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The suitabilities of major agricultural residues were assessed as 
papermaking feedstocks. All the examined agricultural residues were 
assumed as potential candidates for substituting hardwood fibers in mixed 
pulp blends from a fiber morphological perspective. Wheat, barley, rice, 
rapeseed, maize, sunflower, sugarcane bagasse, coconut husk, and two 
genotypes of miscanthus grass underwent identical maceration. The fiber 
length, fiber width, cell wall thickness, and lumen diameter were measured 
to calculate the slenderness ratio, flexibility coefficient, and Runkel ratio. 
The average fiber length ranged from 0.50 mm ± 0.32 mm (MG-S-02-V) to 
1.15 mm mm ± 0.58 mm (sugarcane bagasse). The fiber width ranged 
from 10.77 μm ± 3.28 μm (rice straw) to 22.99 mm ± 5.20 mm (sunflower 
stalk). The lumen diameter ranged from 4.52 μm ± 2.52 μm (rice straw) to 
13.23 μm ± 4.87 μm (sunflower stalk). The cell wall thickness ranged from 
3.02 μm ± 0.95 μm (rice straw) to 4.80 μm ± 1.48 μm (sunflower stalk). 
The slenderness ratio, flexibility coefficient, and Runkel ratio values 
ranged between 28.08 to 58.11, 37.97 to 60.8, and 0.62 to 1.68, 
respectively. Wheat, maize, rapeseed, sugarcane bagasse, and coconut 
husk were found to be appropriate residue sources for papermaking 
feedstocks. 
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INTRODUCTION 
 

Although the primary global trend is to exploit agricultural residues (AgRs) as 

feedstock materials in bioenergy or biorefinery fields, not all residues are suitable for such 

purposes (Lal 2005). For instance, while maize and sugarcane crop residues appear as 

promising raw materials for bioethanol or biogas production, contrariwise, rice and wheat 

(44% of the total global agricultural residues production), only play a minor role in the 

production of biofuels (Cherubin et al. 2018). Moreover, second-generation biofuels, based 

on lignocellulosic by-products and energy (perennial herbaceous) crops, are not expected 

to become economically viable or commercially available in the forthcoming years; thus, 

second-gen biofuels were not able to contribute to reaching the 20% renewable energy 

consumption EU-targets by 2020 (Elbersen et al. 2012).  

The calculated technical potential production from the eight major crops in the 

world, i.e., wheat, maize, rice, soybean, barley, rapeseed (or canola), sugarcane, and sugar 
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beet, is approximately 3.3 Gton yr-1 (fresh weight), as was determined by Bentsen and 

Felby (2010). It was also demonstrated that the Asian continent presented the largest share 

of crop residues production (47% of the total share), followed by the USA (29%), Europe 

(16%), Africa (6%), and Oceania (2%) (Cherubin et al. 2018). Bentsen et al. (2014) 

developed a model and pointed out that maize, rice, and wheat residues were accounting 

for more than three-quarters of the total production in 227 countries around the world. 

Likewise, Camia et al. (2018) and García-Condado et al. (2019) found that wheat, grain 

maize, rapeseed, barley, and sunflower residues, together constituted more than 80% of the 

total EU-28 residual production by using empirical models. In Asia, China and India are 

viewed as the two primary countries in terms of residue biomass availability, primarily in 

the form of wheat, maize, and rice straw in China, and sugarcane bagasse, wheat, and rice 

straw in India (Gregg and Smith 2010; Jiang et al. 2012; Hiloidhari et al. 2014; Chen 2016). 

In the USA, potential farmgate supplies of primary crop residues, e.g., maize stover, wheat, 

barley, oats, and sorghum straw, and energy crops, e.g., switchgrass, miscanthus, and 

biomass sorghum, were estimated to reach up to 214 Mt of crop residues and 729 Mt of 

herbaceous energy crops by the year 2040 by using the POLYSYS simulation assumption 

model (Langholtz et al. 2016).  

