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Wood materials have been used in many products such as furniture, stairs, 
windows, and doors for centuries. There are differences in methods used 
to adapt wood to ambient conditions. Impregnation is a widely used method 
of wood preservation. In terms of efficiency, it is critical to optimize the 
parameters for impregnation. Data mining techniques reduce most of the 
cost and operational challenges with accurate prediction in the wood 
industry. In this study, three data-mining algorithms were applied to predict 
bending strength in impregnated wood materials (Pinus sylvestris L. and 
Millettia laurentii). Models were created from real experimental data to 
examine the relationship between bending strength, diffusion time, vacuum 
duration, and wood type, based on decision trees (DT), random forest (RF), 
and Gaussian process (GP) algorithms. The highest bending strength was 
achieved with wenge (Millettia laurentii) wood in 10 bar vacuum and the 
diffusion condition during 25 min. The results showed that all algorithms 
are suitable for predicting bending strength. The goodness of fit for the 
testing phase was determined as 0.994, 0.986, and 0.989 in the DT, RF, 
and GP algorithms, respectively. Moreover, the importance of attributes 
was determined in the algorithms. 
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INTRODUCTION 
 

The chemical modification of wood has received much attention since the mid-

twentieth century. Usually, chemical modification in solid wood is made for dimensional 

stability and biological resistance. Despite many studies in the literature, there have been 

only limited studies of industrial applications (Gérardin 2016). This is mainly due to the 

application difficulties of wood preservation processes such as acylation and the emergence 

of environmental, economic, and technical problems in the transition from laboratory to 

industry. Factors such as wood type, impregnation agent, impregnation time, temperature, 

vacuum, diffusion, solvent, concentration ratio, and retention ratio affect the mechanical 

properties of wood (Rowell 2009).  Simsek et al. (2010) carried out mechanical and decay 

tests of beech wood (Fagus orientalis L.) and Scots pine wood (Pinus sylvestris L.) treated 

with environmentally friendly boron compounds. They reported that all the different 

concentrations of boron compounds applied decreased the bending strength compared with 
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the control sample. In a similar study, Adanur et al. (2017) stated that different proportions 

of boron compounds decrease the bending resistance and increase the screw holding 

strength.  In another study, Tan et al. (2017) examined static bending resistance and 

dynamic bending resistance properties of pine and beech wood using 1%, 3%, and 5% 

barite. The static bending strength values of pine and beech woods increased by 55% and 

83% in 3% and 5% concentrations compared with control samples, respectively. 

Technological developments necessitate interdisciplinary interaction. In the light of 

the available information, making new decisions and making predictions are important. 

Many complex real-world problems have been solved by data mining (Predic et al. 2018; 

Zhang et al. 2019). It is an automated analysis of data sets to expose relationships that are 

both understandable and useful (Hand and Mannila 2001; Wei and Watkins 2011). Data 

mining tasks can be classified as description or prediction. The purpose of the prediction 

is to find a model to estimate the values of future events (Rémy et al. 2018). Data mining 

techniques are often more powerful, flexible, and effective than statistical techniques for 

information discovery (Kantardzic 2011). Decision tree (DT), random forest (RF), and 

Gaussian process (GP) algorithms are widely used for predicting. These algorithms are 

easy to interpret and fast to calculate (Höppner et al. 2020). In data science, the DT is 

defined as a classification procedure. This classification algorithm recursively partitions a 

data set into smaller subdivisions based on a set of tests defined at each branch in the tree 

(Pu et al. 2018).  RF is an ensemble method in machine learning that involves construction 

(growing) of multiple decision trees via bootstrap aggregation (Shaikhina et al. 2019). The 

RF algorithm is based on decision trees and combined with aggregation and bootstrap 

ideas. The RF algorithm maintains low bias on the training dataset by creating a collection 

of unpruned decision trees (Nadi and Moradi 2019). GP based on statistical learning 

theorem is a machine learning method. It is mainly used to calculate the covariance 

between the data points used in the model. It is suitable for high dimensional complex 

regression problems (Zhang et al. 2019). 

Data analysis techniques provide useful information in wood science. It is important 

to understand how production components affect each other to solve problems in the wood 

industry. Very little research has been done on the prediction of the mechanical 

performance of wood materials. Tiryaki and Hamzacebi (2014) studied the bending 

strength of the heat-treated wood as predicted by artificial neural networks (ANNs), which 

successfully predicted bending resistance. Atoyebi et al. (2018) used ANNs to examine the 

physical and mechanical properties of particleboards and the impact of various factors on 

production. The study showed that ANNs have great potential in predicting the mechanical 

properties of particleboards. 

