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Because of the diversity of vessel pores in different hardwood species, 
they are important for wood species identification. In this paper, a Micro 
CT was used to collect wood images. The experiment was based on six 
wood types, Pterocarpus macrocarpus, Pterocarpus erinaceus, Dalbergia 
latifolia, Dalbergia frutescens var. tomentosa, Pterocarpus indicus, and 
Pterocarpus soyauxii. One-thousand cross-sectional images of 2042 px × 
1640 px were collected for each species. One pixel represents 1.95 µm of 
the real physical dimension. The level set geometric active contour model 
was used to obtain the contour of the vessel pores. Combined with a 
variety of morphological processing methods, the binary images of the 
vessel pores were obtained. The features of the binary images were 
extracted for classification. Classifiers such as BP neural network and 
support vector machine were used, the number, roundness, area, 
perimeter, and other characteristic parameters of the vessel pores were 
classified, and the accuracy rate was more than 98.9%. The distribution 
and arrangement of the vessel pores of six kinds of hardwood were 
obtained through the level set geometric active contour model and image 
morphology. Then BP neural network and support vector machine were 
used for realizing the classification of hardwood species. 
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INTRODUCTION 
 

Study of wood classification and recognition allows better understanding of its 

biological structural characteristics and physical properties for proper use (Wang et al. 

2013; Beeckman 2016). Traditionally, the identification and appraisal of wood 

microstructure are performed by experienced experts by identification of the wood internal 

structure (Kamal et al. 2017; Rajagopal et al. 2019). As machine vision and pattern 

recognition technology have developed, wood identification methods have changed from 

manual identification to intelligent means, such as machine learning. For example, both 

Souza et al. (2020) and Zamri et al. (2016) extracted texture features to classify wood with 

different classifiers, and good classification results were achieved. In addition, Hu et al. 

(2015) and Rajagopal et al. (2019) used a SIFT (scale invariant feature transform) 

algorithm to extract key points from wood cross-section images, and they used image 

deblurring and feature extraction methods to classify and recognize wood via a support 

vector machine. 

Though several scholars have performed wood recognition and classification 

according to wood texture, color, and other features, there are other methods to identify 

wood such as a structure of wood, such as vessel pores, ray, through segmentation, image 

processing, morphological analysis, and other methods. The vessel pores only exist in 
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hardwood, and it is the main structure that distinguishes coniferous wood from hardwood 

(Ruffinatto et al. 2015). Chen and Evans (2010) used SilviScan technology to complete 

near infrared spectrum radial scanning of birch and poplar combined with a series of image 

processing and statistical analysis technology to identify and measure the birch and poplar 

vessel pores. Mallik et al. (2011) collected images of seven types of wood and magnified 

them 1500 times by SEM (scanning electron microscopy). After segmentation, tracheids 

feature extraction, and classification by different classifiers, the results showed that KNN 

(K-nearest neighbor) and neural network were the best classification methods, and their 

accuracy rate was over 93%. The tracheids, pores, and wood rays of several Canadian 

coniferous and broadleaf woods were segmented with a watershed algorithm by Brunel et 

al. (2014), and the results showed that the watershed algorithm completed cell 

segmentation and recognition faster than manual segmentation. Images of 30 kinds of wood 

were magnified 10 times and processed with homomorphic filtering technology. Then, the 

images were binary processed with the Otsu optimal threshold, and the vessel pores 

features were extracted. After neural network classification, the accuracy rate reached 

89.3% (Ibrahim et al. 2018). Zhao and Wang (2019) extracted the spectral features with a 

mathematical morphology operation and K-L divergence at the edge and center region of 

the wood vessel pores. After recognition with three dimensionality reduction algorithms 

and three classifiers, the results showed that PCA (principal component analysis) and 

principal component analysis MDS (multidimensional scaling) combined with an MD 

(Mahalanobis distance) algorithm gave the best recognition answers. 