For the fulfilment of the oriented global targets, set within the strategies of a 

sustainable and resource efficient based circular economy, it is critical to utilize alternative 

sources of fibrous, lignocellulosic biomass, e.g., non-wood plants, as raw materials for 

paper and paperboard manufacturing (Przybysz et al. 2018; Sharma et al. 2018; Jeetah and 

Jaffur 2021). The cell types present in non-woody plants, including AgRs, are more 

heterogeneous than the cell types present in woody plants. The basic structure of a non-

wood plant consists of vascular bundles and parenchyma tissue and contains many types 

of cells with a wide distribution of cellular dimensions. Furthermore, the type and size of 

fibers and vessel cells greatly vary within a single plant and between species, since in 

grasses the same type of cell may originate in different tissues and organs of the plant, 

which either positively or negatively influence the pulp and paper properties (Ilvessalo 

Pfäffli 1995; Rousu et al. 2013). The length of short fibers, a low bulk density, a high fines 

content, and a high amounts of parenchyma cells and mineral substances are a few of the 

most important inherent features of these non-wood plant sources (Sridach 2010). 

Additionally, AgRs contain lower proportions of lignin compared to wood-based sources, 

which is beneficial during the bleaching stage of pulp production (Kaur et al. 2019). 

Currently, a major portion of non-wood fibers have already been used for 

papermaking for a long time, especially in the developing countries of Asia, Africa, and 

Latin America, which may feature a shortage of wood raw materials (Reddy et al. 2014). 

Conventional pulping processes, e.g., soda, soda-antraquinone, and kraft, are already used 

for non-wood pulping, yet alternative pulping processes for non-wood pulping are more 

desirable. During the last years, several promising approaches in all fields of established 

papermaking procedures have been investigated at a laboratory or pilot scale, to overcome 

the limitations and challenges of non-wood pulping. These methods have constituted non-

wood plant fibers as a reasonable candidate to replace wood fibers, especially replacing 

hardwood as the pulp feedstock (El-Sayed et al. 2020; Ferdous et al. 2020; Sharma et al. 

2020a; Jahan et al. 2021).  

Various non-wood plant agricultural sources have already been considered as 

potential pulp and paper feedstocks in the past (Ogbonnaya et al. 1997; Gonzalo et al. 

2017; Saeed et al. 2017a; Gülsoy and Şimşir 2018; Lavrič et al. 2018). In addition, energy 

crops, and their residues, including Miscanthus spp. have also been considered as potential 
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feedstocks for paper pulps (Cappelletto et al. 2000; Goel et al. 2000; Ai and Tschirner 

2010; Albert et al. 2011). Yet most of the studies have been focused on the investigation 

of cereal/rice straws, sunflower stalks, rapeseed/canola straw, and sugarcane bagasse. de 

Assis et al. (2019) found that semi-bleached wheat straw pulps (SBWP) had intermediate 

FL and coarseness values, with very high fines content, which results in lower bulk and 

water absorbency. However, this is not a limitation of producing low quality tissue products 

that require an intermediate combination of water absorbency, softness, and strength and 

could be used to replace deinked pulp. Pulps obtained from rapeseed stalks can be used as 

secondary fibers, replacing recycled paper in pulp blends with virgin wood fibers 

(González et al. 2013). Jeetah et al. (2015) demonstrated that rice husk-bagasse pulp blends 

(20:80 ratio) are suitable for producing insulating boards or medium packaging cardboards 

for decorative purposes. According to Bates et al. (2020) triticale pulp could be used for 

specific categories of printing substrates or bagasse fibers can be used for rough papers like 

those that are used in packaging.  

Apart from China and India, the amount of produced pulp from fiber sources other 

than wood is still limited globally. According to FAOSTAT (2019) data, more than 80% 

of non-wood pulp worldwide is produced in Asian countries since the 1980s. More 

particularly, in these countries, the average pulp production coming from fibers other than 

wood was estimated at around 14258000 metric tons from 1995 to 2018. In Europe, CEPI 

members, which constitute 92% of the European pulp and paper industries in terms of 

production, the total non-wood pulp production amount hardly reached 0.8% of the total 

pulp production (273000 tons) (CEPI 2020). 

