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For the detection of wood surface defects, a convolutional neural network 
has a low detection efficiency and insufficient generalization ability, so it 
does not meet the requirements of online detection. Aiming to solve the 
above problems, the YOLOv3 baseline model, which has the advantage 
of multi-objective dynamic detection, was improved and applied to the 
online detection of wood surface defects. To solve the problem of the poor 
generalization ability of the network, GridMask was used to enhance the 
data and improve the robustness of the network. In order to solve the 
problem of the considerable amount of network parameter calculations 
and insufficient real-time performance, the residual block of the backbone 
network was changed to a Ghost block structure to achieve a lightweight 
model. Finally, the confidence loss function of the network was improved 
to reduce the influence of simple samples and negative samples on model 
convergence. The experimental results showed that, compared with the 
original network, the improved algorithm increased the mean average 
precision by 5.73% and the detection speed was increased to 28 frames 
per second (an increase of 11), which met the requirements for real-time 
industrial detection. 
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INTRODUCTION 
 

Forestry is an important part of modern industrial production. With the 

development and progress of technology, automatic and intelligent visualization 

technology can improve the utilization rate of forestry resources and save forestry 

resources (Lee et al. 2011). The defects in wood are an important standard in terms of 

evaluating the quality and commercial value of wood. To improve the utilization rate of 

wood, it is necessary to detect and classify wood in order to meet the needs of different 

industries for specific characteristics of wood. In traditional wood processing, the high-

quality defect detection and classification of wood often relies on the naked eye observation 

of experienced inspectors; therefore, the efficiency and accuracy of this method cannot be 

guaranteed. With the rapid development of sensor and computer technologies, related non-

destructive testing technology has been gradually applied to the field of wood testing, e.g., 

laser technology, infrared technology, mechanical technology, ultrasonic technology, X-

ray technology, machine vision technology, etc. (Zhang et al. 2016). 

In the field of wood recognition, traditional machine vision technology is used to 

extract texture features of objects and then classify them. For example, Gabor filters, HOG 

(histogram of oriented gradients), GLCM (gray level covariance matrix), LBP (local binary 
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patterns), and other methods are used to extract features, which then are combined with 

SVM (support vector machines), multilayer perceptron, k-nearest neighbors (KNN), linear 

discriminant analysis (LDA), backpropagation neural network, and other methods for 

classification and recognition (Jing et al. 2009; Martins et al. 2013; Yang et al. 2018; 

Urbonas et al. 2019). With the improvement of computer computing power, deep learning 

has made a breakthrough in image processing, especially in terms of deep convolution 

networks, which has entered a stage of rapid development. In the ImageNet image 

classification contest, starting from AlexNet, VGGNet, ResNet, and GoogLeNet, other 

algorithms have appeared one after another. 

In the field of target detection, the approaches that have been employed can be 

divided into two categories according to whether there is a pre-check box or not. Region 

generation is carried out by R-CNN, SPP-Net, Faster R-CNN, and R-FCN (He et al. 2017). 

Features are directly extracted from the network to predict the classification and location 

of objects, e.g., OverFeat, YOLO series, SSD, RetinaNet, etc. 

Above all, wood defects detection models based on target detection algorithms 

often have multiple problems, e.g., complex models, large amounts parameter calculations, 

and poor real-time performance. Moreover, due to the large amount of data, the model 

generalization ability cannot be guaranteed. Due to its excellent detection speed and 

accuracy, YOLO (you look only once) algorithms are widely used in fruit quality 

inspection (Tian et al. 2019), automatic driving (Choi et al. 2019), CT image recognition 

(Pang et al. 2019), and other fields. This paper aims at the deficiency of the above reported 

approaches and proposes a wood defect detection model based on the improved YOLOv3 

algorithm. Discarding of information on simple data sets to reduce overfitting the 

GridMask technology was used to enhance the generalization ability. In addition, the 

residual block of the backbone network was changed to the Ghostblock structure to reduce 

the amount of parameter calculations in the network. Finally, the confidence loss of the 

network was improved, and the proportion of negative samples and simple samples in the 

network was balanced to improve the recall rate of the network. 

