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Extraction of Xylooligosaccharide from Rice Husk 
  
Feng Yan, Shuangqi Tian,* Ke Du, and Xinwei Wang 

 
Rice husk, which contains hemicellulose, can be used as a renewable 
resource to produce xylooligosaccharide (XOS). However, it is difficult to 
destroy the lignin structure of rice husk. Steam explosion (SE) is an 
effective method in destroying the lignin structure to enhance the release 
of hemicellulose and cellulose. In this study, SE pretreatment was used at 
different high pressures. The results showed that the lignin structure of 
rice husk could be collapsed by SE pretreatment, and the chemical 
structures of rice husk were evaluated by Fourier transform infrared 
spectroscopy (FTIR). The SE pretreatment resulted in the significant 
increase of XOS content and antioxidant activities. In summary, SE 
pretreatment under 2.5 MPa was chosen as a good option for the 
production of XOS from rice husk. 
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INTRODUCTION 
 

Rice is one of the most widely grown grain crops in the world. In the processing of 

rice, a huge amount of rice husk is generated, and rice husk accounts for about 23% of the 

total weight of rice, resulting in 800 million tons of rice husk produced every year, while 

50% of rice husk comes from China (Shen et al. 2021). The composition structure of rice 

husk is approximately 26 to 31% lignin, 25 to 35% cellulose, 18 to 21% hemicelluloses, 

and 15 to 17% silica (Alam et al. 2020). The application of rice husk is mainly to use its 

rice husk ash to make concrete (Pachla et al. 2021). However, its higher value utilization 

deserves more attention.  

In addition to biorefineries, rice husk can also be used to produce xylooligo-

saccharides (XOS). The XOS are functional oligosaccharides composed of 2 to 7 xylose 

molecules combined with β-1,4 glycosidic bonds (Pinales-Márquez et al. 2021). XOS is 

considered as an indigestible oligosaccharide and can be used as a dietary 

sweetener in low energy food (Zhang et al. 2016). It is also semi-prebiotic. Both in 

vitro and in vivo studies show that XOS can produce prebiotic effects when 

fermented by specific beneficial bacteria (such as Lactobacillus and 

Bifidobacterium). XOS can enhance the balance of microorganisms in the 

intestinal tract (Palaniappan et al. 2021). Furthermore, XOS also have antioxidant 

activity (Zhou et al. 2018). Rice husk contains a lot of hemicellulose, which is the source 

of xylan (Remedios et al. 2006). XOS is produced by xylanase hydrolysis of hemicellulose 

(Mathew et al. 2018). The maximum XOS production of rice husk is 17.35 ± 0.31 

mg/mL xylan (Banerjee et al. 2009; Nuntawat et al. 2018). The specific enzyme 

hydrolysis of rice husk generates the highest proportion of XOS with degrees of 

polymerization in the range 2 to 3 (Vegas et al. 2008). 
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XOS can be obtained by physical, chemical, or enzymatic methods (Samanta et al. 

2012; Jayapal et al. 2013). In addition, agricultural plant biomass rich in xylan can also be 

directly autohydrolysed under high temperature and high pressure to produce XOS. Due to 

the specificity of the hydrolase, there is less unnecessary pollution during enzymatic 

hydrolysis (Samanta et al. 2015). Pretreatment of rice husk contributes to the release of 

sugar; for example, alkaline and acid soaking pretreatment can greatly improve the 

subsequent enzymatic hydrolysis (Kawet et al. 2016). Another pretreatment method is 

steam explosion (SE). The high shear force of SE is released during the high temperature 

explosion, and it can destroy and depolymerize cellulose and hemicellulose (Sui and Chen 

2014). For example, SE pretreatment has proven to be an effective method to enhance the 

water solubility of raw materials (Chao et al. 2010). Previous studies have shown that, 

compared to conventional laboratory-scale methods, SE can produce XOS-rich 

hydrolysates with properties similar to or even better than prebiotics (Carvalho et al. 2017). 

Rice husk is composed of a heterogeneous complex of carbohydrate polymers. 

Cellulosic sugars (such as cellulose and hemicellulose) are tightly packed by the lignin 

layer, thereby protecting them from enzymatic hydrolysis. Therefore, it is important to 

include a pretreatment process to destroy the lignocellulose structure to expose cellulose 

and hemicellulose to promote enzymatic action (Abbas and Ansumali 2010). The SE is an 

effective pretreatment method that can mechanically decompose lignocellulosic structure 

to make lignocellulosic biomass more vulnerable to enzyme attack (Shimizu et al. 2017). 