In this paper, the RF, GP, and DT models were created to estimate the bending 

strength of impregnated wood. The relationships between wood type, vacuum time, and 

diffusion time were examined with these models. 

 
 
EXPERIMENTAL 
 
Material and Method 
Material 

Imported Scots pine and wenge logs were used. First, the logs were cut into battens. 

The cut slats were cut radially, and all samples were obtained from sapwood. Barite 

(BaSO4) was obtained from Gülmer Mining (Bilecik, Turkey) in powder form. Scots pine 
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is native and coniferous wenge is foreign and leafy tree species. The reason for choosing 

these tree species was to be able to compare the leafy and coniferous and native and foreign 

tree species. 

 

Preparation of Impregnation Solution 

The impregnation solution was prepared with 1% barite on a heated magnetic 

stirrer. The solution was prepared at 220 °C for 30 min and allowed to stand at room 

temperature (25 °C) for 24 h.    

 

Impregnation Method 
Impregnation was carried out as described in ASTM D 1413 (1976). Before the 

impregnation, all samples were coded and weighed with a 0.01 mm precision analytical 

balance. The samples were oven-dried at 103 ± 2 °C. Fully dry samples were impregnated 

with four different vacuum times (10, 20, 30, 40 min) and pressurization times (diffusion) 

(25, 35, 45, 55 min) in the impregnation boiler. Since vacuum and diffusion time are 

important variables that affect the impregnation of wood species, these two parameters 

were especially chosen. Another reason for choosing these parameters is to determine the 

effect of different vacuum and diffusion times on the bending strength. Impregnation 

conditions were carried out according to Taghiyari et al. (2013); 600 mm-Hg vacuum was 

applied as a pressure of 0.6 MPa. A total of 320 samples were prepared, including two tree 

species (2), different vacuum times (4), diffusion times (4), and 10 samples for each 

variation (2  4  4  5 = 160).  

 

Bending Strength 
Wood test samples and bending tests were prepared according to TS 2470 (1976) 

and TS 2474 (1976), respectively. Five samples were prepared from each variation from 

two different tree species, four different vacuum times, four different diffusion times, for 

a total of 160 (5  2  4  4) samples subjected to static bending resistance. 

 

Data Collection 
The experimental data used in this study were the measurements obtained by the 

bending tests of the wood material impregnated under different conditions. The data set 

consisted of 160 records. There were three attributes (wood type, vacuum time, and 

diffusion time) that feature in mechanical property prediction and one attribute serves as 

the output (bending strength). Table 1 contains a summary of the values of the numeric 

attributes from the training data set.  

 

Table 1. Data Summary of the Values of the Numeric Attributes 

Attribute name Attribute type Attribute description 

Wood Type Nominal Wood type impregnated (Wenge, Scots pine) 

Vacuum Time Numeric 
Vacuum time applied in impregnation process  
(10, 20, 30, 40 Min) 

Diffusion Time Numeric 
Diffusion time applied in impregnation process  
(25, 35, 45, 55 Min) 

Bending Strength Numeric Bending strength of impregnated wood (N/mm2) 
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Models 
Three algorithm models were selected to prediction bending strength of 

impregnated wood: decision trees (DT), random forest (RF), and Gaussian process (GP). 

These models were based on establishing the relationship between independent and 

dependent variables using training methods. In this study, 70% of all data were used for 

training and 30% for testing purposes. All models were developed with RapidMiner Studio 

Version 9.3 software (Boston, USA), which has been used in many studies (Phark et al. 

2018; Cuesta et al. 2019). RapidMiner Studio consists of operators and each operator has 

a task. Operators are added end-to-end to prepare the process workflow. Several parameters 

have to be set when using algorithms as predictive modelling in this software. To find the 

best parameters, the optimize parameters (Grid) operator was used. Thus, the best 

parameters were determined for each model separately as shown in Fig. 1; the optimal 

parameters for all models are listed in Table 2. 

 
Fig. 1. The process workflow used to optimize the parameters of the models 

 
Table 2. The Optimal Parameters for All Models 

Decision Trees (DT) Random Forest (RF) Gaussian Process (GS) 

Criterion 

Least square: An Attribute 
is selected for splitting, that 
minimizes the squared 
distance between the 
averages of values in the 
node with regards to the 
true value. 