 

 

EXPERIMENTAL 
 
Data Set and Annotation 

The data set used in the experiments consisted of the wood defect images collected 

with the camera, and the region of interest was extracted which included 450 pictures each 

of defect free, wormholes, knots, and cracks, totaling 1800 pictures. Part of the wood image 

set came from Datang lumber industry Company Ltd., Ganzhou, Jiangxi, China. The main 

types of trees were oak, pine, and birch. The pixels of the image were 200×200, and each 

defective picture included one or more defects. This is a relatively small data set, so data 

enhancement techniques were used to enhance the generalization ability of the model. 

Through the analysis of the data set, it was found that there were no large defects with an 

area larger than 96×96 in the data set, only small defects smaller than 32×32 and medium 

defects in the range of 32×32 to 96×96. Part of the defect images are shown in Fig. 1. 

The labeling of the data set used the LabelImg software (version1.8.4) to manually 

label the image to obtain the .xml file containing the picture information and the label box 

information (xmin, ymin, xmax, and ymax). Then, the format conversion script was used 

to obtain the .txt training file, which included the defect label and location file. 
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Fig. 1. Images of wood defects (the dataset including 450 pictures each of defect free, 
wormholes, knots, and cracks, totaling 1800 pictures) 

 

Methods  
The YOLO series algorithm is a single-stage object detection algorithm proposed 

by Redmon et al. in 2016, although the third generation (YOLOv3) is now widely used 

(Redmon et al. 2016; Redmon and Farhadi 2017; Redmon and Farhadi 2018). Different 

from the two-stage object detection network, the candidate area is first regressed through 

the anchor (Ren et al. 2017). Then, the candidate area is regressed and classified to output 

the final detection result. The YOLOv3 algorithm takes object detection as an end-to-end 

regression problem and directly conducts regression and classification of the anchor to 

obtain the final result, which greatly improves the detection speed. The key advantage of 

the YOLOv3 algorithm is that the Darknet53 framework proposed by Resnet deepens the 

convolutional network to 106 layers (He et al. 2016). The feature extraction capability of 

the network is strengthened, and the fast link of the residual network is introduced to solve 

the problem of gradient explosion or disappearance while the network is deepened. The 

other advantage is that the multi-scale feature pyramid structure is adopted for prediction, 

and three feature layers of different sizes are taken from the backbone network for 

prediction. Thus, multi-scale detection is realized. Figure 2 shows the network structure 

and multi-scale prediction of the YOLOv3 algorithm. 

Although the YOLOv3 algorithm has certain advantages in terms of precision and 

speed compared with other models, it still has some shortcomings if applied to the task of 

directly detecting wood defects.  First, the Darknet53 framework has a structure with a 

depth of 106 layers and multi-scale prediction, which greatly increases the complexity of 

the model and the amount of parameter calculations. This causes higher requirements in 

terms of the hardware equipment needed for wood defects detection under practical 

applications. Second, the YOLOv3 algorithm uses multiple scales to predict the object, but 

for small defects, e.g., cracks, there are still problems, e.g., insufficient feature learning 

and poor generalization ability. Third, in the YOLOv3 algorithm, the cross entropy method 
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is adopted for confidence loss, but negative samples and simple samples account for a 

majority of the calculation process; in such situations, the loss function cannot provide 

correct guidance for the model. Aiming at solving the above shortcomings, this paper has 

made the corresponding improvements and optimizations to the YOLOv3 algorithm. 

 

 
 

Fig. 2. The YOLOv3 network structure and multi-scale prediction. Each convolution part of the 
Darknet53 framework uses a unique structure (Conv2D), i.e., the CBR part. After each 
convolution, the BN (batch normalization) and ReLu activation function are also used. 