Most of the cited scholars extracted tracheids and vessel pores through 

segmentation. In this study, the level set geometric active contour method was used to 

obtain the contour of the vessel pores (Li et al. 2010; Xin et al. 2012). This method is 

extensively used in medical image segmentation field, and it has yet to be applied in the 

wood image segmentation field. In this study, this method was used to determine the 

contour of the wood vessel pores. First, the contour of the vessel pores was determined 

with the level set method. Then, binary images of the vessel pores were combined with 

image morphology processing, and the vessel pores characteristic parameters were 

extracted. Then, classification and recognition for six kinds of broad-leaved woods were 

performed with a BP neural network and the radial basis function (RBF) Kernel support 

vector machine (SVM). 

 

 

EXPERIMENTAL 
 
Materials 

The experimental materials were selected from the Specimens Museum of the 

Shandong University of Architecture (Jinan China). Six species of high-value 

Papilionaceae hardwood were selected, and the sizes of the prepared specimens were 2 mm 

× 2 mm × 15 mm. A Bruker kyScan1272 micro CT scanner was employed (Bruker 

Corporation, Antwerp, Belgium). The voltage and current of the ray source were set to 50 

kV and 200 uA, respectively. The projection data was acquired with an angle of 0.1°. One 

thousand images of 2042 px × 1640 px in size were reconstructed for each specimen. The 

image resolution of each kind of wood is 1.95 m, which means that a pixel represents 

1.95 m actual physical dimension. For each specimen, 100 images were randomly 

selected from the reconstructed mages, which were cut to 700 px × 700 px as the training 

samples. The specific experimental material information is shown in Table 1. 
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Table 1. Designation of the Experimental Materials and Characteristics of the 
Vessel pores 

 

Class Cross-section Class Cross-section 

A. 
Pterocarpus 
macrocarpus 
Myanmar 
 
Mainly single 
pores, a few 
multiple 
pores, and 
some pores 
had 
inclusions 

 

D. 
Dalbergia 
frutescens 
var. 
tomentosa 
Brazil 
 
Mainly 
single pores, 
few multiple 
pores, and 
some pores 
had 
inclusions 

 

B. 
Pterocarpus 
erinaceus 
Africa 
 
Mainly single 
pores, 
a few multiple 
(2 to 3) pores, 
and some 
pores had 
inclusions 

 

E. 
Pterocarpus 
indicus 
Indonesia 
 
Mainly 
single pores 
and a few 
multiple (2 
to 3) pores 

 

C. 
Dalbergia 
latifolia 
Indonesia 
 
Mainly single 
pores and 
few multiple 
pores 

 

F. 
Pterocarpus 
soyauxii 
Gabon 
 
Mainly 
single pores, 
and a few 
multiple (2 
to 3) pores 
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Methods 
Vessel pores feature extraction  

In this study, the contour of the vessel pores was determined by the level set active 

contour model (Li et al. 2010; Xin et al. 2012). According to the evolution curve, the 

contour of the vessel pores was calculated with ( , )=( ( , ), ( , ))C s t x s t y s t , where s is the 

parameter variable of the curve, t is the time variable, and the curve of the geometric active 

contour model (C) was expressed as (1), 
 

0
( )

C
g V K N

t


= +


       (1) 

 

where N is the inward unit normal vector of the contour line (C), K is the curvature of the 

contour (C), V0 is a constant coefficient, g is a function dependent on the image features. 

As the definition of gray image was I (x, y), the function (x, y) was expressed as (2), 
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where Gσ represents Gaussian kernal with standard deviation σ, * represents convolution, 

I (x, y) represents the image to be segmented, and ▽ is a spatial gradient operator. The 

active contour of the vessel pores in Fig. 1 was calculated with (2). 

The gray image of vessel pores contour obtained above was transformed into binary 

image by threshold segmentation. Then the morphological operation was carried out to 

extract the vessel pores feature parameters. The specific process is shown below. First, the 

threshold was calculated automatically via the Otsu method (Ferman et al. 2002; Zhang et 

al. 2016), and the vessel pores and the background of the image were carved up. Then, the 

images erosion operation was successively with 3 × 3 structural elements and 5 × 5 

structural elements in turn. Irrelevant information was removed when removing small 

targets. Finally, the 5 × 5 structural elements were used for the dilation operation twice, so 

that the vessel pores could be restored to the original size. 