An overall evaluation of the papermaking potential of a raw material as pulp 

feedstock, besides its morphological analysis, requires the evaluation of the physical 

properties of the obtained paper handsheets, the optimization of pulping and bleaching 

conditions, and the pulping chemical recovery (recycling of pulping chemicals, utilization 

of black liquor) processes. (Kamoga et al. 2016; Jahan et al. 2021). Non-wood fibers have 

unlimited differences in terms of their physical and chemical properties, and they all cover 

various average fiber dimensions and a wide selection of cell types and sizes (El-Sayed et 

al. 2020).  

The physical properties of any paper primarily depend on its fiber morphology, 

fiber-fiber bonding, pulp refining, wet pressing, and formation (Sharma et al. 2020b). The 

fiber anatomical dimensions greatly impact the quality and performance of the final paper 

product, since these dimensions are highly correlated with its physical strength, and 

printing quality (Pulkkinen et al. 2009; Hu et al. 2013; Pereira et al. 2016). For instance, 

the fiber morphological properties directly affect the runnability on the paper machine, the 

refining response, the pulp bonding ability, and the physical, optical, and strength 

properties of the paper (Gülsoy and Şimşir 2018).  

The fibers length (FL) and average FL distribution of a plant are considered 

essential morphological features, since they have a major impact on the paper strength, 

paper sheet formation, and drainage. Nevertheless, FL alone is not a good predictor of 

paper properties (Simmonds and Hyttinen 1964; Ai and Tschirner 2010; Saeed et al. 

2017a). The fiber width (FW) and cell wall thickness (CWT) are highly correlated with 

fiber flexibility and bending resistance. Arundo donax fibers obtained from internodes parts 

of the plant, presented narrower LD and less wide CWT compared to those of nodes fibers, 

suggesting better papermaking properties (Shatalov and Pereira 2006). Furthermore, 

shorter LD have a positive influence on the beating of the pulp. In contrast, thicker cell 

walled fibers diminish the folding endurance, the burst and tensile index, and the 
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synergistic effect on the tear strength of a paper (Agnihotri et al. 2010; Tofanica et al. 2011; 

Saeed et al. 2017a). 

In addition, the importance of plant fiber cell dimensions and their derived values 

on pulp and paper mechanical strength is well documented (Ververis et al. 2004; Nasser et 

al. 2015). Therefore, the morphological indices derivatives, i.e., the slenderness ratio (SR), 

flexibility coefficient (FC), and Runkel ratio (RR), obtained from geometrical 

measurements of the fibers, are often used as an evaluating criterion to assess the suitability 

of a plant-based source as feedstock in papermaking production. 

Additionally, pulp refining, the mechanical treatment of fibers, is a necessary step 

conducted on the raw source to improve the pulp quality. Depending on the pulp source, 

pulp consistency, refining equipment, and intensity, refining differently affects the final 

morphology and characteristics of the treated fibers. A few of the changes during the 

internal and external fibrillation of the fibers due to refining are the shortening of the fiber 

length, fines formation, and fibers’ straightening (Gharehkhani et al. 2015). Therefore, the 

fiber morphological parameters, i.e., fiber length, fiber width, lumen diameter, and cell 

wall thickness, of the raw non-wood plant fibers are important quality factors influencing 

both the pulp and paper properties and are essential to predicting the strength properties of 

the produced paper grades.   

Thus, an initial morphological evaluation of raw non-wood fiber dimensions is a 

needful assessment to take into consideration, regarding the properties of the produced pulp 

and paper. Nevertheless, up to now, there are contradictory findings when it comes to the 

previous extended literature. The objective of this study was to conduct a unified fiber 

morphological parameter analysis, by applying the same maceration treatment and 

calibration/measurement method on the raw AgRs. Finally, this article aimed at detecting 

the potential differences between the novel results of the authors and the existing literature, 

hoping to infer the most appropriate AgRs feedstock for the pulp and paper industry. 

