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To prevent the illegal trade of precious wood in circulation, a wood species 
identification method based on convolutional neural network (CNN), 
namely PWoodIDNet (Precise Wood Specifications Identification) model, 
is proposed. In this paper, the PWoodIDNet model for the identification of 
rare tree species is constructed to reduce network parameters by 
decomposing convolutional kernel, prevent overfitting, enrich the diversity 
of features, and improve the performance of the model. The results 
showed that the PWoodIDNet model can effectively improve the 
generalization ability, the characterization ability of detail features, and the 
recognition accuracy, and effectively improve the classification of wood 
identification. PWoodIDNet was used to analyze the identification 
accuracy of microscopic images of 16 kinds of wood, and the identification 
accuracy reached 99%, which was higher than the identification accuracy 
of several existing classical convolutional neural network models. In 
addition, the PWoodIDNet model was analyzed to verify the feasibility and 
effectiveness of the PWoodIDNet model as a wood identification method, 
which can provide a new direction and technical solution for the field of 
wood identification. 
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INTRODUCTION 
 

Wood identification is widely used in customs, import and export quarantine 

inspection, and other fields. In addition, to prevent valuable timber from being illegally 

traded in circulation, timber identification technology is important for modern timber 

industry and monitoring timber trade. 

Traditional wood identification is based on the anatomical microscopic and 

macroscopic characteristics of the wood species, such as the difference of wood color, 

texture, and microstructure. Ravindran and Wiedenhoeft (2020) proposed a species-level 

Xylot ron computer vision model and identified 10 Meliaceae species at the species-level 

and genera levels. Wang et al. (2019) used THZ-TDS (terahertz timedomain spectroscopy) 

technology for nondestructive testing of wood, and classified wood by manual feature 

extraction combined with support vector machine. Vishal et al. (2020) provided a rapid 

and non-destructive method to identify wood by ATR-FTIR (attenuated total reflection 

Fourier transformed infrared) and chemometrics. Linear discriminant analysis (LDA) was 

used to classify unknown wood samples, but the accuracy of this method was low. In recent 

years, more experts have applied machine vision technology to wood identification and 

classification, but the existing wood identification training parameters are still numerous, 
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the training time is long, and the classification accuracy is still low (Zhu and Wang 2014; 

Ge et al. 2016, 2018). 

Convolutional neural network was a type of feedforward neural network with 

convolution computation and depth structure (Gu et al. 2018). With the ability of 

representational learning, the input information can be classified according to the 

translational invariant structure of each layer, and the basic features of the input object can 

be extracted with little or no human intervention. Convolution and pooling layers were first 

implemented in the early 1980s. The approach was applied to the LeNet model in 1989 and 

the concept of convolution was first introduced, but only in the theoretical stage (Lécun et 

al. 1989; Lécun et al. 1998). The AlexNet model appeared in 2012 (Krizhevsky et al. 

2012), and the neural network was gradually applied in practice and continually updated. 

The existing structures of the convolutional neural network model mainly include the input 

layer, the hidden layer, and the output layer, among which the hidden layer is composed of 

the convolutional layer, the pooling layer, and the full connection layer. The convolutional 

layer is used for feature extraction of input data, and the convolution layer is used to check 

the input features for integral operation. The pooling layer is used for feature selection and 

information filtering of the feature graph output after convolution operation. The full 

connection layer is a nonlinear combination of extracted features to obtain the output 

(Kiranyaz et al. 2016; Chen et al. 2017). Up to now, the recognition rate of LeNet-5, 

AlexNet, VGG, GoogLeNet, and other models has been improved continuously. However, 

with the deepening of network layers, the parameters are too much, the calculation speed 

is reduced, and the efficiency is affected (Chen et al. 2017). 

To implement the traditional microscopic anatomical feature identification method, 

it is necessary to dissect the transverse, radial, and chord three-dimensional sections of 

wood samples and obtain the image with high-power microscope after dyeing (Fei et al. 

2007; Zhang et al. 2018). The detection and classification time is very long, and the 

accuracy of judgment is low. Compared with the previous results, the main contributions 

of this paper can be summarized as follows: (1) In this paper, a PWoodIDNet model for 

the identification of rare tree species was proposed. In this model, the decomposition 

convolution kernel was adopted to reduce the network parameters, and the model 

classification and update were realized by GPU parallel algorithm, which effectively 

improved the accuracy and speed of wood identification. (2) A CT (computed tomography) 

microscopic image technique was used to obtain the microscopic image of the cross section 

of the wood sample as the input of the discriminant algorithm, which does not need to carry 

out the microscopic dissection of the wood, and the classification results can be obtained 

by the proposed PWoodIDNet. 