 

Improvements to the YOLOv3 Algorithm 
GridMask data enhancement 

A high-quality convolutional network has millions of parameters, which requires a 

large amount of data for training. Otherwise, serious overfitting problems will occur, and 

the YOLOv3 algorithm is not an exception to this rule (Krizhevsky et al. 2017). However, 

it is not realistic to obtain such large amounts of data in terms of practical use, so data 

augmentation technology was adopted. Existing data augmentation technologies can be 

divided into three categories: (1) Spatial transformation, e.g., cropping, random rotation, 

etc.; (2) Color distortion, e.g., adding noise, changing brightness, etc.; and (3) Information 

deletion, e.g., random erasing, Cutot, etc. (Zhong et al. 2017; Devries and Taylor 2018). 

Information deletion technology is widely used because of its effectiveness. By 

deleting part of the image information, the convolutional network can learn the originally 

insensitive or unimportant information, so the robustness of the model has increased. 

GridMask is a data augmentation method of information deletion by generating a mask 

image with the same resolution as the original image (Chen et al. 2020). The mask image 

is then multiplied by the original image to produce the new image (as shown in Fig. 3). In 

the present work, three types of defects were studied, i.e., wormholes, knots, and cracks. 

Therefore, the r was set to 0.4 to discard more information and reduce the risk of 

overfitting. The d was set to a random value, i.e., d ∈ random (178,416) (the YOLOv3 

image input size is 416 × 416) to increase the diversity of the mask images and achieve 

higher network robustness. At the same time, as the number of training rounds increased, 

the probability (P) that the image was enhanced by GridMask is gradually increased until 
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P equaled 0.7. By deleting a structured area and an evenly distributed square area, the target 

information in the image was appropriately deleted to enhance the generalization ability of 

the network. 

 

Lightweight model 

The YOLOv3 algorithm is difficult to run in embedded devices due to its 106-layer 

network depth and its multi-scale design. Therefore, it was necessary to lighten its network 

model. Common lightweight methods include network pruning (Han et al. 2015), 

knowledge distillation (Hinton et al. 2015), etc. In addition, there are more efficient 

convolution structures, e.g., deep point convolution (Howard et al. 2020) and grouped 

convolution (Zhang et al. 2018), that can reduce network parameters and calculations. 

The convolution operation in the convolutional network will generate a large 

number of similar feature maps. The generation of these similar feature maps occupies 

most of the network parameters and calculations. These redundant feature maps are 

particularly important for the network to ensure that the network understands the input. A 

simple operation-Ghost module was used to generate these redundant feature maps, which 

reduced the amount of network calculations (Han et al. 2020). The normal convolutional 

layer operations and Ghost module operations are shown in Fig. 4.  

 

 
 
 
Fig. 3. GridMask data augmentation and their parameters. The black region in the mask has the 
value of 0, which represents the deletion region, thus the deletion of information for a specific 
region has achieved. The parameters in the figure are the four parameters (x, y, r, and d) that 
need to be controlled for the GridMask operation on the image. The red box represents a basic 
mask unit, and (x, y) is the distance between the first mask unit and the edge of the image. The r 
is the proportion of the retained image, and the d is the length of a basic mask unit. 
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Fig. 4. Comparison of the two operations 
 

Figure 4a is a common convolution operation, which directly generates a large 

number of feature maps through the convolution kernel. Figure 4b is the Ghost module 

operation, which is divided into two steps to obtain the same number of feature maps as 

the ordinary convolutional layer. First, a small number of convolution kernels (half of the 

convolution kernels in the shown in Fig. 3) are used to generate a part of the feature maps. 

The feature maps are then linearly operated to generate the remaining feature maps, which 

reduces the amount of calculations during the convolution operation.  

