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Knot detection is a challenging problem for the wood industry. Traditional 
methodologies depend heavily on the features selected manually and 
therefore were not always accurate due to the variety of knot appearances. 
This paper proposes an automated framework for addressing the 
aforementioned problem by using the state-of-the-art YOLO-v5 (the fifth 
version of You Only Look Once) detector. The features of surface knots 
were learned and extracted adaptively, and then the knot defects were 
identified accurately even though the knots vary in terms of color and 
texture. The proposed method was compared with YOLO-v3 SPP and 
Faster R-CNN on two datasets. Experimental results demonstrated that 
YOLO-v5 model achieved the best performance for detecting surface knot 
defects. F-Score on Dataset 1 was 91.7% and that of Dataset 2 was up to 
97.7%. Moreover, YOLO-v5 has clear advantages in terms of training 
speed and the size of the weight file. These advantages made YOLO-v5 
more suitable for the detection of surface knots on sawn timbers and 
potential for timber grading. 
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INTRODUCTION 
 

Knots are remnants of branches found in sawn timber and have widely been 

considered as defects for timber grading (Qu et al. 2019). First, knots cause deviations in 

the fiber direction and significantly reduce the mechanical properties, such as Young’s 

modulus, shear modulus, etc. (Sarnaghi and Kuilen 2019). Second, the appearance of knots 

may bend the wood grain, thus, aesthetically making the wooden product unattractive to 

view. Finally, knots are susceptible to splitting during manufacturing, causing an uneven 

break in finishing (Wells et al. 2018). Therefore, knot determination and classification are 

critically important for either sorting the timber and optimizing it for further processing, or 

predicting the mechanical properties (Longuetaud et al. 2012; Hittawe et al. 2015). 

Computer vision techniques are a promising tool for knot detection. There are 

numerous studies regarding the surface inspection of sawn timbers. Kamal et al. (2017) 

and Urbonas et al. (2019) reviewed the related work from the technological standpoint. 

The existing methods varied greatly from the different input images, but two common steps 

can be highlighted. The first was feature extraction. Knots have a slightly darker color and 

torn grain.  
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Various techniques, such as gray level cooccurrence matrix (GLCM) (Hu et al. 

2011; Hashim et al. 2016), Gabor filter (Pölzleitner 2003; Hittawe et al. 2015), local binary 

pattern (LBP) analysis (Silvén et al. 2003; Zhang et al. 2008), etc., have been employed to 

extract the color or texture features. Next, classifiers have been utilized to analyze the 

extracted characteristics and distinguish the knots from the normal wood tissue. Most 

research has employed artificial neural network (ANN) techniques for addressing this 

problem (Xie and Wang 2015; Hashim et al. 2016; Kamal et al. 2017; Yu et al. 2019). 

Another common classifier used was support vector machine (SVM). As an example, a 

tree-structure SVM was proposed to classify four types of wood knots. The authors claimed 

that the average accuracy was 96.5% and the false alarm rate was only 2.25% (Gu et al. 

2009). Many other methods have also been investigated, such as clustering (Silvén et al. 

2003), compressed sensing (Zhang et al. 2016), and convex optimization (Chang et al. 

2018). 

The main drawback of these methods is that the performance suffers from 

variations in the material. The color and texture vary significantly while the tree species, 

the surface condition, or the light environment change (He et al. 2019). Finding a method 

to efficiently extract color or texture features of timber surface images with a large variety 

is formidable. Therefore, automated solutions of detecting surface knots on sawn timbers 

remain as a critical need for the wood industry and further exploration is still needed. 

Convolutional neural network (CNN) is the leading technique for object detection, 

and the most recent papers regarding surface defect inspection rely on it (Dhillon and 

Verma 2020). As a universal function approximator, it has a strong ability to extract almost 

any high-level features from the input images. Particularly, it was reported to achieve good 

performance while applied for defect identification in the wood industry (Rudakov et al. 

2019; He et al. 2019; Urbonas et al. 2019; Ding et al. 2020; He et al. 2020; Tu et al. 2021). 

