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Pests have a negative impact on the economy and the environment. There 
is an increased urgency for adequate pest control because many pests 
show high adaptation and climate change has created favorable 
circumstances for pests. For pest control, synthetic chemicals are used 
that are lethal to non-target organisms and are toxic to pollinators and 
aquatic invertebrates. Chemical compounds in plants and derivatives from 
lignocellulosic materials act against pests. The wastewater from 
lignocellulosic biomass is a potential source of new compounds with 
bactericidal, fungicidal, and pesticidal effects that have demonstrated 
inhibitory activity against plant pathogens. Fungicidal, nematicidal, 
insecticidal, larvicidal, and bactericidal activities have been proven. 
Inorganic and organic compounds, such as phenols, aldehydes, esters, 
and furanics, are the main ones identified. Due to the antimicrobial activity 
of wastewater, applying it to the soil can modify the composition and 
structure of key microbial communities. Deep research about richness, 
biodiversity, functionality, and microbials is needed. This review provides 
a comprehensive overview of wastewater types that have been applied 
and possible sources to obtain potential compounds for pest control. 
Moreover, associated active compounds, recovery techniques, and 

environmental impacts are reviewed. 
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INTRODUCTION 
 

Pests generate negative impacts because they decrease the quality and yield of crops 

(Savary et al. 2019). There is increased urgency because pests generate economic losses 

five times more than fires (Logan et al. 2003). Additionally, pathogens and pests are highly 

adaptable (Wingfield et al. 2015) and climate change can favor outbreaks and their 

extension (Rubin-Aguirre et al. 2015; Jactel et al. 2019). More so, the level of economic 

loss due to injuries caused by insects and pests is multifactorial, because they depend on 

the type of crop, temporal nature, and spatial location (Capinera 2020).  

Plants contain chemical compounds that help fight disease and insects, for instance, 

phytohormones and secondary metabolites. The development of insecticides started from 

this discovery, and produced similar but more effective chemicals (Bednarek 2012; Erb et 

al. 2012; Matthews 2018). In contrast, lignocellulosic biomass is a copious and cheap 

source for pulp and paper, textile manufacturing, and agriculture in the forms of corn, 

wheat, rice, sorghum, barley, and sugarcane byproducts (Reddy and Yang 2005). Cellulose, 

hemicelluloses, and lignin are the main polymeric components (Sarip et al. 2016), the latter 

being the second most abundant biopolymer after cellulose (Demuner et al. 2019). In the 

lignocellulosic biomass pretreatment, the cellulose-hemicellulose-lignin structures are 

altered, facilitating the hydrolysis of cellulose and increasing the fermentable glucose 

concentration, whereby lignin derivatives are obtained (Kim 2018). Lignin contains several 

functional groups, such as phenolic hydroxyl, carboxylic, carbonyl, and methoxyl groups. 

Biological activities of phenolic hydroxyl and methoxyl groups (Espinoza-Acosta et al. 

2016) were highlighted as antioxidant or antimicrobial activities (Alzagameem et al. 2019; 

Jinxiang et al. 2020). In addition, chemical compounds derived from the by-products from 

lignocellulosic materials provide protection for pests (Villaverde et al. 2016). 

For pest control, methyl bromide gas was widely used as a broad-spectrum 

fumigant until 2005, when it was banned (Wedge et al. 2001). Neonicotinoid pesticides 

have become the most widely used class of insecticides in the world (Simon-Delso et al. 

2014). However, they present significant environmental impacts (Saeed et al. 2019). For 

example, methyl bromide produces neurotoxicity and is a stratospheric ozone depleter 

(Wedge et al. 2001), the fipronil is toxic to pollinators and aquatic invertebrates (Sadaria 

et al. 2019), and most insecticides can be lethal to non-target organisms (Simon-Delso et 

al. 2014). In addition, pesticides are considered a powerful biological risk because they can 

persist in the environment for years (Sharma et al. 2020). Chemical fungicides are widely 

used because they are effective in sterilizing (Lin et al. 2020). However, they have also 

been reported to induce resistance in fungal plant pathogens (Swett et al. 2020). For the 

control of phytoparasitic nematodes, fumigants have been used that have the ability to 

eliminate not only target organisms but also affect the microbial population in the soil 

(Ntalli et al. 2020). This leads researchers to search for alternatives to control pests. 