Criterion 

Least square: An 
Attribute is selected 
for splitting, that 
minimizes the squared 
distance between the 
averages of values in 
the node with regards 
to the true value. 

Kernel type 

The type of 
the kernel 
function is 
selected 
through this 
parameter. 

Maximal 
depth 

60 
Number of 
trees 

70 
Kernel 
length scale 

3 

    
Maximal 
depth 

100 
Max basis 
vectors 

80 
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After determining the optimal parameters, the process was created to compare the 

models. Figure 2 shows the process workflow used to compare models. 

 

 
Fig. 2. The process workflow used to compare models 

 

Simulations were created based on the models. The aim was to find the input values 

for the highest bending strength. Rapidminer software allows for preparing real-time 

simulations. Figure 3 shows the process workflow prepared for simulation. 

 
Fig. 3. The process workflow prepared for simulation 
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Finally, weights of attributes (wood type, vacuum time, and diffusion time) were 

determined with DT and RF algorithms. Thus, the most important feature for the prediction 

was found. 

 

Model Evaluation 
Goodness of fit (R2), root mean square error (RMSE), and mean square error (MSE) 

were used to evaluate the estimation accuracy of each model, as follows,    

 

R2 =[
∑(𝑌𝑝−𝑌𝑝̅̅ ̅)(𝑌𝑜−𝑌𝑜̅̅ ̅)

√∑(𝑌𝑝−𝑌𝑝̅̅ ̅)
2(𝑌𝑜−𝑌𝑜̅̅ ̅)

2
]

2

                                               (1) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑜 − 𝑌𝑝)

2𝑛
𝑖=0                                                (2) 

 

MSE = RMSE2                                                        (3) 

where YO and YP are the measured and predicted values, respectively, and the bar denotes 

the mean of the variable.    

 

 
RESULTS AND DISCUSSION 
 

Mechanical Properties 

Wood type, vacuum time, and diffusion time affected the bending strength of 

impregnated wood material. Table 3 presents the bending strength depending on changes 

in the wood type, vacuum time, and diffusion time. Increasing vacuum and diffusion times 

caused decreases in bending strength of both Scots pine and wenge wood. Under the same 

conditions, the bending strength of wenge wood gave higher values than Scots pine. 

 

Results of the Models 
Three machine learning models were established using the experimental data. All 

models were trained and tested with the same data sets, and the predictive performance of 

models were compared. The estimated results of the three data mining models tested for 

wenge and Scots pine wood are given in Tables 4 and 5, respectively. For wenge wood, 

percentages of correct predictions were found as 99.55%, 99.37% and 99.38% for decision 

tree, random forests, and Gaussian process models, respectively. For Scots pine wood, 

percentages of correct predictions were found as 99.49%, 99.38%, and 99.46% for decision 

tree, random forests, and Gaussian process models, respectively. 

Three different assessment criteria were used to evaluate all estimation models (DT, 

RF, GP). In the classification problem, these performance measures are widely used 

(Caballero et al. 2017; Shafaei et al. 2019). Various performance measures related to the 

DT, RF, and GS models are shown in Table 6. 

MSE and RMSE are measures of error each. Therefore, low results are measures 

showing high performance in inverse proportion to performance (Wang and Xu 2004; 

Gultepe 2019). 
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Table 3. The Bending Strength Depending on Changes in the Wood Type, 
Vacuum Time, and Diffusion Time 

    Bending Strength (N/mm2) 