Rudakov et al. (2019), to the best of the authors’ knowledge, was a pioneer in using CNN-

based approaches to detect the timber surface defects. AlexNet, GoogLeNet, VGG-16, and 

ResNet-50 were compared in terms of the classification accuracy of mechanical damages 

of sawn timber. The experimental results showed that VGG-16 was the best approach and 

achieved over 92% accuracy (Rudakov et al. 2019). In Hu’s work, a pre-trained ResNet18 

network, combined with transfer learning strategies, was utilized for the problems of wood 

defect, wood texture, and wood species classification (Hu et al. 2019). Some recently 

proposed CNN-based models, such as Mix-FCN (He et al. 2019; He et al. 2020), Faster R-

CNN (Urbonas et al. 2019), Mask R-CNN (Hu et al. 2020; Shi et al. 2020), etc., have also 

found very successful application in this field.  

This paper proposes an idea for applying the current state-of-the-art YOLO (You 

Only Look Once) in the automated detection of surface knots on sawn timbers. YOLO, 

originally designed by Joseph Redmon (Redmon et al. 2016), is an attractive CNN-based 

algorithm for object detection, classification, and localization in images and videos (Desai 

et al. 2020). During the past years, YOLO kept improving with some new algorithms to 

optimize the computing speed and achieve better performance. The fifth version of YOLO 

(YOLO-v5) was introduced by Glenn Jocher in June 2020 (Jocher et al. 2021). This model 

significantly reduced the model size (YOLO-v4 on Darknet had 244MB size whereas 

YOLO-v5 smallest model is 27MB). YOLO-v5 also claimed a higher accuracy and more 

frames per second than all previous versions.  
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EXPERIMENTAL 
 

Materials 
Dataset 1 

Some sawn timbers with sanded surfaces were purchased from a local sawmill. 

Parts of them were Metasequoia glyptostroboides, and the other parts were Pinus 

koraiensis. The number and the ratio were random. 305 images were collected from those 

sawn timbers and utilized as Dataset 1.  The raw images were first processed with Adobe 

Photoshop software (San Jose, CA) to ensure that each image contained at least one knot. 

The image size ranged from 70 kB to 3354 kB. Figure 1 demonstrates some typical images 

in the dataset. All images were labeled by experienced workers, using the open-source 

software labelImg (https://github.com/tzutalin/labelImg). The red rectangular box in Fig. 1 

illustrated the annotation results. Annotations were saved as XML files in PASCAL VOC 

format and then were transferred to YOLO format with a Python program. 

 

 
Fig. 1. Some typical images in Dataset 1 
 

Dataset 2 

Dataset 2 was downloaded from the website of the University of Oulu, Finland 

(Silvén et al. 2003). It contains 839 images of spruce wood. They were RBG color images 

with 8 bits per channel and the size was 488 by 512 pixels. Figure 2(a) shows one typical 

image of the dataset.  

Originally, each image was divided into rectangular regions. One rectangle 

corresponds to about 2.5 * 2.5 cm2 area of wood surface which has been manually labeled, 

as illustrated in Fig. 2(b). In total, there were 5,952 defect rectangles in the dataset. Table 

1 lists the different types and quantities of defects.  

Figure 2(b) shows that one whole knot was often split into two or more batches 

because the rectangles were arranged in a fixed position and the size was fixed. The 

geometric feature of the knot was then destroyed in each batch, which was not beneficial 

for the knot detection. Another drawback of this annotation method was that the feature of 

a small knot was easily submerged by the large area of normal wood tissues, like the small 

knot showed in Fig. 2(b). Therefore, all images were labeled manually in the same way as 

Dataset 1. Figure 2(c) shows the annotation results in this work. The dry knot and the small 

knot were labeled with one rectangle, respectively. The size and position of the rectangle 

were no longer fixed and completely depended on the knots. 
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Fig. 2. A typical image of Dataset 2 and its annotations: (a) The original image; (b) The original 
annotations; (c) The annotations in this work 

 

Table 1. Summary of Dataset 2 

Class of Defects Numbers of Defect 
Rectangles 

Class of Defects Numbers of Defect 
Rectangles 

Dry_Knot 474 Resin 60 

Resin_Pocket 139 Sound_Knot 553 

Encased_Knot 142 Edge_Knot 155 

Moustache_Knot 30 Leaf_Knot 126 

Core_Stripe 340 Horn_Knot 145 

Small_Knot 369 Split 750 

Wane 2126 Knot_Hole 53 

Unknown 137 Bark_Pocket 55 

Mold 261 Decayed_Knot 37 

 

This work focused on the detection method of knot defects, and all knot types were 

grouped into one category. Otherwise, the detection performance would not be adequate if 

the samples were split by knot classes. It should be worth noting that a part of the samples 

in Dataset 2 had a sanded surface, whereas the surface of the other part of the samples was 

unsurfaced, as shown in Fig. 3.  
 