In this work, the CT microscopic image, as the input of PWoodIDNet model, plays 

a crucial role in the classification effect of the model. The model and detection method 

proposed in this paper will provide advanced identification methods and instruments for 

import and export quarantine and inspection departments.  

  

Theory 
Construction of PWoodIDNet model 

 In this work, a valuable tree species identification model named PWoodIDNet was 

constructed. The total number of network layers was 72. The convolution kernel is the 

weighted average of the pixels of a small area in the input image to become each 

corresponding pixel in the output image, where the size of the weight value is the size of 

the convolution kernel. GPU parallel operation was used in the model, and the convolution 
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layer of the model was used the form of deconvolution kernel to stack several small 

convolution kernels, named the improved Inception module, and referred to as IM-

Inception. The IM-Inception module can reduce the operation parameters and set the step 

size as 1 to keep the size of the output feature graph unchanged, so as to improve the 

operation efficiency of the neural network. After convolutional layer and IM-Inception of 

the PWoodIDNet model, 4 maximum pool layer, and 1 average pool layer were 

respectively set up, so as to achieve the goal of feature selection and lowering the 

dimensionality. After the full connection layer of the model, the Dropout method is set to 

suppress the over-fitting phenomenon. The overall structure of the model is shown in Fig. 

1. 
 

IM-Inception(a) IM-Inception(b) IM-Inception(c) IM-Inception(d)
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Fig. 1. PWoodIDNet network model 
 

Items in Fig. 1 can be described as follows: Each dashed box in Fig. 1 represents 

the image decomposition convolution operation, which used the IM-Inception module. The 

blue box represents the input image size of 224×224, the orange box represents the 

convolution kernel size of 3×3 and 5×555, the yellow box represents the convolution 

kernel size of 1×1, the gray box represents the aggregation on each branch output channel, 

the purple box represents the maximum pooling layer of 3×3 and the average pooling layer 

of 7×7, the green box represents the full connection layer, and the red box represents the 

Softmax classifier and output.  

The Inception module used in the current GoogLeNet network framework is 

connected by a convolution core of 1 × 1, 3 × 3, 5 × 5, and a maximum pooling of 3 × 3, 

and is dimensionally reduced by adding a convolution core of 1 × 1 size before each 

convolution and pooling layer (Szegedy et al. 2015). Because the convolution kernel is a 

convolution operation on the output image of the previous layer, the computational effort 

required for a 5 × 5 convolution kernel will be large. It will also cause the thickness of the 

feature map to increase, affect the speed of model operation, and result in a lower model 

performance and a higher power consumption. Therefore, the IM-Inception module is an 

improvement on the existing Inception module. The 5 × 5 convolution kernel and the 

maximum pooling of 3 × 3 are replaced by 2 sets of 3 × 3 convolution kernel and 3 sets of 

3 × 3 convolution kernel. The IM-Inception module can reduce the calculation parameters, 

deepen the network width, and improve the adaptability of the network to the scale. 

IM-Inception (a) IM-Inception (b)  IM-Inception (c)   IM-Inception (d) 
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To intuitively understand the specific parameter setting of PWoodIDNet network, 

the specific parameters of PWoodIDNet network structure are introduced in Table 1. The 

input image size is set to 224 × 224 × 3, in which 224 × 224 represents the image resolution 

and 3 represents the number of image channels. In Table 1, “#3 × 3 reduce1, #3 × 3 reduce2 

and #3 × 3 reduce3” indicates the number of 1 × 1 convolution used before one 3 × 3, two 

3 × 3, and three 3 × 3 convolution operation. “1#3 × 3, 2#3 × 3, 3#3 × 3” indicates the 

number of convolution kernels in one 3 × 3, two 3 × 3, and three 3 × 3.  