Wood Type Vacuum Time (min) 
Diffusion Time  

(min) 
N Mean SD HG 

Scots pine 

40 

55 5 106.90 0.492 A 

45 5 107.48 0.444 A 

35 5 108.95 1.054 B 

25 5 110.80 0.847 C 

30 

55 5 111.81 0.609 D 

45 5 112.60 0.724 D 

35 5 114.32 0.792 E 

25 5 115.67 0.577 F 

20 

55 5 116.26 0.590 F 

45 5 117.46 0.473 G 

35 5 118.09 0.623 GH 

25 5 118.69 0.432 HI 

10 

55 5 118.86 0.249 HI 

45 5 119.33 0.389 IJ 

35 5 119.89 0.463 JK 

25 5 120.65 0.406 K 

Wenge 

40 

55 5 126.01 0.677 L 

45 5 126.59 0.568 LM 

35 5 126.98 0.633 MN 

25 5 127.64 0.547 N 

30 

55 5 127.70 0.539 N 

45 5 128.70 0.644 O 

35 5 130.89 0.791 P 

25 5 131.80 0.875 Q 

20 

55 5 132.76 0.594 R 

45 5 133.59 0.518 S 

35 5 134.73 0.607 T 

25 5 135.26 0.768 T 

10 

55 5 135.52 0.465 T 

45 5 136.89 0.759 U 

35 5 138.71 0.803 V 

25 5 140.83 0.833 W 

Notes: N: number of samples; SD: standard deviation; HG (Homogeneity group): A group of 
observational units similar to each other in terms of an observed feature. Different letters in columns 
represent statistical differences, and same letters in columns indicate no statistical difference 
between the samples according to the Duncan’s multiply range test at 95% confidence level 
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Table 4. The Estimated Wenge Results of the Three Data Mining Models for Testing Phase 

Wood 
Type 

Vacuum 
Time (Min) 

Diffusion 
time (Min) 

Experime
ntal 

DTP 
DT 

Error (%) 
RFP 

RF 
Error (%) 

GSP 
GS 

Error (%) 

Wenge 10 25 140.890 140.410 0.341 138.413 1.758 138.872 1.437 

Wenge 10 25 142.030 140.410 1.141 138.413 2.547 138.872 2.249 

Wenge 10 45 136.380 136.947 -0.416 136.571 -0.140 136.696 -0.231 

Wenge 10 45 137.240 136.947 0.214 136.571 0.488 136.696 0.397 

Wenge 10 55 135.140 135.663 -0.387 135.220 -0.059 134.536 0.445 

Wenge 10 55 135.480 135.663 -0.135 135.220 0.192 134.536 0.696 

Wenge 20 35 135.200 134.610 0.436 134.381 0.605 134.943 0.191 

Wenge 20 45 132.940 133.748 -0.607 133.759 -0.616 133.969 -0.769 

Wenge 20 55 132.690 132.653 0.028 132.896 -0.155 132.329 0.272 

Wenge 20 55 133.130 132.653 0.358 132.896 0.176 132.329 0.604 

Wenge 30 25 130.760 131.830 -0.818 131.209 -0.344 131.403 -0.488 

Wenge 30 25 131.830 131.830 0.000 131.209 0.471 131.403 0.324 

Wenge 30 25 132.770 131.830 0.708 131.209 1.176 131.403 1.037 

Wenge 30 35 130.960 130.637 0.247 130.528 0.330 130.947 0.010 

Wenge 30 35 131.580 130.637 0.717 130.528 0.800 130.947 0.484 

Wenge 30 45 127.940 129.055 -0.872 129.310 -1.070 129.668 -1.339 

Wenge 30 45 128.330 129.055 -0.565 129.310 -0.763 129.668 -1.037 

Wenge 30 45 129.130 129.055 0.058 129.310 -0.139 129.668 -0.417 

Wenge 30 55 127.170 127.870 -0.550 128.633 -1.151 127.964 -0.621 

Wenge 30 55 127.230 127.870 -0.503 128.633 -1.103 127.964 -0.574 

Wenge 30 55 128.340 127.870 0.366 128.633 -0.228 127.964 0.294 

Wenge 40 25 127.110 127.553 -0.349 127.857 -0.588 126.749 0.283 

Wenge 40 25 128.430 127.553 0.683 127.857 0.446 126.749 1.318 

Wenge 40 35 127.180 126.933 0.195 127.377 -0.155 126.819 0.285 

Wenge 40 45 126.130 126.360 -0.182 126.911 -0.619 126.119 0.009 

Wenge 40 45 126.980 126.360 0.488 126.911 0.055 126.119 0.682 

Wenge 40 45 127.120 126.360 0.598 126.911 0.165 126.119 0.792 

Wenge 40 55 125.230 126.227 -0.796 126.889 -1.325 125.188 0.033 

Wenge 40 55 126.140 126.227 -0.069 126.889 -0.594 125.188 0.754 

Notes: DTP: Decision Trees Predicted; RFP: Random Forest Predicted; GSP: Gaussian Process Predicted; Error (%): Percentage Error Ratios  
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Table 5. The Estimated Scots Pine Results of the Three Data Mining Models for Testing Phase 