The use of living biological organisms or their metabolites for pest control is called 

bio-pesticides (Butu et al. 2020). The demand is increasing to limit the use of chemical 

pesticides and to replace them with agents that have no or less negative effects on the 

environment (Di Ilio and Cristofaro 2020; Rashwan and Hammad 2020). Sharma et al. 

(2020) considered that biopesticides could facilitate increased crop production with or 

without minimal negative effects. Furthermore, biopesticides are biodegradable, less 

expensive, and possess less toxicity toward living organisms (Thakur et al. 2020). 

There are different alternatives for pest control, such as genetically based resistance 

(Molinari 2011), integrated pest management (IPM) (Meissle et al. 2010), botanical 
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pesticides (Lengai et al. 2020), larvicidal red-algae (Deepak et al. 2019), reductive soil 

disinfestation (RSD), anaerobic soil disinfestation (Huang et al. 2019), and microbial 

biopesticides (Thakur et al. 2020), among others. Biopesticide sources exist readily in 

nature (Thakur et al. 2020), and some have yet to be fully exploited and studied, for 

example, liquid waste.  

Wastewater is a valuable source of biomolecules for different uses; by recovering 

these compounds, value is added, and at the same time the environmental impact in the 

treatment of these wastes is reduced (Larif et al. 2015; Ahmad et al. 2020). These wastes 

may possibly be considered one of the most abundant, cheap, and renewable resources on 

earth (Gonzalez-Coloma et al. 2013). It is time to change the paradigm and stop seeing 

them only as waste to treat them as by-products, revalue the “waste” and give them another 

type of value with sustainable management of these materials (Ordaz-Díaz et al. 2019). 

 
Wastewater Types for Pest Control 

The raw wastewaters used for pest control are cassava, olive mill, vinasses of wine, 

sugar beet, and sugarcane featuring fungicidal, nematicidal, insecticidal, larvicidal, and 

bactericidal activities (Table 1).  
 

Cassava Wastewater 
A feature of cassava wastewater is the presence of linamarin and lotaustralin 

compounds, cyanogenic glycosides that are lost in processing (Padmaja 1995). Near 5 to 7 

L of wastewater are generated from a kilogram of fresh cassava root (Watthier et al. 2019). 

The cassava wastewater has been studied for more than 30 years for possible applications 

in pest management (Pinto-Zevallos et al. 2018), against insects, nematodes, and fungi 

(Table 1). The pest species that have been evaluated are Coceus hesperidum L., 

Meloidogyne spp., and Oidium sp., which are associated mainly with crops of fruit trees 

and tomato (Lebeda et al. 2015; Abdul-Rassoul 2016; Regmi and Desaeger 2020).  

 

Olive Mill Wastewater 
Olive mill wastewater contains phenolic compounds (Di Mauro et al. 2017). Due 

to the reducing power of these compounds, bacteria and plants are negatively impacted 

(Babić et al. 2019). The olive mill wastewater can be used against bacterial, fungal 

phytopathogens, and weed species (El-Abbassi et al. 2017). Pest mortality is attributed to 

phenolic compounds (Larif et al. 2013). Hence, polyphenolic fractions of the olive mill 

wastewater act as a strong natural chemosterilant (Di Ilio and Cristofaro 2020). 

 Euphyllura olivina and Ceratitis capitata Wiedemann, globally important pests, are 

Mediterranean parasitoids that affect olive and fruit crops, respectively (Alves et al. 2019; 

Hougardy et al. 2020). The olive mill wastewater has also shown insecticidal activity 

against both pests and larvicidal activity against Euphyllura olivina. Furthermore, Aphis 

citricola, an aphid related to apple orchards infestation (Kou et al. 2020), can be controlled 

using olive mill wastewater, due to larvicidal activity (Table 1).  

