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In the milling of wood-plastic composites, the cutting temperature has a 
great influence on tool life and cutting quality. The effects of cutting 
parameters on the cutting temperatures in the cutting zone were analyzed 
using infrared temperature measurement technology. The results 
indicated that the cutting temperature increased with the increase of 
spindle speed and cutting depth but decreased with the increase of feed 
rates. In addition, based on experimental data, a BP neural network model 
was proposed for predicting the cutting temperatures. The value of R2 was 
0.97354 for the testing data, which indicates that the developed model 
achieved high prediction accuracy, respectively. The results of the study 
can play a guiding role in the prediction and control of cutting temperature, 
which is of great importance in the improvement of tool life, machining 
quality, and machining efficiency. 
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INTRODUCTION 
 

Wood fiber/polyethylene composite (WPC) is a relatively new type of material 

mainly composed of poplar fiber (thermal conductivity is 0.2 W/(m·k)) and polyethylene 

(thermal conductivity is 0.42 W/(m·k)) (Malkapuram et al. 2009; Ramesh et al. 2018). 

Because of the combination of the double advantages of wood fiber and plastic materials, 

WPCs exhibit excellent comprehensive properties (Gardner and Bozo 2018; Ma et al. 

2020), such as high strength, high impact resistance, dimensional stability, and good wear 

resistance (Kumar et al. 2011). Moreover, WPC also has the dual processing properties of 

wood and plastic. They can be formed by extrusion and hot pressing, or processed by wood 

processing methods such as sawing, planing, rotary cutting, grinding, and sanding. Wood-

plastic composite materials are widely used in the fields of paneling materials, furniture 

materials, interior decoration materials, and automobile interiors (Liukko et al. 2007). Most 

of the wood-plastic products need to be machined (milling, drilling, grinding, or sawing) 

to meet the requirements of shape tolerance and surface roughness, and milling processing 

is an important way to obtain WPC end products (Somsakova et al. 2012;  Guo et al. 2021). 

Most of the energy consumed during WPC milling is converted into heat, which is 

gathered in the cutting area (Karaguzel et al. 2016). However, different from metal cutting, 

coolant cannot be used in WPC milling. The cutting heat generated during WPC milling 

can only be dissipated by the tool, workpiece, and chip (Soler et al. 2015).  
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The accumulation of cutting heat leads to an increase in temperature in the cutting 

region, and excessive temperatures can cause softening of plastics in WPC, which causes 

the plastic to stick to the tool. Therefore, the increase in cutting temperature will reduce 

tool life and lead to an increase in the number of tool changes and eventually increase the 

economic cost (Guo et al. 2021). Furthermore, the heat in the cutting area will affect the 

quality of the WPC machined surface. The results indicate that the cutting temperature 

increases and the tool wear area increases as the cutting length increases. In the milling of 

high-density fiberboard (HDF), Zhu et al. (2017) point out that high cutting speed, which 

includes high spindle speed and high feed rate, can increase the processing capacity, but it 

will bring more cutting heat and force to the tool surface at the same time. Guo et al. (2018) 

stated that more severe cyclical thermal loads and mechanical loads during high-speed 

milling will cause cracks and fractures in the coating, which will further reduce the life of 

the tool. Reducing the cutting temperature is the key to achieving high-quality processing 

of wood-plastic composites for different processing conditions and processing 

requirements. Hence, it is essential to research the cutting temperature in the milling 

process of W.  

The results of the study by Pei et al. (2016) showed that the cutting temperature 

increases with the increase of spindle speed and cutting depth, but decreases with the 

increase of feed rates. However, cutting parameters were selected higher than the usual 

ones. Based on the experimental data, regression analysis, which is a type of black-box 

method, can effectively solve the non-linearities in the cutting process. Sreejith et al. 

(2007) studied the influence of machining conditions on cutting temperature by 

establishing a multiple regression model. The response surface method (Liyana-Pathirana 

and Shahidi 2005; Ba and Boyac 2007; Gunst 2008) fits the functional relationship between 

the factor and the response value using multiple quadratic regression equations. Zhu et al. 

(2020) used the BBD response surface method to develop mathematical models for cutting 

forces and temperatures to find correlations between actual and predicted results, which 

can be used to make accurate predictions. The cutting process of wood-plastic composites 

can be seen as a complex non-linear system (Nie and Bangyan 2009; Gong et al. 2012; Cao 

and Guo 2013).  

