2016). Nevertheless, from the 

FTIR analysis, no cyanide (CN) functional group peak appeared in rubber seed oil 

(Salimon et al. 2012). Despite the toxic content, boiled and drained rubber seed are 

consumed by indigenous peoples in the Amazon Valley of South America without any 

health effects (Eka et al. 2010). The hydrogen cyanide content can be lowered by storing 

the rubber seed at room temperature for two months (Narahari and Kothandaraman 1983). 

Selle et al. (1983) reported that the cyanide content in the rubber seed can be effectively 

reduced by soaking the seeds in water for 20 hours, followed by one hour of cooking. 
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Hassan et al. (2014) revealed that most elemental contents in RSK are higher than in RSS 

as tabulated in Table 2.  

 
Table 2. Elemental Content of Rubber Seed (Hassan et al. 2014) 

 C H N S O 

RSS 48.8 5.9 1.5 0.1 43.7 

RSK 64.5 8.2 3.6 0.3 23.4 

 

Rubber Seed Kernel (RSK): Engineering Applications 
Biofuel 

Rubber seed kernel is well known for its oil content, with of an oil yield of 33.1 

wt% (Hassan et al. 2014). The rubber seed kernel can be utilized for its oil content, leading 

to its usage in rubber-producing countries. The production of biofuel is getting attention 

for the recent decades due to its sustainable reputation; conversion from fossil fuels to the 

use of biofuels reduces greenhouse gas emissions (Raman and Mohr 2014). Biodiesel is 

one of the well-studied biofuels as an alternative for traditional diesel due to its efficient 

performance that is on par with diesel fuel. Importantly, biodiesel offers a less serious 

threat to the environment, due to its renewability, biodegradability, and non-toxicity 

(Mohsin et al. 2014; Yesilyurt et al. 2020). 

 

 
 

Fig. 1. Transesterification of rubber seed oil (RSO) to biodiesel fuel (BDF) (Le et al. 2018) 

 

Rubber seed-derived biodiesel was found to be efficient for use as a partial 

substitute for diesel engines (Ulfah et al. 2017). Several methods have been explored to 

produce biodiesel from rubber seed. Typical biodiesel production employs an esterification 

or/and transesterification process, where esterification is a process of reaction between 

alcohol and carboxylic acid such as free fatty acid using an acid catalyst, while 

transesterification involves a reaction between triglyceride and alcohol, yielding fatty acid 

methyl ester and alcohol (Kirumakki et al. 2006). Figure 1 shows the transesterified 

biodiesel fuel (BDF) from rubber seeds (Le et al. 2018). Wibowo (2013) produced an 

environmentally friendly high yield biodiesel with controllable density and viscosity by an 

in-situ transesterification that entails the extraction of oil from rubber seed kernel and a 

reaction with methanol using a sulfuric acid catalyst. Le et al. (2018) used a similar method 

in which the rubber seed oil was (RSO) was esterified and transesterified using fatty acid 

methyl esters (FAME) as a co-solvent. They revealed that the quality of the derived 

biodiesel fuel (BDF) with high FAME content met the criteria of the EN14214 (2008) and 

JIS K2390 (2016) standards (Le et al. 2018). These standards outline specific physical and 

chemical properties and the content of biodiesel fuel required to ensure a good quality of 

bio-derived fuel for safety, energy efficiency, and transportation (Masjuki et al. 2013).  



 

PEER-REVIEWED REVIEW ARTICLE  bioresources.com 

 

 

Shafiq & Ismail (2021). “Rubber seed polymers,” BioResources 16(2), 4649-4662.  4652 

One of the main principal challenges to produce biodiesel from rubber seed kernel 

is the oil content. Various extraction methods have been used in an attempt to maximize 

the oil content of RSK, including mechanical press with an absence and presence of solvent 

and cold percolation. A laboratory-scaled mechanical press only yields about 5.35% of oil 

(Morshed et al. 2011). The cited authors also discovered that the maximum rubber seed oil 

yield can be extracted when hexane is used as a percolation solvent at a volume of 3 times 

the rubber seed. They also reported that a periodic solvent and mechanical press method 

can increase the yield to up to 49% at just 0.8 solvent to seed ratio.  