 

Table 1. Parameters of PWoodIDNet Network Structure 

Type 
Patch 

Size/Stride 
Output 
Size 

#1 
× 1 

#3 × 3 
Reduce1 

1#3 
× 3 

#3 × 3 
Reduce2 

2#3 
× 3 

#3 × 3 
Reduce3 

3#3 
× 3 

Input Image  
224 × 
224 × 

3 
       

Convolution 5 × 5/2 
113 × 
113 × 

32 
       

Max Pool 3 × 3/2 
56 × 
56 × 
32 

       

IM-
Inception(a) 

 
56 × 
56 × 
64 

16 6 8 6 16 6 24 

Max Pool 3 × 3/2 
28 × 
28 × 
64 

       

IM-
Inception(b) 

 
28 × 
28 × 
128 

32 12 16 12 32 12 48 

Max Pool 3 × 3/2 
14 × 
14 × 
128 

       

IM-
Inception(c) 

 
14 × 
14 × 
256 

64 24 32 24 64 24 96 

Max Pool 3 × 3/2 
7 × 7 × 

256 
       

IM-
Inception(d) 

 
7 × 7 × 

512 
128 48 64 48 128 48 192 

Average 
Pool 

7 × 7/1 
1 × 1 × 

512 
       

Fully 
Connection 

 
1 × 1 × 

512 
       

Dropout  
1 × 1 × 

512 
       

Softmax  
1 × 1 × 

16 
       

Notes: “Patch Size/Stride” is the size and quantity of “Convolution” and “Max Pool” and “Average 
Pool”. “#1×1, #3×3 reduce1, 1#3×3, #3×3 reduce2, 2#3×3, #3×3 reduce3, 3#3×3” is the number of 
parameters of “IM-Inception(a)”. For example, “#3×3 reduce1” indicates the number of “1×1” 
convolutions used before the convolution operation in the first “IM-Inception(a)” module. 

 

The Dropout method was added after the full connection layer of the model. The 

Dropout method can make half of the feature detectors stop working, improve the 
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generalization ability of the network, and suppress the overfitting phenomenon. The output 

layer was constructed, and Softmax classifier was used for classification, with the number 

of classification being 16. The model sets the ReLU activation function and batch 

normalization (BN) after each convolution layer and full connection layer. ReLU activation 

function serves to reset the output of some neurons to zero, which reduces the sparsity of 

the network and the interdependence of parameters, so that the model can better extract the 

image related features, fit the training data, and calculate easily. BN layer can accelerate 

the convergence speed of network training, control gradient explosion, prevent gradient 

from disappearing, and also avoid overfitting phenomenon to a certain extent. Data 

augmentation of the data set can also reduce the occurrence of overfitting and improve the 

generalization ability of the convolutional neural network model. 

 
 
EXPERIMENTAL 
 

Materials 
The specimens were collected from the Wood Herbarium of Shandong Architecture 

University, Jinan City, Shandong Province, China. Sixteen kinds of precious wood samples 

were selected as experimental objects, as shown in Table 2. A high-resolution microscopic 

CT imaging system was adopted to collect microscopic images. The microscopic images 

are cross-section images of wood as samples. The data set of cross-section microscopic CT 

images of wood was composed of cross-section microscopic images of softwood and 

hardwood, of which the softwood had tracheids, which the hardwood was composed 

mainly of a combination of libriform fibers and multi-cellular vessels, which serve and 

conduits for water going upwards in the tree. Among them, the classification of timber 

species with similar microstructure was more complex, so it is particularly important to 

effectively improve the quality and quantity of samples. The image size of samples 

collected is 1036 × 1036. 

 

Experimental Equipment 
For the data acquisition equipment, a SKYSCAN1272 high resolution microscopic 

CT from the Wood Herbarium of Shandong Jianzhu University, Jinan, Shandong, China 

was used. The optical tube voltage was 50 kV and the current was 200 μA. The wood 

sample was processed into a cylinder with a certain diameter. The diameter of the test 

sample was approximately 2 mm and the height was approximately 8 mm. To prevent 

moisture volatilization, the sample was wrapped and sealed with a sealing film, and then 

the sample was vertically fixed to the high-resolution microscopic CT sample rod with 

lighter weight paraffin wax and placed into the instrument. The sample was adjusted to the 

center position of the field of vision, and the center position was adjusted and maintained 

at any time in the subsequent steps. 