It is difficult to accurately establish models with mathematical methods because the 

state equations of these systems are complicated. The BP neural networks can approach 

arbitrary non-linear continuous functions by selecting the appropriate weights and structure 

(Patan 2019; Chen et al. 2020; Wang et al. 2020). Under this situation, a BP neural network 

can be built to express the nonlinear system of WPC cutting. There have been various 

publications dealing with applications in the prediction of metal cutting temperature (Fuat 

et al. 2016; Mia and Dhar 2016), but no application in the study of cutting temperature of 

WPC.  

As observed from the literature review, despite the important influence of cutting 

temperature on the tool life and the machining quality of WPC, there has been a lack of 

investigations on the cutting temperature of WPC. The objective of this work was to 

investigate the effects of cutting parameters on the cutting temperature and establish a 

prediction model for cutting temperature. Cutting temperatures were measured through the 

single factor cutting test of these WPCs. The effect of cutting parameters on the cutting 

temperature was determined by analyzing experimental values. Based on the experimental 

values, BP neural network was built to predict the cutting temperature of WPC during the 

milling process.  
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EXPERIMENTAL 
 
Experimental Condition 

A diagram of the experimental set-up is shown in Fig. 1. The cutting temperature 

test in the milling of WPC was conducted in a computerized numerical control (CNC) 

machining center (MGK01, Nanxing Machinery Co., Ltd., Guangzhou, China). Infrared 

imaging (Thermo Vision A20, Thermo Fisher Co. Ltd., USA) was used to measure the 

cutting temperature during the cutting process. In this device the distance between the 

camera and the workpiece is 30 cm, and the observable range is 2 cm x 2 cm. The 

experimental conditions most used in the actual production process are listed in Table 1 

and were used for analyzing the influence of cutting parameters on cutting temperature and 

establishing predictive models. 

 

 
Fig. 1. Experimental set-up 

 

Table 1. Experimental Conditions 

Workpiece Material Wood-plastic Composite 

Milling tools Cemented carbide 

Spindle speed(n, n/min) 6000, 8000, 10000, 12000 

Feed rate (U, m/min) 3, 4, 5, 6 

Cutting depth (h, mm) 0.4, 0.8, 1.2, 1.6 

 

 
Fig. 2. Schematic diagram of milling 
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The workpiece material was a wood-plastic composite (WPC) whose ratio of wood 

powder to plastic was 7:3. The density of the workpiece was 16.5 kg.cm-3, and the size of 

the workpiece was 14 × 8 × 2 cm3. Single and straight edge handle milling cutters were 

used as cutting tools, whose material was cemented carbide. The diameter of tools was 12 

mm, and the wedge angle of tools was fixed at 45°. The schematic diagram of the milling 

process is shown in Fig. 2a, and the relative motion of the workpiece and cutting tool during 

milling is illustrated in Fig. 2b. The tool rotates at high speed and moves along laterally at 

the same time. The workpiece is fixed on the workbench.  

 

Temperature Measuring Method 
Infrared imaging, which is a fast and accurate method, was used in this work for 

measuring the cutting temperature. The cutting temperature area (including workpiece and 

tool) was measured by infrared thermal imaging (Thermo Vision A20-M, FLIR Systems 

Inc., Washington D.C., USA) with a refresh rate of 50 Hz. The cutting temperature 

measuring method is illustrated in Fig. 1. The software ThermaCAM Researcher 

Professional 2.10 (FLIR Systems Inc., Washington D. C., USA) was used to analyze the 

information in the captured pictures. 

 

 

RESULTS AND DISCUSSIONS 
 
Cutting Temperature Analysis 

In the cutting process, deformation of the material at the tip of the tool (Fig. 4a) and 

the friction between the rake face and chip is the main source of cutting heat (Fig. 4b), and 

the secondary source of cutting heat is the friction between the flank face and the workpiece 

(Fig. 4c). These two types of friction are affected by different cutting conditions, which in 

turn affect the temperature in the cutting zone. The effects of different cutting parameters 

(spindle speed, feed rate, and depth of cut) on the average cutting temperature were 

analyzed to discover the connections between cutting parameters and cutting temperature. 