Roschat et al. (2017) used a simple solvent extraction method to optimise the oil 

yield and revealed that only 0.5 v/wt. of hexane produced more oil content compared to 

other more polar counterparts. This is predominantly due to the non-polarity of triglyceride. 

It can be only extracted by a non-polar solvent, also yielding less polar free fatty acid (FFA) 

content. High FFA content is not favourable for transesterification reaction due to the 

inhibition of biodiesel conversion; therefore, the FFA content in the feedstock should be 

reduced prior to esterification and transesterification (Seithtanabutara et al. 2020).  FFA 

content reported in Roschat et al. (2017) (5.2 wt%) is the least by far compared to Morshed 

et al. (2011) (17 wt%) and Ramadhas et al. 2005 (45 wt%). This may be caused by the type 

of solvent used during the oil extraction process. The FFA content in Roschat et al. (2017) 

was further reduced by using heterogenous catalysts (CaO-based coral fragment, disodium 

metasilicate granule, and CaO-based eggshell). These catalysts recorded high biodiesel 

yield and high FAME content of 97 to 98%, and a more thermally stable biodiesel 

compared to the petroleum-based diesel as presented in Fig. 2 (Roschat et al. 2017). 

Petroleum-based oil contains evaporative solvents; meanwhile the high thermal stability of 

biodiesel is due to the ester compound, giving the biodiesel a high boiling point (Roschat 

et al. 2017).  

In a separate work, the high yield of rubber seed oil- derived methyl esters at 96.7% 

can be achieved by using biowaste (kola nut pod husk) as a heterogenous catalyst (Oladipo 

and Betiku 2020). The activation of catalytic sites of the calcinated kola nut husk pod 

responds to a high biofuel yield. Calcination and carbonization processes increase the 

metallic and catalytic content of biomass, which revealed a high content of alkaline metals 

such as potassium and calcium (Betiku et al. 2019). Similar findings were reported by 

Dhawane et al. (2017), who used carbonized flamboyant pods as a heterogenous catalyst 

precursor in producing high yield biodiesel from rubber seed oil.  

 

 
Fig. 2. Thermogram of raw rubber seed oil, diesel, and synthesized biodiesel (Roschat et al. 
2017, with permission from Elsevier 
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Plasticizer 

The oil content of RSK makes it suitable to be modified as a plasticizer for polymer 

composites. A plasticizer is a multifunctional additive in polymer (plastic and rubber) 

products that enhances their flexibility and is used as an aid during processing (Nasruddin 

and Tri Susanto 2018). Mineral and petroleum-derived oils are the most common 

precursors or end materials for plasticizers in the rubber industry (Nasruddin and Tri 

Susanto 2018). The usage of plant-based oil evolved in the early 2000s, steadily replacing 

synthetic oil predominantly due to its abundance, renewability, and low cost. The oil 

content in the rubber seed constitutes 52% fatty acids; monounsaturated (oleic 18:1), and 

polyunsaturated acids such as linoleic 18:2 or linoleic 18:3 carboxylic acids (Joseph et al. 

2004; Salimon et al. 2012). Table 3 tabulates the composition of fatty acid in rubber seed 

oil (RSO) reported by Joseph et al. (2003), Yousif et al. (2013), and Jisieike and Betiku 

(2020). The incorporation of RSO as a plasticizer in acrylonitrile-butadiene rubber (NBR) 

revealed mechanical properties enhancement which included elongation at break, tear 

strength, abrasion resistance, and compression set. The elongation at break of the RSO-

plasticized NBR rubber was also increased (at 431% compared with only 323% for 

unplasticized composites) after the sample underwent thermal ageing at 70 C (Joseph et 

al. 2003). The same group of researchers performed an epoxidation of RSO and discovered 

that epoxidized RSO-plasticized NBR rubber gained increases in tensile and tear strengths, 

abrasion resistance, compression set and elongation at break when unaged and aged at 70 

C (Joseph et al. 2003). 