Wood Type 
Vacuum 

Time  
(Min) 

Diffusion 
time  
(Min) 

Experimental DTP 
DT 

Error (%) 
RFP 

RF 
Error (%) 

GSP 
GS 

Error (%) 

Scots pine 10 35 119.400 120.157 -0.634 119.396 0.003 120.170 -0.641 

Scots pine 10 35 119.600 120.157 -0.465 119.396 0.170 120.170 -0.475 

Scots pine 10 55 118.940 118.737 0.171 118.442 0.418 118.179 0.641 

Scots pine 10 55 119.130 118.737 0.330 118.442 0.577 118.179 0.801 

Scots pine 20 25 118.000 118.800 -0.678 118.427 -0.362 118.660 -0.556 

Scots pine 20 25 118.870 118.800 0.059 118.427 0.372 118.660 0.176 

Scots pine 20 25 118.990 118.800 0.160 118.427 0.473 118.660 0.277 

Scots pine 20 45 117.000 117.573 -0.489 117.653 -0.558 117.651 -0.553 

Scots pine 20 55 115.600 116.613 -0.877 116.742 -0.988 116.397 -0.684 

Scots pine 20 55 115.870 116.613 -0.642 116.742 -0.752 116.397 -0.452 

Scots pine 30 25 116.370 115.493 0.754 114.591 1.529 115.360 0.875 

Scots pine 30 35 113.900 114.025 -0.110 113.840 0.052 114.304 -0.354 

Scots pine 30 35 114.550 114.025 0.458 113.840 0.620 114.304 0.216 

Scots pine 30 35 115.080 114.025 0.917 113.840 1.077 114.304 0.681 

Scots pine 30 45 111.830 112.795 -0.863 112.734 -0.808 112.960 -1.002 

Scots pine 30 55 112.560 111.618 0.837 112.024 0.476 111.656 0.809 

Scots pine 40 45 108.110 107.318 0.733 108.670 -0.518 107.559 0.513 

Scots pine 40 55 106.850 106.908 -0.054 108.430 -1.479 106.806 0.041 

Notes: DTP: Decision Trees Predicted; RFP: Random Forest Predicted; GSP: Gaussian Process Predicted; Error (%): Percentage Error Ratios  
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Table 6. Various Performance Measures Related to the DT, RF, GS Models 

Model  
Testing phase Training phase 

R2 RMSE MSE R2 RMSE MSE 

DT 0.994 0.680 0.462 0.997 0.573 0.323 

RF 0.986 1.028 1.057 0.993 0.885 0.783 

GP 0.989 0.926  0.857 0.996 0.653 0,426 

 

After determining the performance of the models, the simulation process was 

performed separately. Figure 4 shows the simulation screen for the decision tree model. 

The term simulation differs from the term modeling. Simulation can be defined as the 

representation of a process. The simulation process is done to achieve three goals. First, 

users better understand complex models such as deep learning. Second, users check 

whether the model is behaving as expected. Third, users find the most appropriate input 

settings to achieve the desired result.   

 

 
Fig. 4. Screenshot of simulation of decision tree model 

 
Determination of Optimum Conditions 

The values of the attributes for the highest bending strength were determined with 

all models. Table 7 shows the attributes and values for the highest bending strength. 

All models determined similar input attributes (Diffusion time, Vacuum Time, and 

Wood Type) for the highest bending strength. Simulation results can be used to support 

decision-making in the impregnation process. The best parameters are determined 

according to the needs of the enterprises so that limited resources can be used more 

effectively. 

 

Table 7. The Attributes and Values for the Highest Bending Strength 

 DT RF GP 

Highest Bending Strength (N/mm2) 140.410 140.118 138.859 

Diffusion time (min) 30 30 27 

Vacuum Time (min) 14 14 11 

Wood Type Wenge Wenge Wenge 

 

The weights of attributes were determined by decision trees and random forest 

algorithms. attributes and weight values, where each weight represents the feature 

importance for the given attribute (diffusion time, vacuum time, and wood type). Table 8 

shows the weight of attributes for Decision Trees and Random Forest algorithms.    
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Table 8. The Weight of Attributes for Decision Trees and Random Forest 
Algorithms 