The resolution of microscopic CT was 0.95 μm, and the data were collected every 

0.1° rotation of the sample. Each time, 3600 rows and 1280 columns of data were obtained 

until the 180° scanning of the sample was completed, which took 3 h and 45 min. The 

projected image was reconstructed into a two-dimensional cross-section image using 

Nrecon layered reconstruction software (Bruke Corp, Karlsruhe, Baden-Wurttemberg, 

Germany) to eliminate the adverse effects caused by ring artifacts and ray hardening, and 

then smoothing and other display settings were performed. 
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Table 2. Experimental Materials 

No. Latin Name Family Name Country of Origin Soft/Hardwood Micro Image 

1 
Dalbergia 

melanoxylon 
Papilionaceae Tanzania Hardwood 

 

2 Gluta sp. Anacardiaceae Indonesian Hardwood 
 

3 Quercus sp. Fagaceae European Hardwood 
 

4 
Pinus 

Sylvestris 
Pinaceae Russia Softwood 

 

5 Pinus radiata Pinaceae Australia Softwood 
 

6 Daniellia sp. Caesalpiniaceae Gabon Hardwood 
 

7 
Spirostachys 

Africana 
Euphorbiaceae Mozambique Hardwood 

 

8 
Triplochiton 
scleroxylon 

Sterculiaceae Myanmar Hardwood 
 

9 Ochroma sp. Bombacaceae New Guinea Hardwood 
 

10 Andira sp. Papilionaceae Suriname Hardwood 
 

11 
Platonia 
insignis 

Guttiferae Suriname Hard Wood 
 

12 
Diospyros 

sp. 
Ebenaceae Philippines Hard Wood 

 

13 
Machaerium 

sp. 
Papilionaceae Bolivia Hard Wood 

 

14 Buxus sp. Buxaceae China 
Soft  

Wood 
 

15 Acer sp. Aceraceae  China Hard Wood 
 

16 
Palaquium 

sp. 
Sapotaceae New Guinea Hard Wood 

 

 

 The hardware used in the test system was AMD Ryzen Threadripper 2920X CPU 

@3.5 GHz, memory was 128 GB, GPU graphics card was NIVIDIA GeForce RTX 1080Ti. 

The algorithm contained a large number of repeated operations and parallel operations. 

GPU operation library was used to play the role of parallel optimization and improve the 

accuracy and efficiency of training model. 
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Methods 
Data augmentation 

A total of 800 microscopic images of 16 kinds of wood were used in the experiment, 

and then a total of 2400 microscopic images of the target area with parenchyma, tube 

fullness, and duct features were intercepted, and the sample image size was 224 × 224 

pixels. Then, the image was rotated 90°, the gray value was reduced, and the image 

enhancement algorithm, such as Gaussian filter, was added to expand the data set to 9600 

pieces, that is, the wood microscopic dataset. The data enhancement process took Andira 

sp. as an example, as shown in Fig. 2. 

 

 
Fig. 2. Data enhancement process (Andira sp. as an example) 

 

Model training 

The training times of the model were 4200, the learning rate was 0.0001, and Batch 

size was 16. The initial values of the weight parameters and bias parameters of the network 

model were randomly generated by the truncated normal distribution with mean value μ = 

0 and standard deviation σ = 0.01. The output of the full connection layer of the model was 

16. A stochastic gradient descent optimization algorithm with momentum term added to 

parameter updating was adopted, this was SGDM (Rumelhart et al. 1986). This was to 

alleviate the model oscillation. 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Zhao et al. (2021). “Wood microscopic image ID,” BioResources 16(3), 4986-4999.  4993 

RESULTS AND DISCUSSION 
 
Visual Model Analysis 

To intuitively show the effectiveness of feature extraction of wood microscopic 

identification model, the visualization analysis of the convolutional layer and pooling layer 

of the model is helpful to debug the convolutional neural network structure and optimize 

the network parameters (Huang and Wang 2019). Through the visualization method, the 

features extracted from the shallow part of the network are similar to those manually 

extracted, such as edge, texture, contour, and so on. In the process of network forward 

propagation of wood microstructure samples, the visualization results of PWoodIDNet 

network structure response were analyzed. Taking Andira sp. as an example, the output 

images after operation were analyzed, including the original image, first convolution, first 

pooling, IM-Inception(a), second pooling, IM-Inception(d), and average pooling layer, as 

shown in Fig. 3.  
 

 
 

Fig. 3. Visualized change process of wood microscopic image (Andira sp. as an example) 

 

In Fig. 3, after the first convolution training of the input image, the output feature 

map of the first convolution was obtained, and the wood microstructure in the output image 

was clearly visible, including the microscopic features of axial parenchyma, ductal 

tracheids, intercellular channels (colloidal channels), inclusions, and so on. The output 

image after the first convolution was taken as the input to carry out pooling operation. After 

the first pooling training, the output feature map of the first pooling was obtained. Through 

comparing the original image and the first pooling, it can be seen that the first pooling was 

able to effectively retain the feature information extracted by the convolutional layer while 

reducing the image size. 