 

 

EXPERIMENTAL 
 

Materials and Methods 
Raw materials 

For this study, the following 10 AgRs sources were investigated: wheat straw 

(Triticum spp.), barley straw (Hordeum vulgare), maize stalk (Zea mays), rice straw (Oryza 

sativa), sunflower stalk (Helianthus annuus), rapeseed (Brassica napus L.), and sugarcane 

bagasse (Saccharum officinarum). In addition, coconut husk (Cocos nucifera) fibers, and 

from the perspective of energy crops, two genotypes of Miscanthus x giganteus grass 

residues were examined (labelled as MG-S-O2-V and MG-S-01-P, respectively) (Fig. 1). 

Wheat straw, barley straw, rapeseed straw, maize stalks, and sunflower stalks 

samples were collected by local farmers in the region of Győr-Moson-Sopron, Hungary. 

The Miscanthus x giganteus stalks, were provided by Energianoveny Ltd., (Lengyeltóti, 

Hungary). The rice straw, coconut husk coir fibers, and sugarcane bagasse were obtained 

from local producers in Vietnam, while their chemical treatment and measurement analysis 

were performed in Hungary. All samples were air-dried, chopped into 3 to 5 cm length 

pieces, and finally stored in sealed polyethylene bags until sample preparation. 
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Fig. 1. Raw material of the agricultural residues (AgRs) examined in this study   

 

Sample preparation 

The non-wood AgRs were macerated according to the method performed by 

Danielewicz et al. (2018). Approximately 2 mm x 2 mm x 5 mm sticks were cut using a 

sharp knife. Thereafter, the sticks were placed in vials with the maceration solution, 

capped, and placed in a drying oven at a temperature of 60 °C for one week. The ratio of 

the volume of maceration solution to non-wood samples was 100 to 1 (v∕w); the maceration 

solution was composed of one-part hydrogen peroxide (30% H2O2 solution), four parts of 

deionized water, and five parts of pure glacial acetic acid. In due course, the samples were 

washed and mixed with distilled water to separate the fiber bundles into individual fibers. 

The macerated solution samples consisted of an overall mixture of all plant parts, including 

the pith, nodes, and internodes.  

 

Measurements and data processing 

For the morphological analysis, optical microscope (OM) images were captured at 

x40 and x200 magnifications using a Nikon Eclipse 80i optical microscope (Nikon 

Instruments Inc., Tokyo, Japan). At least 200 fibers per AgR source were randomly 

measured. The number varied according to the density of each AgR solution. Image-Pro 

Plus software (version 6, Media Cybernetics Inc., Rockville, Maryland) was used for 

measuring the fiber morphological parameters. The OM images captured at x40 

magnification were used for the FL measurements, while those captured at x200 were used 

for measuring the FW, LD, and CWT. The average values of the FL, FW, LD, and CWT 

parameters were calculated for each AgR source. 

To assess the suitability of the AgRs as pulp feedstocks for paper production, the 

following three fiber morphological indices (SR, FC, and RR) were calculated according 

to Eqs. 1, 2, and 3, 

SR = FL ∕ FW                (1) 

FC = (LD / FW) × 100              (2) 

RR = 2 × CWT / LD              (3) 

(Ogbonnaya et al. 1997; Ververis et al. 2004; Albert et al. 2011; Mousavi et al. 2013; 

Saeed et al. 2017a). 
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RESULTS AND DISCUSSION 
 

Fiber Dimensions Analysis 
Representative OM images of the macerated fibers measured for the morphological 

analysis of the AgR sources are shown in Figs. 2 through 6. The OM images depict the 

diversity among the AgR raw materials. 