Besides being effective against larvae and insects, the olive mill wastewater has 

also been shown to suppress fungi and bacteria activity (Table 1).  
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Table 1. Wastewater Type Used for Pest Control 

   
The fungicidal activity of olive mill wastewater has been tested against Botrytis 

cinérea, Rhizoctonia solani, Fusarium oxysporum, Fusarium sambucinum, Verticillium 

dahlia, and Alternaria solani (Table 1). These fungi affect various crops and the economic 

losses they generate are considerable. For example, Botrytis cinérea, a necrotrophic 

pathogen, produces severe crop losses worldwide in a wide variety of plant species (Hahn 

et al. 2014). Rhizoctonia solani is a root pathogen that affects cereal crops (Paulitz and 

Schroeder 2005). Fusarium oxysporum is a soil and seed-borne disease and is one of the 

main pathogens of dry rot (Tiwari et al. 2020). Fusarium sambucinum (root rot disease) 

and Fusarium oxysporum cause potato infection (Yangui et al. 2009; Piłsyk et al. 2015; 

Tiwari et al. 2020). Verticillium dahliae is a vascular pathogen that causes wilt and death 

of 400 cultivated and non-cultivated plant species including the tomato plants. Alternaria 

solani affects different parts of the plant from root rot to even cause tomato and potato rot 

(Yangui et al. 2009; EFSA Panel on Plant Health PLH 2014). 

Pseudomonas syringae is an extracellular bacteria and is considered one of the main 

bacterial pathogens of plants (Mansfield et al. 2012; Xin et al. 2018). Xanthomonas 

campestris is a bacteria able to cause black rot infection in cruciferous plants (Papaianni et 

al. 2020). Due to the bactericidal activity of olive mill wastewater, both phytopathogenic 

bacteria are inhibited by this liquid waste (Table 1). 

 

Pest Activity Wastewater Type Reference 

Phytophthora parasitica, 
Fusarium oxysporum f. sp. 
melonis race, F. oxysporum 
f. sp. radicis-cucumerinum, 
Pythium aphanidermatum, 

and Sclerotinia sclerotiorum 

Fungicidal Sugar beet, 
sugarcane, and wine 

vinasse 

Santos et al. 2008 

Meloidogyne incognita Nematicidal Sugar beet vinasse Núñez-Zofío et al. 2013 

Sphenophorus levis 
Insecticidal Sugarcane vinasse 

Martins et al. 2020 

Stomoxys calcitrans Jelvez Serra et al. 2017 

Oregmopyga peruviana Insecticidal Wine vinasse 
Dadther-Huaman et al. 

2020 

Coccus hesperidum L. Insecticidal 

Cassava 

Ponte et al. 1988 

Meloidogyne spp. Nematicidal Ponte and Franco 1983 

Oidium sp. Fungicidal Santos and Ponte 1993 

Euphyllura olivina 
Insecticidal 

 

Olive mill 

Debo et al. 2011 

Ceratitis capitata 
Wiedemann 

Di Ilio and Cristofaro 
2020 

Euphyllura olivina and Aphis 
citricola 

Larvicidal Larif et al. 2013 

Botrytis cinerea 

Fungicidal 

Yangui et al. 2010 

Rhizoctonia solani and 
Fusarium oxysporum 

Mohamed et al. 2015 

Fusarium sambucinum, 
Verticillium 

dahliae, and Alternaria 
solani 

Yangui et al. 2009 

Pseudomonas syringae and 
Xanthomonas campestris 

Bactericidal Yangui et al. 2010 
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Vinasses 
The vinasse, a liquid residue from alcoholic fermentation, contains various 

compounds such as alcohols, aldehydes, phenols, and acids (Couallier et al. 2006; Freitas 

et al. 2018; Fuess et al. 2018). In some cases, these compounds are undesirable. For 

example, in anaerobic wastewater treatment, phenolic compounds should be removed, 

because they participate as inhibitors (Borja et al. 1993; Ao et al. 2020). However, some 

of the compounds have a positive environmental and economic value. 

Raw vinasse has proven useful in other fields of research. Phanapavudhikul (1999) 

observed an eradication of insects by adding the sugarcane vinasse to the soil, associating 

it with oxygen depletion. The first reports of vinasse use to control phytopathogenic fungi 

date back to 2008. It was reported that wine vinasse showed 100% efficacy in suppressing 

the growth of phytopathogenic fungi (Santos et al. 2008). Afterward, the sugar beet vinasse 

was tested for the control of nematodes in pepper crops, as an alternative to the disinfection 

of soil-borne pathogens (Núñez-Zofío et al. 2013). Furthermore, the vinasse compounds 

can be used as chemical attractants (Martins et al. 2020). Recently, in the treatment of 

mycoremediation, Fernandes et al. (2020) reported a decrease in the growth rate of fungi 

using a wine vinasse concentration higher than 60%. 