Decision Tree Random Forest 

Attribute Weight Attribute Weight 

Diffusion time (min) 0.912 Diffusion time (min) 0.593 

Vacuum Time (min) 0.083 Vacuum Time (min) 0.376 

Wood Type 0.005 Wood Type 0.030 

 
Discussion 

According to the bending strength tests performed in the study, the bending strength 

of wenge wood was 15% higher than that of Scots pine. In wenge and Scots pine woods, 

increasing the vacuum time from 10 min to 40 min resulted in a gradual decrease in bending 

strength values. Bending strength of Scots pine woods applied to vacuum for 40 min was 

108.53 N/mm², and when the vacuum was reduced to 10 min, bending resistance increased 

by 10.2% to 119.68 N/mm². Under the same conditions, this increase in wenge wood was 

determined as 8.81%. The effect of diffusion time applied on bending strength showed the 

same effect in both tree species. Reducing the diffusion time from 55 min to 25 min resulted 

in a 2.6% increase in bending strength of the two wood species. In wenge wood species, 

the highest bending strength (140.83 N/mm²) was obtained in 10 min vacuum and 25 min 

diffusion conditions. The lowest bending resistance value was obtained under 40 min 

vacuum and 55 min diffusion conditions. The highest (120.65 N/mm²) and the lowest 

(106.90 N/mm²) bending strength values of Scots pine wood were obtained under the same 

conditions where the highest and lowest values obtained in the wenge wood. As a result, 

increasing diffusion and vacuum times decreases the bending strength values of the tree 

species used in the study, which was consistent with previous reports. Aydemir et al. (2016) 

impregnated Scots pine, ash and Iroko wood with boron compounds and reported that 

impregnated wood exhibited higher strength properties (MOR) than control samples. 

According to the modelling performance results, the highest estimation accuracy 

was seen in DT (Table 6). Also, other models showed similar results to DT. All models are 

suitable for estimating the bending strength of impregnated wood material. In the literature, 

an R2 value greater than 0.9 represents a very satisfactory model (Leachtenauer et al. 1997; 

Heng and Suetsugi 2013). The success of the models provides evidence of the benefits of 

data mining in the wood impregnation industry. The most successful model parameters are 

shown among the models considering that the MSE value approaches 0 (Gultepe 2019). 

When the MSE values are examined, it is seen that the model that gives the values closest 

to 0 is the decision tree. In addition, multiple regression model was created. In this way, 

the prediction performance of statistical analysis (multiple regression) and the data mining 

models (decision tree random forests and Gaussian process) were compared. The 

prediction performance of the multiple regression model (R2 = 0.985, RMSE = 1.042, MSE 

= 1.086 for testing phase) was found to be somewhat lower than the decision tree model                           

(R2 = 0.994, RMSE = 0.680, MSE = 0.462 for testing phase), random forests model             

(R2 = 0.986, RMSE = 1.028, MSE = 1.057 for testing phase) and Gaussian process model 

(R2 = 0.989, RMSE = 0.926, MSE = 0.857 for testing phase).   

According to the results obtained from the algorithms (Table 8), the most important 

factors are diffusion time, vacuum time, and wood species, respectively. Multi-attribute 

problems must be solved to identify the weights of attributes. Zavadskas et al. (2010) 

reported that data mining algorithms can be used for this purpose.  

Future research should examine the performance of these data mining algorithms 
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in the prediction of bending strength of impregnated wood material in more complex 

conditions. The anisotropic structure of wood offers sufficient options to create different 

conditions. Sapwood-heartwood ratio, early wood-late wood ratio, annual ring 

characteristics, density, and moisture content are some of them. 

 

 
CONCLUSIONS 

 

1. Experiments were performed by varying three impregnation parameters: the wood type, 

the diffusion time, and the vacuum time. The highest average bending strength obtained 

was 140.83 N/mm2 at the 10 min vacuum time and 25 min diffusion time with wenge 

wood.  

2. Bending strength of impregnated wood material was successfully estimated by data 

mining techniques. The use of data mining algorithms in the impregnation of wood can 

greatly increase productivity because prediction algorithms respond to the best inputs 

for each situation.  

3. Three different prediction models (DT, RF, GP) were compared according to R2, MSE, 

and RMSE performance measurements. The highest success in the estimations was 

observed in DT algorithm with 0.994 R2 value for the testing phase. It was concluded 

that prediction algorithms can affect the optimization of the impregnation process 

positively. 

4. The importance of the factors was defined as diffusion time, vacuum time, and wood 

type vacuum duration, respectively.  
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