 

 
 

Fig. 2. Optical microscope images of the cereal straw residue fibers at ×40 and ×200 
magnifications 

 

 
 

Fig. 3. Optical microscope images of the stalk residue fibers at ×40 and ×200 magnifications 
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Fig. 4. Optical microscope images of the rapeseed residue fibers at x40 and x200 magnifications 
 

 
 

Fig. 5. Optical microscope images of the Asian originated residue fibers at x40 and x200 
magnifications 
 

The observed average FL values of the measured non-wood plant residues (Table 

1) were found to be approximately within the 0.7 mm to 3.0 mm hardwood FL range 

(Simmonds and Hyttinen 1964; Ring and Bacon 1997). In addition, they were found to be 

within the FL range of the other investigated non-wood fibers obtained from vegetable 

AgR sources (Gonzalo et al. 2017; Saeed et al. 2017a). The sugarcane bagasse fibers 

presented the longest average FL (1.15 mm ± 0.58 mm), while the Miscanthus MG-S-02-

V fibers had the shortest (0.50 mm ± 0.32 mm) average FL. As demonstrated by Marín et 

al. (2009) and de Assis et al. (2019), fibers with lengths ranging between 0.2 mm and 1.2 

mm, as well as those with a length greater than 1.2 mm, are considered short and long 

fibers, respectively. Hardwood fibers usually are short ranging from 0.7 to 1.6 mm, with 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Tsalagkas et al. (2021). “Agricultural residues content,” BioResources 16(4), 7935-7952.  7942 

an average fiber length of 1 mm, while softwood fibers are much longer typically ranging 

from 2.7 to 4.6 mm (Elmas et al. 2018). Therefore, the assessed AgRs can be counted as 

having a short FL, and short length fibers result in a denser, smoother, and more uniform 

paper sheet formation (Ai and Tschirner 2010).  

 

 
 

Fig. 6. Optical microscope images of the Miscanthus genotypes straw fibers at x40 and x200 
magnifications 

 

Table 1. Estimated Fiber Morphological Parameters of the Investigated 
Agricultural Residues (AgRs) 

Agricultural Residue Source 
FL 

(mm) FW (μm) 
LD 

(μm) 
CWT 
(μm) 

Wheat straw (Triticum spp.) 
0.78 

(± 0.44) 
16.87 

(± 5.46) 
8.34 

(± 5.12) 
4.13 

(± 1.40) 

Barley straw (Hordeum vulgare) 
0.67 

(± 0.47) 
15.26 

(± 4.47) 
6.97 

(± 4.01) 
4.07 

(± 1.35) 

Rice straw (Oryza sativa L.) 
0.54 

(± 0.44) 
10.77 

(± 3.28) 
4.52 

(± 2.52) 
3.02 

(± 0.95) 

Maize stalks (Zea mays spp) 
0.75 

(± 0.31) 
17.18 

(± 5.65) 
9.73 

(± 4.69) 
3.68 

(± 1.13) 

Sunflower stalks (Helianthus annuus L.) 
0.64 

(± 0.36) 
22.99 

(± 5.20) 
13.23 

(± 4.87) 
4.80 

(± 1.48) 

Rapeseed up. (Brassica napus L.) 
0.71 

(± 0.53) 
18.36 

(± 5.58) 
9.73  

(± 4.57) 
4.25 

(± 1.27) 

Rapeseed low. (Brassica napus L.) 
0.57 

(± 0.42) 
18.99 

(± 4.73) 
11.04 

(± 4.24) 
3.86 

(± 1.22) 

Sugarcane bagasse (Saccharum 
officinarum L.) 

1.15 
(± 0.58) 

19.86 
(± 6.25) 

10.25 
(± 5.50) 

4.50 
(± 1.80) 

Coconut husk/coir fibers (Cocos nucifera) 
0.67 

(± 0.27) 
17.60 

(± 3.12) 
10.71 

(± 2.73) 
3.30 

(± 0.69) 

Miscanthus x giganteus Stalks MG-S-02-V 
0.50  

(± 0.32) 
15.17 

(± 4.89) 
5.76 

(± 3.79) 
4.64 

(± 1.45) 

Miscanthus x giganteus Stalks MG-S-01-P 
0.72  

(± 0.43) 
15.52 

(± 5.06) 
7.03 

(± 3.98) 
4.16 

(± 2.21) 
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Table 2. Average Values of the Fiber Morphological Parameters per Agricultural 
Residue (AgR) Source According to Literature References 

Agricultural Residue 
Source 

FL 
(mm) 

FW 
(μm) 

LD 
(μm) 

CWT 
(μm) 

References 

Wheat straw (Triticum 
spp.) 