The vinasses have been shown to be effective against fungi, insects, and nematodes. 

The fungicidal activity have been tested against Phytophthora parasitica, Fusarium 

oxysporum f. sp. melonis race, F. oxysporum f. sp. radicis-cucumerinum, Pythium 

aphanidermatum, and Sclerotinia sclerotiorum (Table 1). The Phytophthora genus is one 

of the most devastating pathogens to a wide range of crop plants (El-Sayed and Ali 2020). 

Phytophthora parasitica is a soilborne pathogen (Meng et al. 2014). This oomycete mainly 

affects tobacco (Hou et al. 2012), tomato crops (Vigo et al. 2000), and the citrus industry 

(Boava et al. 2011). Fusarium oxysporum f. sp. melonis race is one of the most important 

diseases causing tremendous losses in melon fruit (Almasi 2019). F. oxysporum f. sp. 

radicis-cucumerinum is a vascular wilt fungus and is associated with cucumber crops 

(Markakis et al. 2016). Pythium aphanidermatum is the most devastating pathogen that 

affects turmeric and Sclerotinia sclerotiorum is capable of attacking more than 400 crop 

species (Boland and Hall 1994; Chand et al. 2016). 

Moreover, the insecticidal activity was evaluated using sugarcane and wine vinasse 

against Sphenophorus levis, Stomoxys calcitrans, and Oregmopyga peruviana (Table 1). 

Sphenophorus levis affects the sugarcane crops, Stomoxys calcitrans is a stable fly that acts 

as a mechanical vector for the lumpy skin disease virus on cattle, and Oregmopyga 

peruviana is a vine pest (Casteliani et al. 2020; Dadther-Huaman et al. 2020; Paslaru et al. 

2020). 

Meloidogyne incognita, a root-knot nematode damaging vegetable crops (Collange 

et al. 2011), also has been tested using sugar beet vinasse for pest control (Table 1). 

Due to this potential, vinasse can be studied as a source of biocide for the prevention 

and control of various pests. 

 

Active Compounds 
 Esters, acids, aldehydes, ketones, aromatics, alkanes, alcohols, nitrosamides, and 

terpenoids, are acting in a synergistic inhibitory manner of fungi and bacteria (Saxena and 

Strobel 2020). Table 2 shows the compounds present in wastewater, a diverse source 

(vinasses, olive mill, and cassava) that is of great interest for the control pests. Phenols, 

organic acids, aldehydes, esters, furanic, and inorganic compounds are the main ones. 
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Table 2. Compounds Identified in Wastewater Samples of Interest in Pest Control 
Wastewater 

Type 
Classification  Compounds Content  Reference 

Wine 
Vinasses 

Phenol 
 

Gallic acid  10.83 g /L Díaz et al. 
2012 

Hydroxytyrosol ND 

Total phenols 18.9 g/L 

Baijiu Vinasse Ferulic acids 1.674 mg/K Wang et al. 
2019 

Sugar Beet 
Vinasse 

Ferulic acid < 5 mg/L Bostyn et al. 
2009 

Tequila 
Vinasse 

Eugenol 0.9 mg/L Félix et al. 
2018 2,4-di-tert-butylphenol 90 mg/L 

4-(2-hydroxyethyl) phenol ND 

Mezcal 
Vinasses 

Gallic acid 478 to 542 
mg/L 

Robles-
González et 

al. 2012 

Olive Mill 
Wastewater 

Gallic acid ND Puoci et al. 
2012 

Oleuropein 14.32 
Di Mauro et 

al. 2017 
 Hydroxytyrosol 267.17 to 

821.86 mg/L 

Tequila 
Vinasse 

Aldehydes Benzaldehyde ND 

Félix et al. 
2018 

Esters Ethyl butanoate, ethyl 
lactate, and ethyl palmitate 

ND 

Alkanes Dodecane, tetradecane, 
and eicosane 

ND 

Furanic 
compounds 

Furfural  50 mg/L 

5-methyl furfural ND 

Pyrans 4H-pyran-4-one,2,3-
dihydro-3,5-dihydroxy-6-
methyl and pyrrolo[1,2-a] 

pyrazine-1,4-dione, 
hexahydro-3-(2-

methylpropyl) 