Based on the binary images of the six kinds of hardwood vessel pores, the vessel 

pores of seven characteristics (the vessel pores number N, the total vessel pores area Ssum, 

the average vessel pores area Save, the total vessel pores perimeter Psum, the average vessel 

pores perimeter Pave, the total vessel pores roundness Csum, and the average vessel pores 

roundness Cave) were counted. In each image, the vessel pores numbers were expressed as 

x , x∈[1,N], where N is the total number of vessel pores in each image, which was 

calculated by counting the number of connected domains in the image. 

According to (3)-(5), each vessel pores area (Sx), the total vessel pores area (Ssum), 

and the average vessel pores area (Save) were calculated from the binary images. 
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where yi = yi-1 + ai2, y0 is the ordinate of the initial point in (3), ai0 and ai2 are the length of 

the ith ring of chain code in the direction of k=0 (horizontal) and k=2 (vertical), respectively.  

(2) 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Yang et al. (2021). “Hardwood ID from vessel pores,” BioResources 16(3), 5329-5340.  5333 

According to (6)-(8), the perimeter of each vessel pores could be calculated in a 

binary image and is expressed as Px, the total perimeter is expressed as Psum, and the 

average perimeter is expressed as Pave, 
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=  = + −
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where the boundary chain codes of the vessel pores are set to a1, a2, ..., an, the length of 

line corresponding to ai is △li, and the perimeter of the region’s boundary was calculated 

using (6). In (6), ne is the number of even codes in the chain code sequence, and n is the 

total number of codes in the chain code sequence. 

According to (9)-(11), the roundness of each vessel pores is calculated in binary 

image and expressed as Cx , and the total roundness and the average roundness are 

expressed as Csum and Cave , respectively, 
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where Sx is the area of the -thx vessel pores, Px is the perimeter of the x-th vessel pores, If 

Cx is close to 1, then the object is close to the circle. If Cx =1, the detection object is a 

standard circle. 

 
Vessel pores classification  

BP neural network and support vector machine are very classic classification 

algorithms, and support vector machine is more used for small sample classification (Ruan 

et al. 2020; Mu et al. 2016). In this paper, basing on the seven characteristic parameters of 

the vessel, the training set data was 70%, and the test set data was 30%. The purpose was 

to realize the classification of hardwood. Parameter calculation and hardwood 

classification were completed by MATLAB 2016b. (Math Works, v.2016b version, Natick, 

MA, USA). 

The network was trained with 7 input neurons, 6 output neurons, and 13 hidden 

layer neurons (Ding et al. 2014; Wang et al. 2019). The input layer and the hidden layer 

followed the Tansig tangent function. The hidden layer was the Purelin linear function of 

the output layer. The training number was 1000, the learning efficiency was 0.01, the error 

of training target was 0.00001, and the momentum factor was 0.01. The experimental 

results are shown in Table 3. 

In this study, the LIBSVM software package (Taiwan, China) was used for 

classification and recognition, which is a classic classification toolbox for support vector 

machine (Chih and Lin 2011). There are four kinds of kernel functions, which include 

linear functions, polynomial functions, radial basis functions (RBF), and sigmoid kernel 

functions. In this study, the RBF kernel function was chosen to map a sample to a higher 

dimensional space so that the linear inseparable data became linearly separable. The 5-fold 
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cross validation was employed to search for the best parameters of c (penalty factor) and g 

(variance in RBF kernel function). The experimental results are shown in Table 3. 

 

 

RESULTS AND DISCUSSION 
 

The images of the six kinds of hardwood cross-sections shown in Table 1 were 

collected by the Skyscan1272 micro CT scanner (Bruker Corporation, Antwerp, Belgium). 

The level set geometric contour model was used to process the images. The processed 

image differed substantially from the surrounding tissue structure, as shown in Fig. 1. 