 
Fig. 3. Illustration of the surface condition of some samples in Dataset 2 

 

To the authors’ knowledge, it is more in line with industrial practice. The common 

need for knot identification is in unsurfaced or "rough" boards, even though most of the 

existing research were conducted on the sanded samples.  
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Architecture of YOLO-v5 Model 
Architecturally, the YOLO-v5 model is similar to YOLO-v4. As shown in Fig. 4, 

it consists of three main parts: Backbone, Neck, and Head (Zhu et al. 2020; Xu et al. 2021). 

The first part, Backbone, extracts crucial features from the given input image. In 

YOLO-v5, CSPNet s (Cross Stage Partial Networks) are incorporated into Darknet, 

creating CSPDarknet as its backbone. Compared to the Darknet53 used by YOLO-v3, 

CSPDarknet has achieved considerable improvement in processing speed with equivalent 

or even superior detection accuracy (Wang et al. 2020). 

The second part, Neck, is primarily employed to generate feature pyramids, which 

benefit YOLO-v5 in generalizing the object scaling for identifying the same object with 

different sizes and scales. In YOLO-v5, Neck employs Path Aggregation Network (PANet) 

as a parametric polymerization mechanism for different bone and detector levels. The 

feature grid is connected to all the feature layers by the adaptive feature pools provided by 

PANet. Consequently, the useful information obtained from each feature layer can be 

transmitted directly to the proposed subnetwork (Liu et al. 2018; Cheng and Zhang 2020). 

The final detection is performed in the part of Head, which is the same as the 

previous YOLO-v3 and v4 versions. Head generates anchor boxes for feature maps and 

outputs final output vectors with class probabilities and bounding boxes of detected knots. 

 

 
 

Fig. 4. The architecture of YOLO-v5 model 
 

Experimental Configuration 

The experiments were conducted in the environment represented in Table 2. The 

implementation of YOLO-v5 was downloaded from the website, https://github.com/ 

Focus

Conv

Conv

Conv

Conv Conv

Conv

Conv

Conv
CSP

(1*Bottleneck)

CSP

(3*Bottleneck)

CSP

(3*Bottleneck)

CSP

(1*Bottleneck)

CSP

(1*Bottleneck)

CSP

(1*Bottleneck)

CSP

(1*Bottleneck)

CSP

(1*Bottleneck)
Concat

Concat

Concat

Concat

SPP

Upsample

Upsample

Conv2d

Conv2d

Conv2d

Backbone:CSPDarknet Neck:PANet Head:Yolo Layer



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Fang et al. (2021). “Surface knots on sawn timber,” BioResources 16(3), 5390-5406.  5395 

ultralytics/yolov5. The release of YOLO-v5 includes four models of different sizes: 

YOLO-v5s (smallest), YOLO-v5m, YOLO-v5l, YOLO-v5x (largest). YOLO-v5m model 

was selected in this work due to the compromise of its modest size and outstanding 

performance. The network was pre-trained with Coco dataset and it was fine-tuned using 

Dataset 1 or Dataset 2 mentioned above. 

 

Table 2. Configuration of Experimental Environment 

Name Parameter 

CPU Intel I5-7500 3.4GHz Quad-core 

System Windows 10 

Operating memory 16 GB 

Graphics card NVIDIA GeForce RTX 2060 6GB 

Environment configuration 
Python 3.7.6 + Pytorch 1.5.1 + VS 2017 + CUDA 10.2 + 

cuDNN 7.6.5 

 
Evaluation Metrics 

The output of the detectors was compared with the manual annotations to evaluate 

the performance quantitatively. Precision, Recall Rate, and overall accuracy F-Score were 

calculated according to Eqs. 1 through 3 (Goutte and Gaussier 2005), 
  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  ×  100  (1) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑎𝑡𝑒 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  ×  100      (2) 

  

𝐹 − 𝑆𝑐𝑜𝑟𝑒 (%) = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  ×  100    (3) 

where TP (true positive) referred to the number of the correctly detected knots, FP (false 

positive) indicated the number of the extra knots that did not exist on the timber surface 

(commission error), and FN (false negative) denoted the number of knots that were not 

detected (omission error). Obviously, Precision indicated the ratio of correctly detected 

knots out of all detected knots. Recall Rate  was an indication of the detector’s sensitivity. 

F-Score  provided a way to combine both Precision and Recall Rate  into a single measure 

that captured both properties. A higher F-Score indicated a more accurate model. 