The Ghost block, which is composed of the Ghost module, is shown in Fig. 5, and 

it is similar in structure to the residual block. However, the ReLU activation function is not 

used after the second module. In the present work the Ghost block was replaced with the 

residual module of the YOLOv3 algorithm to ensure that the model is more lightweight. 

The improved YOLOv3 model is shown in Fig. 6. The residual block used in the backbone 

network is replaced with a Ghost block structure. Each Ghost block uses half the number 

of convolution kernels compared to the original network, and the linear operation of the 

Ghost module is used to reduce the network. The amount of calculations does not change 

the multi-scale prediction of the original network, and the target prediction is achieved 

from three scale feature maps (52 × 52), (26 × 26), and (13 × 13). 
 
 

(a) Normal convolutional operation 

(b) Ghost module operation 
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Fig. 5.  Ghost block and residual block structure 
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Fig. 6. Improved YOLOv3 structure 

 

(a) Ghost Block (b) Residual Block 
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Improving confidence loss 

In two-stage target detection algorithms, sampling methods are often used to 

control the proportion of positive and negative samples. However, in single-stage target 

detection algorithms, a phenomenon causing a balance between positive and negative 

samples often occurs. A large number of negative samples and simple samples will cause 

the model to converge in an undesirable direction. Focal loss (Lin et al. 2017) controls 

negative samples and simple samples by adding a penalty coefficient (α) and a modulation 

factor (γ) to the CE (cross-entropy) loss, as shown in Eq. 1, 

𝐶𝐸(𝑝, 𝑦) = {
− 𝑙𝑜𝑔(𝑝)           𝑦 = 1

− 𝑙𝑜𝑔(1 − 𝑝)  𝑦 = 0
                                           (1)     

Considering the imbalance of positive and negative samples in the model, negative 

samples are given a penalty coefficient to reduce the proportion of negative samples. The 

cross-entropy loss after adding the penalty coefficient is shown in Eq. 2, 

𝐶𝐸(𝑝, 𝑦) = {
−𝛼 𝑙𝑜𝑔(𝑝)                    𝑦 = 1

− (1 − α)𝑙𝑜𝑔(1 − 𝑝) 𝑦 = 0
                                 (2)  

In order to make the model focus more on difficult samples, focal loss adds a 

modulation factor (γ) to the penalty coefficient. The improved focal loss model is shown 

in Eq. 3, 

𝐹𝐿(𝑝, 𝑦) = {
−𝛼 (1 − 𝑝)𝛾𝑙𝑜𝑔(𝑝)            𝑦 = 1

− (1 − α)𝑝𝛾𝑙𝑜𝑔(1 − 𝑝)    𝑦 = 0
                              (3) 

The loss function of the YOLOv3 algorithm is composed of regression loss, 

classification loss, and confidence loss. The regression loss uses the mean square error 

function, and it is calculated only if a true box is included, so there is no category 

imbalance. The classification loss uses the cross-entropy function, where the YOLOv3 

algorithm controls the proportion of positive and negative samples by setting thresholds 

and ignoring a large number of target boxes. Therefore, there is no imbalance between the 

positive and negative samples. The confidence loss adopts the cross-entropy loss, as shown 

in Eq. 4, 

𝑐𝑜𝑛𝑓𝑙𝑜𝑠𝑠 = −∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗
[𝐶𝑖

𝑗̃
log (𝐶𝑖

𝑗
) + (1 − 𝐶𝑖

𝑗̃
)log (1 − 𝐶𝑖

𝑗𝐵
𝑗=0 )] −𝑆2

𝑖=2

𝜆𝑛𝑜𝑏𝑗 ∑ ∑ 𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗𝐵

𝑗=0 [𝐶𝑖
𝑗̃
log (𝐶𝑖

𝑗𝑠2

𝑖=0 ) + (1 − 𝐶𝑖
𝑗̃
)log (1 − 𝐶𝑖

𝑗
)]         (4)   