In this study, rice husk was pretreated with SE under different pressures and then 

hydrolyzed with xylanase. The lignin content and microstructure of SE rice husk was 

measured. The antioxidant activity and XOS content of the product through the 

combination of SE and enzymatic reaction were analyzed. This study aims to explore the 

impact of SE preprocessing on XOS extraction. Furthermore, this investigation will assist 

in the production of XOS from rice husk. 

 

 
EXPERIMENTAL 

 

Materials and Chemicals 
Rice husk was purchased from Jinyuan Grain Trade Company (Jilin, China). The 

xylanase (the enzyme activity was more than 100000 u/mg) was purchased from Biotopped 

Company (Beijing, China). All the standard samples were obtained from Aladdin (Beijing, 

China). The other analytical reagents were purchased from Kemiou Chemical Reagent 

Company (Tianjin, China).  

 

SE Pretreatments for Rice Husk 
400 mL of rice husk was put into the SE reactor (QB-300, Tsing-Gentle Eco-

Technology, Suzhou, China). The high-pressure steam was gradient risen and kept at 

varying pressures of 1.2 MPa (188 ℃), 1.4 MPa (195 ℃), 1.6 MPa (201 ℃), 1.8 MPa 

(207 ℃), 2.0 MPa (212 ℃), or 2.5 MPa (224 ℃) for 5 min. Samples were stored in an 

oven at 50 ℃ for 12 h until dried. Untreated sample was labeled as US, and the pretreated 

samples were labeled as SE-1.2, SE-1.4, SE-1.6, SE-1.8, SE-2.0, and SE-2.5, respectively. 

 

Lignin Content Analysis  
Samples were ground in a vertical cyclone mill (Type3001 Perten Instruments Co., 

Ltd., Sweden) and then passed through a 35-mesh sieve. Lignin was determined using the 
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NREL method (Sluiter et al. 2010). The lignin content was determined by two-step acid 

hydrolysis. After 72% and 4% sulfuric acid hydrolysis, the material was processed with a 

crucibled filter, baked in oven to constant weight, and burned in a Muffle furnace. The 

lignin content was calculated according to Eq. 1. Moisture and ash content were tested 

using the method of American Association of Cereal Chemists. The moisture content was 

tested by baking rice husk in a oven to constant weight. Ash content was tested by burning 

rice husk in a muffle furnace to constant weight (AACC 2000),  

 

Lignin content(%) =
[(WeightG4 plus acid insoluble residue−WeightG4)−(WeightG4 plus Ash−WeightG4)]

ODWsample
× 100 (1) 

where WeightG4 means the weight of G4 (a kind of glass sand core crucible) that has been 

incinerated to a constant weight in a Muffle furnace. WeightG4 plus Acid insoluble  means the 

sum of the weight of G4 and sample that has been filtered and dried after two-step acid 

hydrolysis. WeightG4 plus Ash means the sum of the weight of G4 and acid insoluble residue 

that has been incinerated in a Muffle furnace. ODWsample means the oven dry weight of 

sample. 

Scanning Electronic Microscopy (SEM) Analysis  
Each sample was coated on the copper sheet with conductive adhesive and then 

stored in the vapor deposition chamber for gold plating (D07-19BM; Ketan Instrument 

Equipment Co., Ltd., Zhengzhou, China). The sample was observed and imaged using a 

scanning electron microscope (SU3800; Hitachi Scientific Instruments Co., Ltd., Beijing, 

China). 

 

Fourier Transform Infrared Spectroscopy (FTIR) Analysis  
The different rice husk samples were sifted through 100-mesh sieve. The SE 

pretreated sample (1 mg) was ground and pressed with 100 mg KBr. All spectra were 

captured using a FTIR spectrophotometer (Nicolet FT-IR6700; Thermo Fisher Scientific, 

Madison, WI, USA).  

  

XOS Content Analysis after Enzymolysis 
The content of XOS was expressed by the reducing sugar content of the enzymatic 

hydrolysate of rice husk, which was detected by DNS method (in xylose, mg/g) (Yang et 

al. 2007). The pretreated rice husks were enzymolyzed by the xylanase. The solid-liquid 

ratio was 1:15. The addition amount of xylanase was 3%, at pH 4.80, 50 °C for 2 h. The 

enzyme was inactivated at 100 °C for 10 min, then centrifuged at 8000 rpm for 10 min 

(Martin-Sampedro et al. 2012). The collected supernatant was diluted to detect reducing 

sugar and total sugar content. The XOS content was determined by the dinitrosalicylic acid 

(DNS) method with xylose as the standard (Zhao et al. 2020). Then 3 mL of diluted 

supernatant was mixed with 2 mL DNS, then reacted in a boiling water bath for 5 min, 

cooled, diluted with water to a constant volume of 25 mL, and the absorbance at 540 nm 

was compared with xylose standard curve, making it possible to calculate the content of 

XOS. 