 

 
 

Fig. 3. Schematic diagram of cutting heat area 

 
Experimental Results of Cutting Temperature 

The instantaneous changes in the cutting temperature during the three complete 

cutting cycles are shown in Fig. 3. It can be found from Fig. 3 that temperature of cutting 

area rose rapidly at the beginning of cutting, and after some fluctuations, the temperature 
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of the cutting area decreased at a slower rate. The change in cutting temperature can be 

divided into three stages during a cutting cycle. Temperature of cutting area rises rapidly 

in stage one (S-I), and the main reason for this phenomenon is the temperature in the first 

and second deformation zones increases rapidly when the chip thickness increases from 0 

to the maximum. In stage two (S-II), the value of cutting temperature fluctuates but is 

relatively stable. The heat dissipation of wood-plastic composites is poor, the heat 

generated by cutting is not yet dissipated, and the tool cuts into the workpiece to generate 

heat. Therefore, the change of cutting temperature is a fluctuating state. In stage three (S-

III), when a full cut has been completed, the tool leaves the workpiece, and the cutting 

temperature decreased at a slower rate. This is mainly because the heat dissipation of wood-

plastic composites is poor. It is inconvenient to use instantaneous values to analyze the 

effect of process parameters on temperature because the instantaneous cutting temperature 

varies considerably during a cutting cycle. Therefore, the average value of the cutting 

temperature in the stable cutting was chosen to realize the analysis of the effect of cutting 

temperature. 

 

 
 

Fig. 4. Experimentally tested cutting temperature changes 

 

Effect of Spindle Speed on Cutting Temperature 
In this study, four different spindle speeds n were adopted to study the influence of 

spindle speed n on cutting temperature. It can be summarized from Fig. 4 that the cutting 

temperature increased with the increase of spindle speed. As the spindle speed was 

increased, the frequency of friction between the rake face and the chip, and the frequency 

of friction between the flank face and the workpiece increased. Some of the heat will be 

carried away by the chips and tools, which reduces the cutting heat in the cutting area.  

However, the increased frictional heat is much greater than the reduced heat of the shear 

heat source. Because of this, the cutting temperature increases with the increase of spindle 

speed. 
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Fig. 5. Effect of spindle speed on cutting temperature at different cutting depth h: (a) h = 0.4 mm; 
(b) h = 0.8 mm; (c) h = 1.2 mm; (d) h = 1.6 mm 
 

 
 

Fig. 6. Effect of feed rate on cutting temperature at different cutting depth h: (a) h = 0.4 mm; (b) h 
= 0.8 mm; (c) h = 1.2 mm; (d) h = 1.6 mm 
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Effect of Feed Rate on Cutting Temperature 
In this study, four different feed rates U were adopted to study the influence of feed 

rate U on cutting temperature. It can be concluded from Fig. 5 that the cutting temperature 

decreased with the increase of feed rates. The thermal conductivity of the tool is higher 

than that of the workpiece; therefore, the heat transfer into the tool is faster than the transfer 

to the workpiece. In this case, those other parameters are fixed, and as the feed rate 

increases, the time that finishes a complete cutting process decreases. As a result, the 

cutting heat that is transferred into the workpiece is reduced. Because of these factors, the 

cutting temperature decreases with the increase of feed rates. 

 

Effect of Cutting Depth on Cutting Temperature 
In this study, four different cutting depths h were adopted to study the influence of 

cutting depth h on cutting temperature. It can be summarized from Fig. 6 that the cutting 

temperature increases with the increase of cutting depth. In the case that other parameters 

are fixed, as the cutting depth h increases, the thickness of the chip increases, which in turn 

leads to a higher pressure between the rake face and the chip. Consequently, the friction 

between the rake face and the chip becomes more intense. Therefore, the cutting 

temperature increases with the increase of cutting depth. 

 

 
 

Fig. 7. Effect of cutting depth on cutting temperature at different feed rates U: (a) U = 4 m/min; (b) 
U = 5 m/min; (c) U = 6 m/min; (d) U = 7 m/min 
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NEURAL NET ANALYSIS AND FITTING RESULTS 

 
The Structure of the BP Neural Network 

The structure of the BP neural network used in this paper is shown in Fig. 8. It can 

be learned that the BP neural network consists of three main layers: input layer, one hidden 

layer, and output layer. The input layer contains three neural units (spindle speed n, feed 

rate U, and cutting depth h), and the output layer has only one neural unit (cutting 

temperature). The number of hidden layer units is determined according to Eq. 1,  

  m n l = + +         (1) 

where m is the number of hidden layer units, n is the number of input layer units, l is the 

number of output layer units, and α is a constant between 1 and 10. In this paper, the value 

of α is taken as 5, and as a result, the hidden layer contains 7 neural units.  

The activation function provides a curvilinear match between input and output 

layers, and a Log-Sigmoid transfer function has been commonly used as the activation 

function in BP neural networks (Li and Zhang 2017), because it is a differentiable, 

continuous, and nonlinear function. This function generates a value between 0 and 1 for 

each value that is entered from the input layer. The equation of the Log-Sigmoid transfer 

function adopted for the BP neural network in this study is given as Eq. 2:  

   
1

( )
1 x

f x
e−

=
+

        (2) 

 

 
 
Fig. 8. The structure of the BP neural network 

 
Learning Algorithm 

After determining the number of layers of the BP neural network and the number 

of neurons in each layer, it is also necessary to determine the weights between the layers. 