 

 
RESULTS AND DISCUSSION 
 

Experiments on Dataset 1 
Data augmentation 

The data loader of YOLO-v5 makes three kinds of augmentations automatically: 

scaling, color space adjustments, and mosaic augmentation. Mosaic is a novel and effective 

data augmentation technique, which combines 4 training images into one in certain ratios, 

as demonstrated in Fig. 5. It is beneficial to optimize the performance of the detector and 

avoid overfitting by enriching the training dataset.  

 

Training 

The dataset was randomly split as follows: 80% for training, 10% for validation, 

and 10% for testing. The total numbers of knots contained in the three subsets were 305, 
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37, and 36, respectively. GIOU_Loss was used as the loss of the bounding box (Jiang et al. 

2021) and the threshold for non-maximum suppression (NMS) of the bounding box was 

0.45. Table 3 lists the main training parameters.  

 

 
 

Fig. 5. Illustration of the mosaic data augmentation 
 

Table 3. Main Training Parameter 

Name Parameter Name Parameter 

Batch size 8 Learning epochs 1000 

Learning rate 0.001 NMS threshold 0.45 

Loss function GIOU_Loss Optimizer Adam 

 

In the training process, each iteration can be divided into two steps. First, the data 

in the training set was applied to the model, and the model automatically adjusted the 

weight according to the loss value. Then, the data in the validation set was applied to the 

model. Consequently, the loss value was calculated using the weight just updated. The loss 

value obtained using the data in the validation set was used as an important index to 

evaluate the performance of the model. 

 

 
Fig. 6. The loss for the YOLO-v5 in training 

The training finished after 1000 iterations, and a weight file with a size of 43.3 MB 

was obtained. The training work took 7.23 h. The loss for validation dataset during training 

is shown in Fig. 6. 
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After the first 20 iterations, the loss dropped rapidly from 0.144 to 0.052. Then, a 

steady decline can be observed from the curve of the loss even though an oscillation 

appeared. After 800 iterations, the loss tended to be stable and gradually approached 0.009. 

The loss curve showed that YOLO-v5 has a strong learning ability and can converge 

quickly. 

 

Detection performance 

The trained YOLO-v5 model was utilized to detect the images of the testing set. 

The object confidence threshold was 0.25. Figure 7 shows the results of six typical samples. 

Rectangles were employed to mark the knots detected. The confidence coefficients were 

also represented on the top of the rectangles.  

 

 
Fig. 7. The detection results of some typical samples: (a) dark knot; (b) decayed knot; (c) sound 
knot; (d) pin knot; (e) edge knot; (f) irregular knot 

 

The trained YOLO-v5 accurately detected the knot defects. The knots in Fig. 5(a) 

and (b) featured a different grain pattern and a distinctly different color. Figure 5(c) shows 

a sound knot whose color was very close to the surrounding tissues. The image shown in 

Fig. 5(d) contained some pin knots, which often have an actual size that is less than one-

fourth of an inch in diameter. Note that some researchers argued that YOLO-v5, like other 

existing methods, is still deficient in detecting small targets, especially those near large 

targets (Wang et al. 2021). The detecting results in this work showed that YOLO-v5 is 

enough for the application of pin knot detection. An edge knot is shown in Fig. 5(e). The 

whole knot was split into two different pieces. As a result, the geometric shape and the 

grain changed significantly. The knot in Fig. 5(f) has an irregular shape. Generally, it was 

challenging for the traditional methods to identify all these types of knots. However, the 

detection results demonstrated that YOLO-v5 model can detect them with high confidence 

coefficients (most of the confidence coefficients are bigger than 0.90).  
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Table 4 lists the detailed results on the training set, the validating set, and the testing 

set. YOLO-v5 achieved the best performance on the training set. All 305 knots were 

identified accurately, and only one extra knot that did not exist was marked. Recall rate 

was 100% and Precision was 99.7%. The F-Score was 99.8%, which was very close to 

100%. This is a high performance in the field of target detection. On the validating set, 

YOLO-v5 could find 36 out of 37 knots and made two commission errors. Precision, Recall 

Rate, and F-Score were 94.7%, 97.3%, and 96.0%, respectively. The detection performance 

was still very high on the testing set, even though it was slightly lower than that of the 

training set and the validating set. Totally, 33 out of 36 knots were identified and F-score 

was 91.7%. All the results demonstrated that YOLO-v5 can effectively learn enough 

information from the training set, and then correctly identify the knot defects from the 

background. 