0.74 
(± 0.28) 

13.20 
(± 2.21) 

4.02 
(± 1.69) 

4.59 
(± 1.92) 

Deniz et al. (2004) 

0.85 
(± 0.17) 

9.90 6.80 1.60 Garay et al. (2009) 

1.18 
(± 0.08) 

13.60 
(±1.7) 

5.68 
(± 1.09) 

3.96 
(±0.08) 

Singh et al. (2011) 

1.02 
(± 0.28) 

11.00 
(± 3.0) 

8.60 
(± 3.0) 

1.20 
(± 0.2) 

Nasser et al. (2015) 

 
Rice straw (Oryza 

sativa L.) 
 

0.89 14.80 6.40 6.36 Tutus et al. (2004) 

0.66 
(± 0.24) 

4.90 1.90 1.50 Garay et al. (2009) 

0.83 
(± 0.15) 

10.89 
(± 1.30) 

4.57 
(± 0.1.37) 

3.16 
(± 0.53) 

Kiaei et al. (2011) 

Maize stalks (Zea 
mays spp) 

1.32 24.30 10.70 6.80 Usta et al. (1990) 

1.52 
(± 0.49) 

8.40 4.40 2.00 Garay et al. (2009 

0.88 
(± 0.23) 

20.12 
(± 3.63) 

10.92 
(± 3.86) 

4.59 
(± 0.98) 

Kiaei et al. (2011) 

Sunflower stalks 
(Helianthus annuus L.) 

1.27 16.70 5.75 5.46 
Khristova et al. 

(1998) 

0.96 
(± 0.21) 

22.84 
(± 3.96) 

11.12 
(± 3.32) 

5.85 
(± 1.19) 

Kiaei et al. (2011) 

0.96 
(± 0.3) 

23.70 
(± 0.5) 

11.90 
(± 0.8) 

5.90 
(± 0.3) 

Rudi et al. (2016) 

Rapeseed straw 
(Brassica napus L.) 

1.17 23.02 12.50 5.26 Enayati et al. (2009) 

1.21 28.00 11.90 7.43 Yousefi (2009) 

1.31 31.00 19.50 5.75 
Hosseinpour et al. 

(2010) 

0.95 
(± 0.18) 

24.12 
(± 6.02) 

15.50 
(± 5.24) 

4.31 
(± 1.88) 

Kiaei et al. (2011) 

1.20 
(± 0.26) 

13.10 
(± 3.34) 

8.60 
(± 2.82) 

2.25 
(± 0.47) 

Tofanica et al. 
(2011) 

1.03 28.00 19.10 4.91 
Mousavi et al. 

(2013) 

Sugarcane bagasse 
(Saccharum 

officinarum L.) 

1.70 8.40 5.20 1.60 
Khristova et al. 

(2006) 

1.51 
(± 0.08) 

21.40 
(± 1.6) 

6.27 
(± 0.4) 

7.74 
(± 0.2) 

Agnihotri et al. 
(2010) 

1.59 
(± 0.21) 

20.96 
(± 0.24) 

9.72 
(± 0.29) 

5.64 
(± 0.33) 

Hemmasi et al. 
(2011) 

1.32 
(± 0.30) 

20.96 
(± 5.03) 

9.66 
(± 3.32) 

5.58 
(± 1.54) 

Kiaei et al. (2011) 

Coconut husk/coir 
fibers 

(Cocos nucifera) 

0.69-
1.06 

17.52-
20.68 

10.71-
12.97 

2.91-4.02 Dam et al. (2006) 

0.84 
(± 0.17) 

20.09 
(± 3.84) 

13.59 
(± 3.26) 

4.41 
(± 1.14) 

Main et al. (2014) 

Miscanthus x 
giganteus stalks 

0.97 
(± 0.08) 

14.2 
(± 2.5) 

5.90 
(± 2.2) 

4.10 
(± 0.8) 