ND 

Sugarcane 
Vinasse 

Organic acids Lactic acid 1.2X10−1 
mol/L 

Sedenho et 
al. 2017 

Cassava 
Wastewater 

Triazine Cyanuric acid ND Pinto-Zevallos 
et al. 2018 

Free cyanide 257.20 mg/L Neves et al. 
2014 

Sugarcane 
Vinasse 

- 
Melanoidins 

16600 g/L Kaushik et al. 
2018 

ND=no data 

 

Pest mortality has been attributed to the presence of phenolic compounds (Larif et 

al. 2013), due to being part of the protection system of plants against pests (Patzke and 

Schieber 2018). Lignin or lignin-rich biomass are a source of phenols, which can be 

obtained through the hydrothermal process (Peng et al. 2019). Therefore processes that 

contain lignin and are subjected to high temperatures will contain phenolic compounds in 

their wastewater, thanks to thermal hydrolysis. The wastewater contains phenols, such as 

hydroxytyrosol, gallic acid, ferulic acid, eugenol, oleuropein, 2,4-di-tert-butylphenol, and 

4-(2-hydroxyethyl) phenol, which can be used or recovered for pest control (Table 2). For 

instance, hydroxytyrosol metabolite, a phytochemical polyphenol with antioxidant 
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properties, has exhibited antimicrobial activity (Bisignano et al. 1999), insecticidal activity 

(Debo et al. 2011), disinfectant activity on seeds (Yangui et al. 2009), and fungicide 

activity (Yangui et al. 2010; Khan and Murphy 2020). The main sources of hydroxytyrosol 

are olive and wine (Rebollo-Romero et al. 2020). However, it is also reported in wine 

vinasse and olive mill wastewater (Table 2). Gallic acid, a secondary polyphenolic 

metabolite, is considered one of the most powerful antioxidants and has been reported in 

most plants (Erukainure et al. 2018; Martínez et al. 2018). From an environmental point of 

view, gallic acid present in agro-industrial wastewaters must be removed, due to its toxicity 

(Víctor-Ortega and Airado-Rodríguez 2018), because it can affect the microbial 

communities in wastewater discharge points. However, it can be used for the management 

of bacteria pathogen pests, as Borges et al. (2013) reported bactericidal activity. This 

phenolic compound is available in olive mill wastewater, wine, and mezcal vinasses, as an 

alternate source (Table 2). Ferulic acid is a phenolic compound extremely abundant and 

found widely in nature (Rosazza et al. 1995), showing fungicidal and bactericidal activities 

(Borges et al. 2013; Patzke and Schieber 2018). Based on Table 2, this compound has been 

reported in baijiu and sugar-beet vinasses. The eugenol (4-allyl-2-methoxyphenol) found 

in tequila vinasse (Table 2); it is an acaricidal agent, having fungicidal and bactericidal 

activities (Abd El-Baky and Hashem 2016; Shang et al. 2020). Oleuropein shows 

bactericidal and fungicidal activities, mainly contained in olives (Bisignano et al. 1999), 

and, as shown in Table 2, was also in the wastewater. Additionally, 2, 4-di-tert-butylphenol 

demonstrated fungicidal and acaricidal activity (Dharni et al. 2014; Chen and Dai 2015; 

Varsha et al. 2015), and 4-(2-hydroxyethyl) phenol showed nematicidal activity (Yang et 

al. 2012). 

 Therefore, phenolic compounds are considered a natural alternative to conventional 

plant protection agents (Patzke and Schieber 2018). Additionally, the recovery of phenols 

and the obtaining of added value products is attractive from industrial and environmental 

points of view (Víctor-Ortega and Airado-Rodríguez 2018). 