The output feature mapping of the image after IM-Inception(a) convolution 

processing shows that most of the images were able to clearly recognize the edge contour 

information of wood microstructure, which shows that the network in IM-Inception(a) 

convolution not only has the ability to extract the features of the input data, but also has 

the ability to enhance the feature information and filter the noise. The output feature 
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mapping of image after IM-Inception(d) convolution and average pooling layer processing 

showed that with the deepening of the number of layers, the output image of convolution 

neural network exceeded the deep level abstract features intuitively understood by human 

beings, and the captured feature map was more complex and abstract, which required more 

small convolution cores and deeper network layer, and with it comes more complex 

network structure, more network parameters, and operations. 

 

Analysis of Test Results of Different Convolution Neural Network Models 
In order to verify the validity of PWoodIDNet model, the classification accuracy 

and the change of loss value were verified on the dataset. Among them, “Classification 

accuracy” refers to the ratio of the number of samples correctly classified by the classifier 

to the total number of samples for a given dataset. Classification accuracy can be used to 

determine whether the classifier is effective or not. “Validation loss” was the cross entropy 

loss of multi class classification problems with mutually exclusive classes. Results are 

compared with the most commonly used convolution neural network model, including 

AlexNet, GoogLeNet, VGG16 model, as shown in Figs. 4 and 5. 

 

 
 
Fig. 4. Classification accuracy curve of network model 
 

Figure 4 shows the classification accuracy curve of the network model. With the 

increase of iteration times, the model accuracy of PWoodIDNet model curve noticeably 

improved and gradually converged. When the iteration times reached 300, the accuracy 

was 99% and continued until the completion of iteration, which reflected the high 

classification accuracy of PWoodIDNet model and verified the validity of network model. 

The classification accuracy of GoogLeNet was slightly lower than that of PWoodIDNet 

model. When the number of iterations reached 300, the Accuracy curve of GoogLeNet 

slowed down and the curve still oscillated. However, as the number of iterations increased, 

the curve gradually converged. 

At the beginning of iteration, the curve oscillation of VGG16 and AlexNet models 

was quite serious, and the classification accuracy was low at this time, with the average 

classification accuracy of approximately 75%. In the middle iteration, the curve gradually 

 PWoodIDNet
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converged, without drastic fluctuations, and the average accuracy was above 93%. 

According to the accuracy curve of LeNet-5 model, when the number of iterations reached 

4200, the curve continued to grow slowly. After the number of iterations increased, the 

training curve showed a trend of waveform growth. 

Figure 5 shows the verification loss rate curve of the network model, the initial loss 

value of the PWoodIDNet model was large, but it can be rapidly reduced with the increase 

of training steps. An inflection point occurred when the number of iterations reached 200. 

At that point the curve gradually tended to converge until the end of the iteration, reflecting 

the increase of layers of the PWoodIDNet model, saving a large number of parameters, and 

accelerating the convergence speed of the loss rate. The convergence speed of GoogLeNet 

model loss rate was slightly lower than that of PWoodIDNet. Slight oscillation occurred 

during the training process, and the overall curve presented a downward trend. With the 

increase of iteration times, the curve gradually tended to converge.  

The convergence speed of VGG16 and AlexNet model was relatively slow, and the 

curve kept oscillating. When the number of iterations reached 1000, the loss value of the 

model changed gently and gradually converged. Although the initial loss value of LeNet-

5 model was low, which was approximately 3, the convergence rate of LeNet-5 model was 

noticeably lower than that of other convolutional neural network models. 

 

 
 
Fig. 5. Validation loss rate curve of network model 
 

Classification Results 
Based on the same number of iterations, the parameters obtained from the 

verification set of the five networks model are shown in Table 3. The average classification 

accuracy of PWoodIDNet was the highest, reaching 99.41%. Its convergence speed and 

model classification accuracy were noticeably higher than those of the other two models, 

demonstrating the effectiveness of the network model. The recognition rate of GoogLeNet 

was second, which was more than 99%. However, GoogLeNet had a large number of 

convolution kernels, which led to a long training time of the model, and it was the model 

with the longest training time among the five models, which affects the detection efficiency. 
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The accuracy of VGG16 was also high, reaching approximately 98%, but the training time 

of the model was still long, because VGG16 has three full connection layers, among which 

the first full connection layer has the most parameters, consumes more computing 

resources, and uses more parameters, which leads to more memory occupation and makes 

the training time longer. AlexNet had lower accuracy than PWoodIDNet, GoogLeNet, and 

VGG16, but the training time was shorter due to fewer network layers. The accuracy of 

LeNet-5 was the lowest among the five models, only approximately 70%, and the average 

loss rate was also high. The classification results of LeNet-5 models did not achieve the 

expected results.  