 

Table 4. Detailed Results on the Training Set, Validating Set, and Testing Set 

Dataset TP FP FN    
Training set 305 1 0 99.7% 100% 99.8% 

Validating set 36 2 1 94.7% 97.3% 96.0% 

Testing set 33 3 3 91.7% 91.7% 91.7% 

 

Comparison YOLO-v5 with other methods 

To further evaluate the performance, the YOLO-v5 model was compared with 

YOLO-v3 SPP (Liu et al. 2020 ) and Faster R-CNN (Ren et al. 2017). The implementation 

of these two models was also downloaded from the website, https://github.com/. The 

backbone of Faster R-CNN was Restnet50. Due to the limitation of GPU, the batch size of 

training for these two models was set as 4. The training iterations was 1000. Table 5 lists 

the training time and the size of the weight file of these two models.  

 

Table 5. Training Time and the Size of the Weight File of YOLO-v3 SPP Model 
and Faster R-CNN 

Model YOLO-v3 SPP Faster RCNN 

Time for training 8.515 h 11.25h 

Size of the weight file 244.8 MB 110.718 MB 

 

The training time of these two models was longer than that of the YOLO-v5 model. 

Especially, the training time of Faster R-CNN was almost 155% of that of YOLO-v5 

model. The weight file size of these two models was also significantly larger than that of 

YOLO-v5 model. The weight file size of YOLO-v3 SPP was almost 6 times that of the 

YOLO-v5 model, and the Faster R-CNN was almost 3 times that of the YOLO-v5 model. 

Figure 8 shows the output of the image from Fig. 7(d) using these two detectors. 

The performance of these two models was worse than that of the YOLO-v5 model. Many 

small knots were omitted to be detected. Moreover, some of the confidence coefficients 

obtained by YOLO-v3 SPP were quite low. Table 6 listed the quantitative results of these 

two models. By comparing values in Tables 4 and 6, it can be easily observed that YOLO-

v5 model had the best detection results regardless of the Precision, Recall Rate, or F-Score. 

YOLO-v3 SPP achieved almost the same results, and Faster R-CNN was the worst one.  

https://github.com/


 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Fang et al. (2021). “Surface knots on sawn timber,” BioResources 16(3), 5390-5406.  5399 

 
Fig. 8. The detection result of the image showed in Figure 5(d) obtained from: (a) YOLO-v3 SPP; 
(b) Faster R-CNN 
 

Table 6. Quantitative Results of YOLO-v3 SPP and Faster R-CNN 

Model Data Set  Precision  Recall Rate  F-Score 

Yolo v3-SPP Training set 99.0% 99.3% 99.2% 

Validating set 92.3% 94.7% 93.5% 

Testing set 91.7% 89.2% 90.4% 

Faster R-CNN Training set 93.4% 99.3% 96.3% 

Validating set 95.5% 89.4% 92.3% 

Testing set 90.9% 90.9% 90.9% 

 

While checking all the output images of Faster R-CNN, it was found that Faster R-

CNN could accurately detect most of the knot defects. However, it sometimes marked the 

area of torn grain as a knot. One typical example was shown in Fig. 9(a). Another reason 

of the decrease in Precision was that the detector labeled an actual knot two or more times, 

as shown in Fig. 9(b) and 9(c). For comparison, Fig. 9(d)-(f) showed the detection results 

of the same sample using YOLO-v5. Obviously, YOLO-v5 avoids these problems. 
 

 
Fig. 9. The comparison of detection results of two methods using some typical samples. (a)-(c) 
The output of Faster R-CNN. (d)-(f) The output of YOLO-v5  
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Experimental Results on Dataset 2 
The same tests were conducted on Dataset 2. At the first stage, 80% of the images 

were used for training. Half of the remaining images were employed to validate the models 

and the other half part were utilized to evaluate the knot detection. Figures 10 to 12 depicted 

the results of three typical images.  

According to the original annotation, there were two small knots and two dry knots 

on the image of the sample st1184, which is shown in Fig. 10(a). Figure 10(b) illustrates 

the detection results of the YOLO-v5 model. Undoubtedly, the YOLO-v5 model identified 

all the knot defects correctly. Figure 10(c-d) shows that the four knots could also be 

recognized by YOLO-v3 SPP and Faster R-CNN. However, the confidence coefficients 

obtained by YOLO-v3 SPP were quite low, whereas Faster R-CNN labeled one actual knot 

two or three times. These two problems can also be found from the previous experimental 

results on Dataset 1. 