 

Antioxidant Activities Analysis  
The antioxidant activities were expressed by DPPH and ·OH radical scavenging 

rates (Kallel et al. 2015). The collected supernatant of rice husk after xylanase hydrolysised 
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and centrifuge was diluted to detect the DPPH and ·OH radical scavenging rates. Samples 

were vortexed with DPPH and incubated for 30 min in the dark. The optical density was 

obtained at 517 nm using an ultraviolet-visible spectrophotometer (752; Jinghua 

Instruments Co., Ltd., Shanghai, China). Water and ethanol were used as the control and 

blank, respectively (Chao et al. 2014). The DPPH radical scavenging property of the 

sample was calculated as shown below in Eq. 2: 

DPPH radical scavenging activity (%) = (1 −
Absorbance of samples

Absorbance of control
) ×  100  

(2) 

The formula for ·OH radical scavenging activity is the same as above. 

 
Statistical Analysis  

The data were expressed as mean ± standard deviation (SD) values. The statistical 

methods were a one-way analysis of variance and Duncan's multiple comparison method. 

The results were statistically significant (p < 0.05). The software used for significance 

analysis was SPSS 20.0 (IBM Corp., Armonk, NY, USA). 

 

 

RESULTS AND DISCUSSION 
 

Lignin Content of SE Pretreated Rice Husk 
The lignin contents of rice husk at different pressures used in SE pretreatment are 

shown in Table 1. When the pressure of SE pretreatment increased, the lignin proportions 

decreased. As shown in Fig. 1. Lignin content decreased from 24.48% to 15.65% after the 

SE pretreatment, due to the cleavage of lignin bonds (Li et al. 2007).  

 
Table 1. Lignin Content of SE-pretreated Rice Husk 
 

Samples Moisture Content (%) Lignin (%) Ash (%) 

US 8.79 ± 0.01a 24.48 ± 0.75a 17.03 ± 0.03e 

SE-1.2 7.29 ± 0.05b 19.18 ± 0.71b 16.70 ±  0.03f 

SE-1.4 7.16 ± 0.01b 17.58 ± 0.51bc 17.25 ± 0.02d 
SE-1.6 6.73 ± 0.02cd 17.43 ± 0.62bc 17.62 ±  0.05c 

SE-1.8 6.67 ± 0.02d 16.86 ± 0.51c 18.26 ± 0.04b 

SE-2.0 6.87 ± 0.09c 16.02 ± 0.56c 19.02 ± 0.03a 

SE-2.5 5.91 ± 0.05e 15.65 ± 0.12c 19.01 ± 0.01a 

Each value is expressed as mean ± standard deviation, the a, b c etc. indicates significant 
difference of results when two rows do not share any letter in common. 

 

 
 

Fig. 1. The schematic of SE-pretreated cell wall of rice husk 
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SEM Analysis of SE-pretreated Rice Husk  
Scanning electron microscopy was used to observe the samples to evaluate the 

effect of SE pretreatment methods on rice husks. Natural rice husk exhibited typical 

integrity, with no visible fractures (Fig. 2a). The rice husk pretreated with SE at 2.5 MPa 

showed significant concave-convex structure (Fig. 2b). The barrier structure on the surface 

may be damaged. This change may be caused by the high defibrillating power of the SE 

pretreatment with sudden decompression (Rocha et al. 2015). Previous studies have shown 

that SE pretreatment affects the solubilization and recovery of glucan, xylan, arabinan in 

Brewer’s spent grain (Kemppainen et al. 2016). The results showed that the SE-2.5 might 

help to extract XOS from rice husk. 

 

  
(a)             (b) 

 

Fig. 2. The microstructure of different rice husk detected by SEM: a: US and b: SE-2.5 
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Fig. 3. FTIR spectroscopy of SE-pretreated rice husk 
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FTIR Analysis of SE-pretreated Rice Husk 
The FTIR spectroscopy was performed to evaluate the effect of SE-2.5 on rice husk. 