where there are a total of 𝑆2 grids in the YOLOv3 algorithm and each grid generates the 

number of prediction boxes (B), and 𝐼𝑖𝑗
𝑜𝑏𝑗

 represents whether the j-th box of the i-th grid is 

responsible for predicting the object. If 𝐼𝑖𝑗
𝑜𝑏𝑗

 is responsible for 1, then 𝐶𝑖
𝑗̃
 represents the true 

value and 𝐶𝑖
𝑗
 represents the prediction value. From Eq. 4, it can be seen that regardless of 

whether the anchor box is responsible for a certain target, it is necessary to calculate the 

confidence loss. If the box contains objects, then the regression loss, category loss, and 

confidence loss of this box must be calculated to update the weight. However, if the anchor 

box is not responsible for predicting a certain target, then only its confidence error needs 

to be calculated. There are many negative samples and simple samples. Therefore, this 

study changed the confidence loss of the YOLOv3 algorithm to focal loss to control the 

weight of the negative samples and simple samples in the confidence loss. The confidence 

loss of the YOLOv3 algorithm after introducing focal loss is shown in Eq. 5,  
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𝑐𝑜𝑛𝑓_𝑓𝑜𝑐𝑎𝑙_𝑙𝑜𝑠𝑠 = −∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗
[𝛼(1 − 𝐶𝑖

𝑗
)𝛾𝐶𝑖

𝑗̃
𝑙𝑜𝑔(𝐶𝑖

𝑗
) + (1 −𝐵

𝑗=0
𝑆2

𝑖=2

𝛼)(𝐶𝑖
𝑗
)𝛾(1 − 𝐶𝑖

𝑗̃
)𝑙𝑜𝑔(1 − 𝐶𝑖

𝑗
)] − 𝜆𝑛𝑜𝑏𝑗 ∑ ∑ 𝐼𝑖𝑗

𝑛𝑜𝑜𝑏𝑗𝐵
𝑗=0 [𝛼(1 −𝑠2

𝑖=0

𝐶𝑖
𝑗
)𝛾𝐶𝑖

𝑗̃
𝑙𝑜𝑔(𝐶𝑖

𝑗
) + (1 − 𝛼)(𝐶𝑖

𝑗
)𝛾(1 − 𝐶𝑖

𝑗̃
)𝑙𝑜𝑔(1 − 𝐶𝑖

𝑗
)]                (5)  

where the penalty coefficient (α) is set to 0.75 and the modulation factor (γ) is set to 2. This 

greatly reduces the influence of simple samples and negative samples on the loss gradient 

descent and provides a correct guidance loss function for model training. 

    

 

RESULTS AND DISCUSSION 
 

Network Training 
This experiment was carried out using the Windows 10 operating system, with a 

Darknet_53 deep learning framework. The hardware server equipment included the 

following: an Intel i5-7300HQ CPU, and a GTX 1050 GPU, with the addition of a 

CUDA9.2 and CUDNN to help the GPU to accelerate calculations. The learning rate was 

set to 0.001. The attenuation coefficient of the weight was 0.0005, and the asynchronous 

stochastic gradient descent with a momentum term was 0.9. The input image size was 

normalized to 416 × 416. 

The loss curves during the training process (as shown in Fig. 7) were trained with 

the original YOLOv3 model and the improved YOLOv3 training data set, respectively. It 

can be seen that the improved YOLOv3 algorithm exhibited a faster network convergence 

speed and a smaller overall loss value of the model. The loss of the original network was 

stable at 0.12 with 105 epochs, while the loss of the improved network was stabilized at 

approximately 0.07 with 95 epochs. 
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v
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Fig. 7. Comparison of the training loss. The loss of the original network was stable at 0.12 with 
105 epochs, while the loss of the improved network was stabilized at approximately 0.07 with 95 
epochs. 
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The Detection Effect of the Model on the Test Set 
The performance of the model was measured with mAP (mean average precision), 

FPS (frames per second), and weight file size. The mAP is the mean value of the AP 

(average precision) of each category, and the AP is the average value of all the precision 

values in which the recall rate of each category changed from 0 to 1, calculated using Eq. 