 

Fig. 10.  Detection results of the sample st1184: (a) Original annotation; (b) Result of YOLO-v5; 
(c) Result of YOLO-v3 SPP; (d) Result of Faster RCNN 

 

Similar results are shown in Fig. 11. While inspecting the image of sample st1188, 

the YOLO-v5 model could identify the dry knot with a confidence coefficient of 0.96, 

whereas the coefficient obtained by YOLO-v3 SPP was only 0.68. For the same input 

image, Faster R-CNN made a commission error besides marking the dry knots repeatedly. 

The image of the sample st1407 depicted in Fig. 12(a) was quite complicated. It 

included an encased knot, three small knots, and an edge knot. Particularly, the encased 

knot had an irregular shape and the edge knot was incomplete and very small. All the 

detectors omitted the encased knot except the YOLO-v5 model. Similar to previous results, 

YOLO-v3 SPP detected the small knots with low confidence coefficients and overlapping 

rectangles could be found in the result of Faster R-CNN. 

At the next stage, the impact of the size of the training set on the detection accuracy 

was investigated. The detectors were trained with train sets included 80%, 70%, 60%, and 

50% images of Dataset 2, respectively. Similarly, the remaining images were divided into 

two halves. One half was used as the validating set, and the other half was used for testing.  
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Fig. 11.  Detection results of the sample st1188: (a) Original annotation; (b) Result of YOLO-v5 
model; (c) Result of YOLO-v3 SPP; (d) Result of Faster R-CNN 
 

 
Fig. 12.  Detection results of sample st1407: (a) Original annotation; (b) Result of YOLO-v5; (c) 
Result of YOLO-v3 SPP; (d) Result of Faster R-CNN 

 

Figure 13 demonstrated the detection performance of the three types of detectors. 

Overall, YOLO-v5, among the three methods, always achieved the best identification 

performance and Faster R-CNN was the worst one. While 80% of images were used for 

training, F-Score values obtained from the three detectors were 97.7%, 93.4%, and 77.2%, 

respectively. The same tendency could also be observed when the detectors were trained 

with 60% of all the images. The three F-Score were 93.6%, 91.9, and 72.3%.  
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Fig. 13. The detection performance with different size of training sets: (a) 80% images for 
training; (b) 70% images for training; (c) 60% images for training; (d) 50% images for training 

 

The accuracy decreased slowly when the number of training data diminished. The  

F-Score of YOLO-v5 on the training set included 70% images was 91.0%. That was 

significantly lower than F-Score, while 80% of images were used for training. The F-Score 

values of YOLO-v3 on the two different training sets were 93.4% and 91.4%. Generally, 

the more data that was used for training, the more feature information the network could 

learn. Accordingly, a high detection accuracy could be achieved. Many CNN-based works 

reported a similar tendency (Hu et al. 2019; He et al. 2020).  

 

 

CONCLUSIONS 
 

1. A YOLO-based approach was proposed to accurately and automatedly detect surface 

knot defects of sawn timber using the YOLO-v5 model. Two datasets were employed 

to test the method, and the experimental results obtained from the experiments suggest 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Fang et al. (2021). “Surface knots on sawn timber,” BioResources 16(3), 5390-5406.  5403 

that it could be a very effective choice for wood industries. F-score on Dataset 1 was 

91.7% and that of Dataset 2 was up to 97.7%. 

2. In comparison with YOLO-v3 SPP and Faster R-CNN, the YOLO-v5 model achieved 

best performance for detecting surface knot defects. The comparison also showed that 

YOLO-v5 has clear advantages in terms of training speed and the size of the weight 

file. The training time of Faster R-CNN was almost 155% of that of YOLO-v5 model. 

The weight file size of YOLO-v3 SPP was almost 6 times that of the YOLO-v5 model. 

These advantages made YOLO-v5 more suitable for wood defect detection.  

3. Like many other CNN-based models, the accuracy improves as the size of the training 

set increases. The detection accuracy when 80% of all the images of Dataset 2 were 

utilized for training was significantly higher than that of the training set included only 

70% images.  

4. YOLO models detect knot defects and achieves the classification of knots. However, 

the latter point was not conducted in this work because the performance of YOLO 

models depends on the size of the training set while the number of some types of knot 

defects was quite low in the two datasets, especially encase knot, horn knot, etc. In the 

future, more samples would be collected to train the YOLO better and carry on more 

studies. 
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