 Tequila vinasse compounds such as aldehydes, esters, alkanes, furanic compounds, 

and pyrans can be used for pest control. The benzaldehyde identified in tequila vinasse 

(Table 2) could be applicable for developing novel insecticides for agricultural use due to 

having been tested as agents effectively inhibiting fungi, insects, and microbials (Kim et 

al. 2011; Ullah et al. 2015). This compound is present in Agave alcoholic beverages such 

as bacanora, mezcal from A. angustifolia, mezcal from A. durangensis, mezcal from A. 

potatorum, mezcal from A. salmiana, raicilla, sisal, sotol, tequila, and pulque (De León 

Rodríguez et al. 2008). Therefore it is also found in the vinasse of each process. The ethyl 

butanoate, an ester, was identified in male rectal glands during periods of sexual activity 

in the banana fruit fly (Bactrocera musae Tryon). Therefore, ethyl butanoate could be used 

to control this pest as a possible biological role of these compounds in the mating system 

(Noushini et al. 2020). The ethyl lactate can be generated from biomass raw materials 

through fermentation (Pereira et al. 2011). As shown in Table 2, it is also present in liquid 

distillation wastes of tequila. A mix of ethyl lactate and acetic acid exhibits an antifungal 

effect (Sleven et al. 2016). Ethyl palmitate was identified as a component of the pheromone 

from the brood of bees, and this volatile compound attracts the small hive beetle, a pest of 

honeybees. This finding can be useful for trap development and management (Dekebo and 

Jung 2020). Other compounds present in the tequila vinasse, such as dodecane, tetradecane, 

and eicosane (Table 1), are the female sex pheromone compounds of Paranthrene 

diaphana Dalla Torre and Strand (Lep. Sesiidae), a destructive pest of willow trees 

(Minaeimoghadam et al. 2017). Therefore, the vinasse could be used to attract and control 
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this pest. Moreover, furanic compounds with antifungal activity, such as furfural and 5-

methyl furfural, can help decrease the commercial antifungal agrochemical dose against 

Alternaria mali (Jung et al. 2007). Additionally, 4H-pyran-4-one, 2,3-dihydro-3,5-

dihydroxy-6-methyl (Table 2) is part of a mixture that shows insecticidal, larvicidal, and 

pupicidal effects (Ravindran et al. 2020), and pyrrolo[1,2-a] pyrazine-1,4-dione, 

hexahydro-3-(2-methylpropyl) (Table 2) has an antifungal function (Kannabiran 2016). 

 Lactic acid identified in sugarcane vinasse (Table 2) showed antifungal activity 

against Aspergillus, Penicillium, and Fusarium genera (Lind et al. 2005). L-Lactic acid 

has used as a pesticide and can be obtained through a fermentation process (Liu et al. 2013). 

The cyanide that is present in cassava wastewater (Table 2) acts as a natural plant defense 

against pests (Pinto-Zevallos et al. 2018). This is the case for the cyanogenic glycosides in 

wastewater that comes from the soaking stage in the manufacture of flour from cassava 

(Alitubeera et al. 2019). 

 Melanoidins are the end products of the Maillard reaction between carbohydrates 

and amino compounds (Cämmerer and Kroh (1995). They are found in vinasses (Table 2), 

and have antimicrobial activity (Kaushik et al. 2018). 

 It can be seen in Table 2 that the composition of wastewater is diverse. Koul and 

Walia (2009) mentioned that this can be an advantage because the possibility of pests 

developing resistance is reduced. 

 

Techniques for Target Compounds Recovery  
 The direct application of raw wastewater has been the most used for the evaluation 

of the power against pests. However, it is possible to recover the target compounds.  

 For the compound’s recovery in rich phenolic wastewater, magnetic extraction, 

ultrasound-assisted extraction, solvent extraction, adsorption, or combined processes, such 

as hydrolysis-purification and extraction-adsorption, are used (Table 3). However, 

sometimes the suspended matter needs to be removed by flocculation, as a preliminary 

stage (Azzam and Hazaimeh 2021). 