 
Table 3. Fatty Acid Content in Rubber Seed Oil 

Fatty Acid Composition (%) 

Joseph et al. (2003) Yousif et al. (2013) Jisieike et al. (2020) 

Palmitic acid 11 9.10 ± 0.06 9.32 

Stearic Acid 12 12.63 ± 0.01 11.42 

Oleic Acid 17 25.31 ± 0.13 24.95 

Linoleic Acid 35 36.31 ± 0.09 33.55 

Linolenic Acid 24 15.78 ± 0.18 20.17 

 

RSO and epoxidized-RSO have been used as secondary plasticizers (used with 

dioctyl phthalate (DOP)) and heat stabilizers in PVC compounds (Joseph et al. 2013). DOP 

is a common plasticizer for PVC, converting rigid plastics into flexible plastic films, 

profiles, or sheets (Pita et al. 2002; Al-Mosawi et al. 2018). The incorporation of 

epoxidized-RSO into a DOP-plasticized PVC compound resulted in an increase in the 

stabilizing torque during processing. Nevertheless, with epoxidation, RSO does not 

function well as a secondary plasticizer (Joseph et al. 2013). The presence of epoxidized-

RSO also increased the thermal degradation time during processing and recorded a high 

glass transition temperature (Tg) of the compounded PVC.  

 

Rubber Seed Shell (RSS): Engineering Applications 
Composite materials 

Polymer composites using natural-based fillers have inherent properties that are on 

par with man-made fillers. Transformation towards a sustainable lifestyle enables wide 

opportunities for natural-filled composites in producing eco-friendly plastic, replacing 

synthetic fibers composites such as carbon and glass fibers (Shafiq and Ismail 2021). 

Natural fillers exist in fibrous form and are abundantly available. Typical examples include 
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sisal, jute, kenaf, bamboo, banana, hemp, straw, rice husk, and empty fruit bunch (Taj et 

al. 2007). The practicability of these naturally sourced fillers in polymer composites is 

predominantly due to their lignocelluloses content, which can be treated and modified to 

provide a reinforcing effect on the composites or making the composites susceptible to 

environmental conditions (Jagadeesh et al. 2020). Table 4 compares the lignocellulosic 

content of RSS, and Table 5 tabulates various kinds of polymer matrices used along with 

RSS as a reinforcing filler. Rubber seed shell (RSS) was incorporated in polyolefins to 

produce natural-filled polymer composites (Shafiq and Ismail 2021). The aspect ratio of 

the filler is one of the major contributing factors on the properties development of natural-

filled polymer composites. There is no specific aspect ratio of RSS reported yet, but many 

works done indicated that the ground RSS were sieved down to 150 mesh or about 100 

microns (Ekebafe et al. 2010; Xu et al. 2016; Ekebafe et al. 2017).  

 
Table 4. Composition of RSS (Ekebafe et al. 2010) 

Composition Amount (%) 

Ash 0.82 

Lignin 2.98 

Hemicellulose 24.56 

Cellulose 71.64 

 

Table 5. Rubber Seed Shell as a Filler in Polymer Composites 

Polymer matrix Characteristic of 
RSS used 

Properties Suggested 
Applications 

References 

Polypropylene and 
High-Density 
Polyethylene  

Ground powder of 
average size of 
100 µm 

Tensile, flexural, 
impact thermal 
and water 
absorption 

Environmentally 
friendly daily 
used products 

Ismail and 
Shafiq 2014 

High-Density 
Polyethylene 

Treated in a 
superheating 
vapour 
environment with a 
range of size from 
60- 120 mesh size 