 

 
Fig. 1. The image processed by the level set geometric active contour model; A is Pterocarpus 
macrocarpus; B is Pterocarpus erinaceus; C is Dalbergia latifolia; D is Dalbergia frutescens; E is 
Pterocarpus indicus; F is Pterocarpus soyauxii 

 

In Fig. 1A (Pterocarpus macrocarpus), the vessel pores were clear and contained 

some sediment. Due to the similarity of the gray value among the axial parenchyma cells, 

ray cells, and the vessel pores, the axial parenchyma cells and fine linear ray cells were still 

visible. In Fig. 1B (Pterocarpus erinaceus), the vessel pores were visible and contained 

more sediment. Because the gray values of the ray cells were similar to the vessel pores, 

the wood rays and several crystal cells within them were observed. In Fig. 1C (Dalbergia 

latifolia), the contours of the vessel pores were clear. Because the gray value of the contents 

was similar to the surrounding tissues, it was difficult to segment the vessel pores 

completely, and ray cells can be seen in the image. In Fig. 1D (Dalbergia frutescens), most 

of the vessel pores were clearly displayed and contained sediment. However, few vessel 

pores had many inclusions, so the vessel pores contour segmentation were unobvious, and 
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part of the rays, axial parenchyma, and crystal cells were still visible. In Fig. 1E 

(Pterocarpus indicus), the vessel pores contours were clear, but there were a lot of 

sediments in the vessel pores. In addition, the axial parenchyma had a banded distribution, 

which is a characteristic structure of this variety. In Fig. 1F (Pterocarpus soyauxii), there 

were no inclusion in the vessel pores, so the contour was segmented well, and part of the 

axial parenchyma cells and ray cells were clear in the image. 

Due to the vessel pores contour segmentation results in Fig. 1, erosion, small target 

removal, and dilation were used in sequence, according to the morphological processing 

method. Unrelated structures such as axial parenchyma cells, ray cells, and crystal cell 

structures were removed, and the binary image of the vessel pores were obtained, as shown 

in Fig. 2. 

 

 
Fig. 2. The binary images after morphological processing: A is Pterocarpus macrocarpus; B is 
Pterocarpus erinaceus; C is Dalbergia latifolia; D is Dalbergia frutescens; E is Pterocarpus 
indicus; F is Pterocarpus soyauxii 

 

Figure 2 shows the operation objects. Using (5)-(11), the following vessel pores 

parameters were calculated: the number N, average area Save, total area Ssum, average 

perimeter Pave, total perimeter Psum, average roundness Cave, and total roundness Csum. 

Seven feature parameters were used for classification and recognition by the BP neural 

network and RBF kernel function support vector machine. The recognition results are 

shown in Table 2. 
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Table 2. Statistical Classification Accuracy after Two Kinds of Feature Extraction 

Classification Accuracy Running Time 

BP neural network 99.4% 7 s 

RBF-SVM 98.9% 179 s 

Note: The best results are bolded 
 

Table 2 shows that the BP neural network for classification is better than SVM, and 

the accuracy rate is up to 99.4%, and the running time is only 7s. It also shows that it is 

feasible to classify and recognize six kinds of hardwood wood species in the Papilionaceae 

by using the vessel pores’ features as input parameters. 

In order to better distinguish the wood species with little difference in vessel pores 

structure, the confusion matrix method was used to analyze the characteristics of six kinds 

of hardwood species (Class A is Pterocarpus macrocarpus; Class B is Pterocarpus 

erinaceus; Class C is Dalbergia latifolia; Class D is Dalbergia frutescens; Class E is 

Pterocarpus indicus; Class F is Pterocarpus soyauxii). 30 samples of each hardwood 

species were collected for testing, 180 samples in all. The analysis results are shown in 

Figs. 3 and 4. 

 
Fig. 3. The confusion matrix after BP neural network classification (Class A is Pterocarpus 
macrocarpus; Class B is Pterocarpus erinaceus; Class C is Dalbergia latifolia; Class D is 
Dalbergia frutescens; Class E is Pterocarpus indicus; Class F is Pterocarpus soyauxii. Figures 4 
and 6 expression method are the same. 

 
Fig. 4. The confusion matrix after support vector machine classification 
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Figure 3 shows the confusion matrix of six kinds of hardwood after classification 

through BP neural network. There were six categories, and each category had 30 samples. 