 Some of the solvent extraction process steps are acidification or condensing, 

delipidation extraction, and purification used for phenol recovery in olive mill wastewater 

(Deng et al. 2017; Çelik et al. 2020). The acidification with acetic acid allows 

hydroxytyrosol enrichment (Debo et al. 2011), and ultrasound-assisted extraction could 

increase the yield of phenolic compounds (Deng et al. 2017). In the ultrasound-assisted 

extraction, less solvent is required (Albero et al. 2015), which makes it a more 

environmentally friendly technique. To remove lipids, a fraction delipidation step is 

employed, and hexane is the most used (Rubio-Senent et al. 2017). Ethyl acetate is the 

solvent more commonly used for the recovery of high added-value compounds from 

wastewaters (Table 3). This solvent was the most efficient for the recovery of phenolic 

monomers from olive mill wastewater (Allouche et al. 2004), and the system was able to 

reach a total recovery of polyphenols (Bostyn et al. 2009). After extraction, the resins are 

used in the purification step to increase the amount and purity of phenolic compounds 

(Çelik et al. 2020). 

 Despite adsorbents or chemicals used in conventional treatment (absorption and 

extraction) are cheaper than advanced treatments, both show high efficiencies (Villegas et 

al. 2016). It is even possible to reduce costs further with the use of low-cost adsorption 

media (Daragon et al. 2014). 
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Table 3. Processes Used for the Recovery of Phenol in Wastewater 

Wastewater 
Type 

Compounds Solvent pH Process 
Reference 

Olive Mill 
Wastewater 

Hydroxytyrosol 

Ethyl acetate 2 Solvent extraction Allouche et 
al. 2004 

- 3 Hydrolysis (acetic 
acid) and 

purification (resin) 

Debo et al. 
2011 

Polyphenols Ethyl acetate 

- 60 °C Larif et al. 
2015 

 Solvent extraction Azzam and 
Hazaimeh 

2021 

Tequila 
Vinasse 

Phenolic 
compounds 

  Adsorption resins Sanchez et 
al. 2019 

Sugar Beet 
Vinasse 

Phenolic acids Ethyl acetate 4 Solvent extraction Bostyn et al. 
2009 

Olive Oil 
Wastewater 

Gallic acid Ethanol  Solvent extraction 
and adsorption 

(molecularly 
imprinted 
polymers) 

Puoci et al. 
2012 

Aqueous 
Solutions 

Gallic acid Ethyl acetate - Solvent extraction Daneshfar et 
al. 2008 

Phenolic 
compounds 

- - Magnetic extraction Deng et al. 
2011 

Urban 
wastewater 

Phenolic 
compounds 

- - Ultrasound-
assisted 

Kotowska et 
al. 2014 

   

 Table 4 shows that certain wastewater types can have high lignin content, such as 

wheat straw and kraft pulping effluent. In fact, the dark color in cassava wastewater is due 

to the presence of lignin breakdown products and lignin phenols (Zhang et al. 2017). Lignin 

can be used as a raw material in the production of aromatic monomers (Gu et al. 2020). 

Currently, catalytic hydrothermal depolymerization has been used to obtain phenolic 

monomers from lignin (Roy et al. 2020), with the yield increasing 49% and 83% when 

using mannitol and sucrose addition (Gu et al. 2020). 

  

Table 4. Lignocellulosic Biomass in Wastewater 

Wastewater Type Polymer Content Reference 

Olive mill Lignin 25.5 * Uğurlu and Kula 2007 

Wheat straw Lignin 310 to 660 * 
Wang 2020 

Aspen kraft pulp Lignin 230 to 770 * 

Sorghum and rice 
vinasse 

Lignin 14.95 ** 
Cao et al. 2019 

*mg/L, **% Dry matter 

 

Environmental Impacts 
 For pest control, the use of compounds in wastewater should be discussed relative 

to potential environmental impacts. This source is a new field of research and the possible 

negative or positive effects have not been studied in depth.  

 As previously discussed, the positive effect of wastewater use on pests has been 

shown. However, when the wastewater is in contact with parts of the plants, with the soil, 
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or is infiltrated into underground water, the effects are unclear. Possible environmental 

negative and positive impacts of the use of wastewater for pest control are shown in Table 

5.  

 
Positive Impacts 
 The positive impact, in general, is that wastewaters rich in nutrients are considered 

as an alternative fertilizer, bringing enhanced crop growth, water-holding capacity 

improvement, and microbial communities in wastewater coadjutant to phenolic 

degradation in soil (Table 5). Moreover, better soil basal respiration has been reported in 

cassava wastewater (Table 5), and the increase in CO2 produced in soil respiration is 

associated with the improvement biological activity of organisms (Phillips and Nickerson 

2015). The treated olive mill wastewater germination index increases and water-holding 

capacity with raw wastewater is improved and does not contain high heavy metal levels 

(Table 5).  