6, 

{
  
 

  
 𝑃 =

𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐴𝑃𝑖 =
1

𝑁𝑖
∑ 𝑃(𝑟𝑖)𝑟𝑖∈𝑅𝑖

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

                                                                             (6) 

where P (precision) represents the classification accuracy, R (recall) represents the recall 

rate of the network, TP represents the detected positive example, FP represents the detected 

negative example, FN represents the undetected positive example, and 𝑃(𝑟𝑖) represents the 

precision when the recall value of the i-th category is 𝑟𝑖. Frames per second is an indicator 

to measure the speed of model detection. The weight file is a collection of the model and 

all parameters. The smaller the weight file, the lighter the model and the smaller the number 

of parameters.                                                

There are a total of 300 defect pictures in the test set, 100 each of wormholes, 

nodules, and cracks. The trained YOLOv3 network and the improved algorithm were 

separately used to detect the test set. The AP values of the three defects, the accuracy (P), 

the recall value (R), and the mAP are shown in Fig. 8. Part of the test results are shown in 

Fig. 9. 
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Fig. 8. The improved network and the detection results of the original network 
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Defect-free Wormhole Knot Crack

 
 

Fig. 9. Detection results of some defects 

 

Experimental Results Analysis 
The experimental results show that the recognition effect of the improved algorithm 

in this paper was better than the recognition effect of the original YOLOv3 network. In the 

identification of cracks, the AP increased from 68.8% to 77.2%. However, the AP value 

was still remarkably high. The reason for this is that cracks are extremely similar to the 

texture of the wood, and some of the cracks are narrow, which affects the recognition of 

the original network. However, the original network was enhanced with GridMask data, 

and the confidence loss of the original network was improved. As such, the recognition 

value of the network for small targets, e.g., cracks was greatly improved. At the same time, 

for wormholes and knots, the AP also increased by 4.44% and 4.31%, respectively, and the 

total mAP also increased from 80.8% in the original network to 86.5% in the improved 

network. Through experiments, the authors also found that the recall value (R) of the 

network increased by 11%, and the accuracy (P) increased by 8%. It can be seen that the 

improved network does not sacrifice the recall rate of the network while taking into account 

the accuracy rate. It also demonstrates the robustness of the improved network.  

The weight file of the original network was 234 M, and the improved network was 

only 144 M after calculation. Therefore, the weight file was reduced by 38%. This showed 

that changing the residual block of the backbone network to the Ghostblock reduced the 

amount of model parameters. The speed of the original network detection was 17 FPS, 

while the speed of the improved network was 28 FPS. As the number of visible models 

were reduced, the detection speed was greatly improved, and the portability of the model 

would also improve. 

For further analysis of the effect of the original and improved networks on defect 

identification, some of the detected images are shown in Fig. 10. From Fig. 10, it can be 

seen that the original network exhibited missed detections and low confidence in the 

identification of wormholes, while the improved network achieved a confidence in the 

detection of wormholes close to 100%. In terms of the recognition of knots, due to the 

similarity between knots and wormholes, there were a large number of mis-examinations, 

which the improved network avoided. This indicated that the improved network more fully 

learned the characteristics of knots. For the identification of cracks, the original network 

and the improved network all showed leaking and mis-checking, because small cracks and 

the texture characteristics of wood are extremely similar. However, the improved network 

still was greatly improved in terms of crack detection. Furthermore, wood cracks can be 

reduced by utilizing certain suitable storage environments. In short, the improved network 

Defect-free Wormhole  Knot  Crack 
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reflects greater advantages in defect detection. More detailed features can be learned, and 

the accuracy of defect identification and recall rates are much higher than the original 

algorithm. 