Flexural, tensile, 
thermal and 
water absorption 

Biocomposites 
for non-structural 
decorative 
products 

Xu et al. 
2016 

Natural rubber Carbonised at up 

to 800 C with an 
average size of 
150 µm 

Tensile, flex 
fatigue, abrasion, 
hardness, 
compression 

Structural 
applications 

Ekebafe et 
al. 2010 

Starch foam Milled at up to 600 
rpm for up to 60 
mins with a size 
range from 50- 
200 µm 

Flexural and 
thermal 

Bio based 
packaging 

Chaireh et 
al. 2019 

 

When the mechanical, thermal, and water absorption properties of RSS-filled 

polyolefin composites were investigated, these properties were found to be within a similar 

range to other types of natural-filled composites (Ismail and Shafiq 2014). Xu et al. (2016) 

performed a thermal modification on RSS in high-density polyethylene (HDPE) 

composites by superheated vapour treatment. At an optimum superheated vapour 

temperature of 200 C, the flexural and tensile strengths of the composites were 

significantly increased, and strong interfacial bonding between HDPE and RSS was 
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revealed from the scanning electron microscope (SEM) micrographs. The same sample 

also portrayed an excellent water resistivity and thermal stability owing to the enhanced 

interfacial bonding (Xu et al. 2016). Ekebafe et al. (2010) discovered the enhancement of 

physicomechanical properties of natural rubber vulcanisates using optimized rubber seed 

shell as a filler. The rubber seed shell was optimized at high temperatures, and the rubber 

vulcanisates exhibited superior mechanical properties when optimized at 600 C. The 

hardness, abrasion resistance, and modulus at 100% were recorded nearly equal to N330 

carbon black vulcanisates at most filler loadings (Ekebafe et al. 2010). Chaireh et al. (2019) 

used milled rubber seed shell as a filler in starch foam and reported that the optimum 

concentration of 5.0 wt.% of milled RSS (at 600 rpm) produced a starch foam with superior 

flexural properties. Starch foam with milled RSS (at 600 rpm) had a low density and narrow 

foam cell distribution owing to optimized interactions between RSS and starch arising from 

the large surface interfacial area of milled RSS (Chaireh et al. 2019).  

 

Carbon derivation 

Activated carbon filtration is an effective, low cost, and widely used technology to 

adsorb organic and inorganic contaminants in wastewater water from taps and wells 

(Sigworth and Smith 1972; Mohan et al. 2006). The adsorption properties of activated 

carbon are determined by the surface characteristics and pore sizes of the filters, capable 

of removing over 99% of the total suspended solids in water (Shen et al. 2011; San-Pedro 

et al. 2020). Activated carbon efficiently removes chemical residues such as phenol, lead, 

copper, and reactive dyes from water (Hameed and Rahman 2008; Imamoglu and Tekir 

2008: Santhy and Selvapathy 2006). Activated carbon is produced from carbonaceous 

substances via chemical and physical means. The raw materials used to produce activated 

carbon include coal, coconut shells, wood, and lignocellulosic materials (Chingombe et al. 

2005; Sodeinde 2012; Nor et al. 2013). Rubber seed shell is a useful feedstock for activated 

content production due to its high carbon content.  

Numerous works have been demonstrated to develop and optimize the applicability 

of activated carbon derived from rubber seed shell in the recent decade. Okieimen et al. 