 

Table 5. Environmental Impacts of Wastewater Used as Pest Control 

Wastewater 
Type 

Environmental Impact 
Reference 

Positive Negative 

Cassava 

Increased nutrients 

Initial toxic effect on soil 
fungal 

dos Santos Moura 
et al. 2018 

Total organic carbon 
increase 

Microbial biomass increase 

Better soil basal respiration 

Soil fertility improvement 
Soil hydrophobicity 

Abegunrin et al. 
2016 Enhanced crop growth 

Crop yield increase  Cabral et al. 2010 

Olive Mill 

Germination index increase  

Mekki et al. 2013 Water-holding capacity 
Improvement 

 

Low heavy metal loads Seeds germination Sassi et al. 2006 

Increased nutrients and 
organic matter 

Soil infiltration rates 
decrease 

Zema et al. 2019 

 Soil infiltration rates 
decrease 

Albalasmeh et al. 
2019 

Microbial communities in 
olive mill wastewater 

coadjutant to phenolic 
degradation in soil 

 El Hassani et al. 
2020 

Sugar Beet 
Vinasse 

 Vegetation cover 
decreasing 

Tejada et al. 2009 

Sugarcane 
Vinasse 

 Methane emissions Do Carmo et al. 
2012 

Organic carbon increase  Soobadar and Ng 
Kee Kwong 2012 Crop yield increase  

Negative Impacts 
 The raw and concentrated wastewater show negative impacts, for instance, 

concentrated olive mill wastewater blocked seed germination, and an initial toxic effect on 

soil fungal activity were identified (Table 5). Sassi et al. (2006) reported a dilution of 1/16 

to guarantee full germination. High salt content in vinasse can cause vegetation cover 

decrease and changes in the structure and porosity of the soil (Tejada et al. 2009). When 
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wastewaters are added to the soil, the organic matter accumulation in the soil affects 

penetration resistance and water repellency (Albalasmeh et al. 2019). A pre-treatment is 

recommended before applying it to the soil (Abegunrin et al. 2016). To avoid soil 

hydrophobicity and methane emissions (Table 5), a flocculation process can help. 

 Wastewater reviewed in this paper contained compounds with antimicrobial 

activity (Table 2). Therefore, care must be taken when applying it to the soil, as it can 

modify the composition and structure of key microbial communities. Hence, more research 

addressed toward microbial communities’ impacts on the soil is needed, with a focus on 

richness, biodiversity, functionality, and microbial adaptability. 

 To avoid most of the negative environmental impacts associated with raw and 

concentrated wastewater for pest control, compound recovery processes with fungicidal, 

acaricidal, nematicidal, bactericidal, and insecticidal activities can be exploited. However, 

it is necessary to assess the economic and environmental benefits of both options, with 

more in-depth research. 

 Otherwise, there is another wastewater type with compounds that can inhibit pests; 

for example, pulp and paper mill effluent, which is a chlorophenol source (Cheng et al. 

2015). Chlorophenols used as herbicides or fungicides on crops were banned, due to human 

carcinogenic risk (Owuor 2003; Badanthadka and Mehendale 2014). Therefore, pulp and 

paper mill effluent is not susceptible to use as a source for control pests. 
 Humans and animals as part of the environment can also be affected by the use of 

compounds that help control pests and plant diseases. Lin et al. (2020) mention that the use 

of chemical fungicides in fruits or vegetables could modify the composition of the intestinal 

microbiota. Therefore, a more complete study is required on the application of wastewater 

in pest control, either as a direct application or compounds recovery of interest, considering 

the present economic-environmental impact. 

 
 
CONCLUSIONS 
 

1. Wastewater is a potential and alternative source of compounds with bactericidal, 

fungicidal, and pesticidal effects that have demonstrated inhibitory activity. 

2. The phenolic compounds are mainly responsible for pest mortality using wastewater. 

 

3. Because wastewater is a variable chemical composition, its use can be dangerous for 

the environment. Therefore, the isolation of target compound is recommended. 
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