 

Table 3. Accuracy Comparison of Wood Identification Models 

 PWoodIDNet GoogLeNet VGG16 AlexNet LeNet-5 

Average Classification  
Accuracy Rate (%) 

99.41 99.04 97.81 96.7 70.64 

Average Loss Value 0.0254 0.0362 0.0733 0.1123 1.0772 

Model Training Time (s) 2243 5696 4284 2308 2808 

Training Steps 4200 4200 4200 4200 4200 

 

By processing the convolution layer and pooling layer of the model, the main 

feature information was enhanced and the classification accuracy was improved. Except 

for LeNet-5, the microscopic image classification results of several models were all above 

95%, as shown in Table 4.  

 

Table 4. Classification Results of Wood Identification Model 

 PWoodIDNet GoogLeNet VGG16 AlexNet LeNet-5 

Dalbergia melanoxylon 0.9971 0.9887 0.9715 0.9523 0.7348 

Gluta sp. 0.9827 0.9867 0.9704 0.9709 0.6349 

Quercus sp. 1 0.9734 0.9772 0.9798 0.7724 

Pinus sylvestris 0.9965 0.9872 0.9812 0.9683 0.6382 

Pinus radiata 0.9953 1 0.9738 0.9353 0.6972 

Daniellia sp. 0.9812 0.9886 0.9739  0.9739  0.6488 

Spirostachys africana 1 0.9834 0.9721 0.9512 0.7570  

Triplochiton scleroxylon 0.9832 0.9951 1 0.9776 0.6102 

Ochroma sp. 0.9991 0.9913 0.9609 0.9822 0.6562 

Andira sp. 0.9876 0.9852  0.9453 0.9609 0.7725 

Platonia insignis 0.9880  0.9945  0.9521 0.9676 0.7148 

Diospyros sp. 0.9982 0.9726  0.9349 0.9490  0.6893 

Machaerium sp. 0.9958 0.9853 0.9658 0.9382  0.8125 

Buxus sp. 1 0.9937 0.9742 0.9659 0.7071 

Acer sp. 0.9731 1 0.9927 0.9709 0.6954 

Palaquium sp. 0.9900  0.9843 0.9810  0.9898 0.7621 
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Comparing the five convolutional neural network models, Quercus sp. and 

Spirostachys africana were the best. This reflects the great difference in the microstructure 

of broad-leaved timber, and the high-resolution microscopic CT can enlarge the wood to 

the micron level or even reach the nanometer level to observe the internal microstructure 

of wood, and the wood microstructure was clearly visible, so that the classification effect 

of wood can be greatly improved.  

 
 
CONCLUSIONS 
 

Aiming at the identification of precious tree species, a precious wood identification 

algorithm based on the PWoodIDNet model was proposed. The model extracts the 

classification features by deep self-learning, avoids the influence of artificial subjective 

extraction of classification features on image recognition results, and has the 

advantages of high classification accuracy, fast operation speed, and low misjudgment 

rate. 

1. In this paper, 16 wood species were scanned by high-resolution microscopic computed 

tomography (CT), and the microstructure characteristics, such as parenchyma, axial 

tubule, intercellular channel and vessel, were clearly visible. The PWoodIDNet model 

was used for automatic classification and identification. The results showed that the 

convolution operation of PWoodIDNet model can extract the edge contour information 

of the sample image through the low-level convolution layer, and has the ability to 

enhance the feature information and filter the noise. High level convolution layer can 

extract more advanced, complex, and abstract features, and feature information has a 

higher level of meaning. 

2. The model and detection method proposed in this paper will provide advanced 

identification methods and instruments for customs, import and export quarantine 

inspection, and other legal departments. In the later stage of research, more wood 

species should be added and more samples of wood species should be obtained to 

achieve the expected purpose. This is needed to improve the performance of 

identification technology for wood import and export quarantine inspection. Thus, the 

technology progress of wood import and export industry and wood processing and 

manufacturing enterprises will be promoted. 
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