(2005) optimized the function of activated carbon from rubber seed shell as a sequestrant 

for heavy metals and organic compounds in water. The affinity of the metal ions onto the 

biomass-derived activated carbon determines the efficiency of natural resources to remove 

heavy metals in water (Godwin et al. 2019). This depends on the availability of the sorption 

sites and interaction between carbon and the metal ions. The pH of the slurry is vital to 

favor metal adsorption on the carbon surfaces (Yang et al. 2019). This is predominantly 

contributed by the carbon surface acidity (Sato et al. 2007). Carbon derived from physical 

activation tended to raise the pH to more than 6.5, making precipitation of metals exist as 

hydroxides (Okieimen et al. 2005). Meanwhile, acid-activated carbon would normally 

reduce the pH, making the carbon surface acidic (Girgis et al. 1994), and not favorable to 

attract the positively-charged metal ions. Carbon derived from RSS possess a pH of around 

7.38 with an efficiency of zinc(II) adsorption of 44% and maximum binding capacity of 

0.43 mmol/g (Okieimen et al. 2005). 

Chemical activation of RSS-derived carbon using potassium hydroxide was shown 

to impart characteristics of good liquid and gas absorption in a fluid. The characteristics 

include optimised surface area and pore volume of 1290 m2/g and 0.81 cm3, respectively 

(Azry and Ahmad 2012). Yan et al. (2019) investigated the characteristics of physically 

activated carbons derived from rubber seed shell using carbon dioxide for the removal of 

phenol-laden contaminants in water. The physical activation was performed at 900 C for 
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30 and 90 min, with the materials named AC1 and AC2, respectively. FTIR analysis 

revealed that the derived activated carbon and raw RSS had similar FTIR spectrum trends. 

AC2 absorbed more phenols than AC1 with maximum adsorption capacities recorded at 

262 mg/g and 108 mg/g for AC2 and AC1, respectively (Yan et al. 2019).  

Azani et al. (2019) used activated carbon derived from RSS via chemical process 

using potassium hydroxide for the removal of methylene blue dye in aqueous-based 

solutions. Chemically treated activated carbon derived from RSS had an average pore 

diameter of 3.35 nm and was able to remove 99% of methylene blue dye in acidic and basic 

media at a dosage of 100 mg/L (Azani et al. 2019). It was similarly reported that a large 

surface area of carbonized RSS resulted at a carbonization temperature of 500 C, and the 

product was able to absorb crystal violet dye in water with a maximum adsorption capacity 

of 97.93% at 75 min. The reported adsorption data were in an agreement to four adsorption 

isotherms (Freundlich, Langmuir, Temkin, and Frumkin) (Anegbe et al. 2020). In separate 

work, RSS was impregnated with malic acid to produce activated carbon to capture carbon 

dioxide (Borhan et al. 2020). The ultimate analysis revealed that the carbon content in 

activated RSS was higher compared to raw RSS, recorded at 73.8% as opposed to only 

59.4% in raw RSS. The carbon dioxide uptake for activated RSS was 2.26 mmol/g, which 

was among the highest and at par compared to other derived counterparts reported in their 

work (Borhan et al. 2020).  

Carbon-derived rubber seed shell via pyrolysis was used along with reduced 

graphene oxide and poly(vinyl alcohol) to investigate their potential as electrode materials 

(Md Disa et al. 2020). As depicted in Fig. 3, the surface of the carbon derived from RSS is 

composed of tunnel-shaped pores, which enable greater active sites for accumulation of 

ions and the formation of electrochemical double layer for high-density energy storage. 

The addition of reduced graphene oxide in the system improved the performance of the 

supercapacitor owing to the formation of multilayers and sheet-like morphology (Md Disa 

et al. 2020). 

 
 

Fig. 3. Tunnel-shaped pores of carbon derived RSS (Md Disa et al. 2020) 
 
 

CONCLUSIONS AND FUTURE PROSPECTS 
 

Rubber seed is an abundant renewable resource that has many uses for critical and 

complex polymer engineering and technology applications. Both rubber seed kernel and 
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shell were revealed as functional supplies for various unique uses due to specific contents 

of each element constitute to certain applications. Rubber seed is a newly appreciated non-

toxic natural resource, and it has extensive potential in many sophisticated applications for 

a greener and more sustainable future.  
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