As shown in Fig. 3, the vibration at 3423 cm-1 represents the -OH group of cellulose. This 

absorbance was weakened in SE-2.5 (Saelee et al. 2014). Steam explosion destroyed the 

structure of cellulose (Čater et al. 2014). This result is consistent with Sun et al. (2005), 

who studied the properties of cellulose degraded from steam-fried wheat straw and found 

that high-temperature steam pretreatment can lead to severe cellulose degradation or 

structural modification of cellulose during steam explosion.  

In addition, in SE-2.5, the intensity of the band at 898 cm-1 related to the β-1,4-

glycosidic bond of glucose in cellulose decreased (Karim et al. 2014). The band at 1737 

cm-1 represents hemicellulose disappeared by comparison with the US, indicating that a 

considerable amount of hemicellulose was deacetylated into organic acids under high 

pressure. This finding confirmed that steam explosion had a great effect on hemicellulose, 

because hemicellulose is easily broken due to its amorphous state and low degree of 

polymerization (Trache et al. 2014). Hemicellulose is hydrolyzed in oligosaccharides or 

monosaccharin and can be degraded into furfural and hydroxymethyl furfural under severe 

conditions (Jacquet et al. 2015). The stretching vibration of aromatic rings at 1508 and 

1637 cm-1 that are attributed to the C=C in lignin structures was weakened, confirming that 

the molecular structure of lignin was destroyed by steam explosion (Nieves et al. 2011). 

The SE pretreatment could lead to most of the hydrolysis of hemicellulose and a small part 

of lignin becoming soluble in the water phase (Zhang et al. 2008). This is consistent with 

the previous lignin content analysis. These spectral changes indicate that the structure of 

cellulose, hemicellulose, and lignin may be damaged by SE pretreatment, which indicates 

that rice husk can be used more effectively.  
 

XOS Content in the SE-prepared Rice Husk 
Both xylobiose and xylotriose have reductive properties. The reducing sugar 

content can be used to represent the XOS content (Yang et al. 2007). The different pressure 

levels of SE significantly affected the XOS content of rice husk (Fig. 4).  
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Fig. 4. XOS content of enzymatic SE-pretreated rice husk 
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The content of XOS significantly increased from 4.91 to 131.49 mg/g. The XOS 

content of pretreated rice husk was higher than US. The results showed that SE could 

significantly improve the enzymatic digestibility of insoluble carbohydrates (Kemppainen 

et al. 2016). The increase in XOS content and yield might be attributed to the substantial 

destruction of the lignocellulose structure (Singh et al. 2015). The results of SEM and FTIR 

also confirmed the dissolution of sugar and destruction of hemicellulose structure. This 

indicated that the enzymatic hydrolysis after steam explosion may be helpful for the 

extraction of XOS from rice husk. 

 
 

(a) 

 
 
(b) 
 

Fig. 5. The DPPH and ·OH clearance rate of different enzymatic SE-pretreated rice husk:  
(a) DPPH clearance rate and (b) ·OH clearance rate 
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Antioxidant Activities of SE-prepared Rice Husk  
The different pressure levels of SE were able to significantly affected the DPPH 

and ·OH radical scavenging rate of rice husk (Fig. 5). The DPPH radical scavenging rate 

significantly increased from 24.94% to 87.47%, and the ·OH radical scavenging rate also 

increased. The increase of DPPH and ·OH radical scavenging rate may be attributed to 

the increase of the XOS content (Zhou et al. 2018). After enzymatic hydrolysis, the active 

compound might also be more easily dissolved in the reaction buffer. Therefore, the 

scavenging ability of the xylo-oligosaccharide mixture was due to the effective release of 

phenolic compounds and the transfer of hydrogen or hydroxyl molecules from phenolic 

compounds (Huang et al. 2005). 

 

 
CONCLUSIONS 
 
1. The synergistic action of steam explosion (SE) pretreatment and xylanase enzymolysis 

reaction was chosen as an option to extract xylo-oligosaccharides (XOS) from rice husk.  

2. Because of the SE pretreatment, the barrier function of lignin in rice husk was destroyed, 

and its content decreased, especially at 2.5 MPa.  

3. SE pretreatment of 2.5 MPa was helpful to increase XOS yield and antioxidant activities. 

Steam explosion technology can obviously increase the yield of XOS, which is a feasible 

auxiliary extraction method. Flash steaming, high pressure are also easy to achieve. It 

can assist the extraction of XOS, further improving the extraction rate and reducing 

production costs. Therefore, SE pretreatment was suitable for effective pretreatment 

method of rice husk in the food processing industry.  
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