In this research, the random values were first used as weights during training, and then the 

learning samples were input to obtain the output of the network. After this, the error 

between the output value and the target value was calculated, and according to which the 

error was reduced by modifying the weights layer by layer. After several adjustments, the 

network training was completed when the error reaches the requirement.  
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Training and Testing Data 
The selection of training and testing data has an important impact on the accuracy 

of BP neural network prediction models. In this research, 64 numerical data obtained by 

experiment were used for the training and testing data for the BP neural network. From 

these data, 54 groups were randomly selected as training data, and the rest used as test data. 

In this way, the BP neural network can avoid falling into a local optimal situation.  

In this research, the data of BP neural network has different physical importance 

and magnitude. To avoid large network prediction errors due to large differences in the 

magnitude of the data, the input and output value were normalized between 0 and 1, and 

the function for data normalization were as follows,  

  
min max min( ) / ( )k kx x x x x= − −     (3) 

where xk is the pretreatment data, xmax and xmin are the maximum and minimum values of 

the pretreatment data, and xmax ≠ xmin in the pretreatment data. 

 
Statistical Evaluation of Outputs 

To evaluate the developed prediction model, the statistical methods of R2 (absolute 

fraction of variance) have been used for the comparison. The range of R2 is [0,1], and the 

closer the value of R2 is to 1, the more accurate the prediction will be. The coefficient of 

determination is given as, 

 

2

, ,2

2=1
,

( )
=1-

N m M p M

M
m M

T T
R

T

−
   (4) 

where T m,M is measured value, T p,M is prediction value, and N is the number of samples.  

 

Prediction of Cutting Temperature Using BP Neural Network 
A computer program for predicting the cutting temperature was developed on the 

MATLAB (Mathworks Inc., Natick, MA, USA). The spindle speed, the feed rate, and the 

cutting depth were used in the input layer, and the cutting temperature was used in the 

output layer. In the program of BP neural networks, the target error of the network 

net.trainparam. goal was set to 0.001. The learning speed net.trainparam.lr was set to 

0.0001. The iteration number net.trainpara. epochs was set to 1000. The RSME was 

selected as the performance function. The BP neural network is trained according to the 

above settings until it reaches the predefined target.  

 
Fig. 9. Comparison of actual and predicted cutting temperatures 
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Comparison of actual and predicted cutting temperatures is shown in Fig. 9, and 

the predicted error percentage is shown in Fig. 10. It can be learned from Fig. 9 that the 

predicted data was close to the test data, and the value of R2 was 0.97354. From Fig. 10, it 

can be found that the maximum prediction errors were less than 4.5%. According to these 

conclusions, the established BP neural network prediction model achieved high accuracy, 

therefore, it can be used to predict the cutting temperature of WPC.  
 

 
Fig. 10. Predicted error percentage 

 

 
CONCLUSIONS 
 

The experimental measurement method of cutting temperature of wood-plastic 

composites is described. The effect of different cutting parameters (spindle speed, feed 

rate, and cutting depth) on the cutting temperature of wood fiber polyethylene composite 

(WPC) was analyzed, and the cutting temperature prediction model using BP neural 

network were developed based on the experimental data. The main conclusions were the 

following:  

1. A complete cutting cycle of WPC includes the cutting phase and non-cutting phase. In 

the cutting stage, cutting temperature rises rapidly at the beginning, then there are some 

fluctuations and the extent of fluctuation varies with different cutting parameters. In 

the non-cutting phase, the temperature in the cutting zone drops at a relatively slow 

rate; finally, it reaches a stable value.  

2. The analysis of cutting temperatures revealed that the cutting temperature increases 

with the increase of spindle speed and cutting depth but decreases with the increase of 

feed rates. Therefore, in order to reduce the temperature of the cutting area in the actual 

cutting process, the spindle speed and cutting depth can be appropriately reduced, and 

the feed rate can be appropriately increased. At the same time, the cooling air flow can 

be adopted to reduce the cutting temperature. 

3. The BP neural network was evaluated in terms of its prediction capability. The 

predicted values were close to the experimental data. The R2 value was calculated as 

0.97354 for the testing data.  

4. Within the range of cutting parameters (6000≤n≤12000,3≤U≤6,0.4≤h≤1.6), the BP 
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neural network prediction model achieved a high prediction accuracy. Therefore, the 

use of BP neural network is recommended to predict the cutting temperature of WPC 

without complex, expensive, and time-consuming experimental studies. 
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