 

 
 

Fig. 10. Comparison of the improved network and the original network recognition effect 
 

Ablation Experiment 
An ablation experiment is an indispensable link in deep learning. It can clearly 

reveal the impact of each link on the performance of the entire network, and it is also the 

best way to verify whether the improved conjecture is really effective. The results of the 

ablation experiment are shown in Table 1. In the table, a ☆ means that this improvement 

was not added, and a ★ means that this improvement was added. The evaluation indicators 

refer to the item described above. The experimental results show that after adding 

GridMask to the image enhancement in the second group of control experiments, the mAP 

had a 1.13% improvement, primary concentrated on cracks, because the original network 

did not sufficiently learn the characteristics of cracks. After the image was enhanced, the 

network learned additional features that were not easily learned in the original network, 

and this increased the generalization ability and robustness of the network. In this way, 

information dropping in a specific area is realized, which can be understood as a 

regularization method in essence. In the third set of control experiments, the residual block 

of the backbone network was changed to the Host block. However, the detection effect of 

the network was not considerably reduced, i.e., it was essentially consistent with the 

original network, but the amount of parameters decreased by 38%. The detection speed 

increased from 17 FPS to 28 FPS (an increase of 65%), so the real-time performance of the 

network was greatly improved. The Ghost module can use fewer parameters to generate 

the same number of feature maps as ordinary convolutional layers and then integrate them 

with other networks, which can reduce the computational cost. In the fourth experiment, 

after changing the confidence loss of the original network to focal loss, the performance of 

the network was greatly improved. The mAP increased by 3%, while the AP value of crack 
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detection increased by 5%. Therefore, in comparison to the confidence loss of the original 

network, the positive and negative sample imbalance of the original network were all 

improved, and the detection effect was drastically improved. In the last set of experiments, 

the mAP fusion of all improved models was the highest, reaching 86.5%, and the detection 

speed reached 28 FPS, which balanced the detection accuracy and detection speed. In 

summary, the improvements made to the YOLOv3 algorithm in this paper were meaningful 

in terms of improving the detection of wood defects. 

 

 

Table 1. Results of the Ablation Experiments 

Methods GridMask 
Ghost 
Block 

Focal 
Loss 

AP (%) mAp 
(%) 

Weight 
(M) 

FPS 
Crack Wormhole Knot 

YOLOv3 ☆ ☆ ☆ 68.75 82.82 90.71 80.76 234 17 

+Gridmask ★ ☆ ☆ 71.24 83.93 90.5 81.89 234 17 

+Ghostblock ☆ ★ ☆ 67.45 81.93 91.02 80.13 144 28 

+Focal loss ☆ ☆ ★ 73.58 84.93 92.75 83.75 234 17 

Authors ★ ★ ★ 77.21 87.26 95.02 86.49 144 28 

 

 

CONCLUSIONS 
 

1. Aiming to solve the deficiencies of the You Only Look Once, version 3 (YOLOv3) 

network in terms of the detection of wood surface defects, the GridMask data 

enhancement technology was adopted to enhance the data set, which improved the 

generalization ability and robustness of the network. 

2. At the same time, considering the real-time problem of the network, the Ghost block 

was selected to replace the residual block in the YOLOv3 algorithm, so the amount of 

network calculations were reduced, which caused the detection speed of the network to 

improve. 

3. To solve the low recall value of the YOLOv3 network, focal loss was used to improve 

the confidence loss of the original network, and the detection accuracy and recall value 

of the network were greatly improved. 

4. The final experimental results show that the mAP of the improved YOLOv3 network 

reached 86.5%, with a detection speed of 28 FPS, which can be used in on-line 

industrial defect detection. On the server side, massive data and computing resources 

are used to train the model, and then the trained model is deployed to the mobile 

terminal, and only the computing power of the mobile terminal is used for reasoning. 

This will be the trend of machine learning landing on the mobile side. 
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