179 samples were correctly classified, and the accuracy rate was as high as 99.4%. Only 

one sample in Pterocarpus macrocarpus was mistakenly identified as Pterocarpus 

erinaceus. Figure 4 shows the confusion matrix of six kinds of hardwood after support 

vector machine classification. Thirty samples were chosen from each category and 178 

samples were correctly classified, and the accuracy rate was as high as 98.9%. One sample 

in Pterocarpus macrocarpus and one sample in Dalbergia frutescens were mistakenly 

considered as Pterocarpus erinaceus, respectively. This error was due to the similarity of 

the number, structure, and size of vessel pores between Pterocarpus macrocarpus and 

Pterocarpus erinaceus. 

In order to analyze the results of confusion matrix comprehensively, to verify the 

performance of each class from the confusion matrix, TP (True Positive), TN (True 

Negative), FP (False Positive), and FN (False Negative) were used. True Positive means 

that the original sample was a positive sample, and the predicted sample was also a positive 

sample. True Negative indicates that the real sample was negative, and the prediction was 

also a negative sample. False Positive indicates that the real sample was negative, and the 

prediction was a positive sample. False Negative means that the real sample was positive, 

and the prediction was a negative sample. Four indexes (Precision, Recall, F1-Score, and 

Accuracy) were evaluated. The formulas are shown in (12)-(15). Six kinds of hardwood 

were classified by the BP neural network and the RBF Kernel SVM classifier, and the 

evaluation results are shown in Figs. 5 and 6: 
 

 Pr
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TP FP

=
+  
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Fig. 5. The model evaluation after the BP neural network classifier 
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Fig. 6. The model evaluation after the support vector machine classifier 

 

Figure 5 shows the model evaluation chart after BP neural network classification. 

The recall rate of Pterocarpus macrocarpus was 98.3%, the performance of F1-score was 

98.3%, the accuracy rate was 99.4%, the recall rate of Pterocarpus erinaceus was 98.3%, 

the performance of F1-score was 98.3%, and the accuracy rate was 99.4%. In addition to 

these evaluation indexes, the other evaluation indexes of the six tree species were 100%. 

Figure 6 shows the model evaluation chart after the support vector machine 

classification. The recall rate of Pterocarpus macrocarpus was 96.7%, the performance of 

F1-score was 98.3%, and the accuracy rate was 99.4%. The lowest precision of Pterocarpus 

erinaceus was 93.8%, the performance of F1-score was 96.8%, and the accuracy rate was 

98.9%.  The recall rate of Dalbergia frutescens was 96.7%, the performance of F1-score 

was 98.3%, and the accuracy rate was 99.4%. In addition to these evaluation indexes, the 

other evaluation indexes of the six tree species were 100%. 

The above analysis shows that, in the classification and identification of the 

vessels, the BP neural network was better than the support vector machine classifier. 

Although the characteristic parameters of hardwood vessel pores had some influence on 

the classification results, the four indexes were all more than 93.8%. Combined with the 

evaluation results of confusion matrix, it is feasible to use vessel pores as the basis of 

hardwood classification. 

 
 
CONCLUSIONS 
   

1. Using micro CT to obtain high-resolution micro images of hardwood, thousands of 

images can be obtained in a single scanning experiment, and the resolution is as fine as 

1.95 µm. It is a very effective and accurate micro image acquisition method. Combined 

with the level set geometric active contour model and morphological processing 

method, the contour extraction of hardwood vessel was realized. Then the vessel 

parameters were obtained to provide data support for BP neural network and support 

vector machine to classify wood species. 

2. The classification results of BP neural network and support vector machine were 

evaluated by using confusion matrix and four evaluation indexes (Precision, Recall, 

F1-Score, and Accuracy), and the classification accuracy rate was above 98.9%. The 

results showed that the vessel pores were used as the characteristic parameter to 
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complete the classification and identification of six kinds of hardwood. This method is 

feasible and innovative. 

3. In this paper, six kinds of hardwood were used as experimental objects, and good 

results were obtained by extracting vessel features. In the future, we will gradually 

increase the number of samples, explore suitable vessel segmentation methods in more 

hardwoods, and gradually improve the classification and recognition of a variety of 

similar species. 
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