Ververis et al. 
(2004) 
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Moreover, the calculated FW values in this study displayed a narrow to medium 

width, i.e., 15.17 μm ± 4.89 μm for Miscanthus MG-S-02-V and 22.99 μm ± 5.20 μm for 

the sunflower stalk (apart from the narrower fibers of rice, ranging from 10.77 μm ± 3.28 

μm). The FW ranges of these AgRs are comparable to the hardwood FW range (18.0 μm 

to 30.0 μm) values (Tofanica et al. 2011). Referring to the rest of the examined parameters, 

the LD ranged from 4.52 μm ± 2.52 μm (rice straw) to 13.23 μm ± 4.87 μm (sunflower 

stalk), and the CTW ranged from 3.02 μm ± 0.95 μm (rice straw) to 4.80 μm ± 1.48 μm 

(sunflower stalk). 

In general, the calculated FL dimensions in this work were shown to drastically 

vary in many cases, with the values reported from other researchers with analogous 

measurements on the same non-wood species. However, the remaining fiber dimensions 

values of the present study, i.e., the FW, LD, and CWT, were mostly found in agreement 

with the values reported by previous reference studies (as shown in Table 2). The notable 

FL differences with respect to the other studies could be explained by several reasons: (i) 

a variation in the total number of fibers measured to estimate the average morphological 

values; (ii) the crop varieties; (iii) the genotype or hybridization of the plant; (iv) software 

and calibration measurements; (v) the investigated parts of plants nodes, pith, internode; 

and (vi) the climate as well as the conditions of each collection site.   

For instance, the FL increases from the base to the top for all non-wood plants, 

which might be a possible explanation for the observed average FL difference between the 

upper and lower rapeseed parts (Ververis et al. 2004). Furthermore, mature cereal straws 

and Miscanthus grass stems frequently do not contain pith at the internodes while retaining 

pith at the sections of the nodes. In other AgRs, e.g., maize, sugarcane, and sunflowers, the 

stem remains solid, and thus the proportion of pith content is relatively higher compared to 

cereal straws (Ilvessalo-Pfäffli 1995). Pith mainly contains parenchyma cells, while node 

parts of the non-wood plants contain mostly short fibers, and parenchyma cells. Their 

internode parts contain longer fibers including a certain number of vessels and parenchyma 

cells. Therefore, the removal of the pith from the stalks is expected to increase the average 

FL of pulp fibers from de-pithed material (Danielewicz et al. 2018). The examined 

macerated solutions in this work contained mixed specimens of all the plant parts, 

compared to other studies in which the examined materials were depithed, e.g., in Enayati 

et al. (2009), Hosseinpour et al. (2010), Kiaei et al. (2011), Tofanica et al. (2011), and 

Rudi et al. (2016). Additionally, a difference in the average FL values between the two 

Miscanthus genotypes was observed. Correspondingly, Dam et al. (2006) also noted slight 

differences in the fiber cell lengths among six coconut cultivars.  

 

Morphological Indices and Papermaking Potential 
The SR is an important parameter, that combined with the RR, helps to evaluate the 

morphological potential of lignocellulose fiber for paper production (Agnihotri et al. 2010). 

The SR is related to pulp digestibility, as well as the paper sheet density and tearing 

resistance (Ogbonnaya et al. 1997; Agnihotri et al. 2010). The higher an SR value is, the 

longer, thinner, and more flexible the fibers are considered to be, and subsequently, the 

stronger the tearing resistance of the paper sheet is expected to be (Ogbonnaya et al. 1997; 

Nasser et al. 2015). An optimal SR value range between 95 and 120 or between 55 to 75 

for softwood and hardwood pulps, respectively, is recommended (Tofanica et al. 2011; 

Rudi et al. 2016; Gülsoy and Şimşir 2018). However, a non-wood plant source is 

considered sufficient for papermaking processes if the SR value is less than 70 and higher 

than 33 (Saeed et al. 2017a).  
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The FC index is related to the individual elasticity of fibers and has a positive effect 

on the interfibrillar bonding behaviour of fibers, and eventually on the tensile and burst 

strength properties. Plant fibers can be classified as highly rigid fibers (an FC less than 30) 

through high elastic fibers (an FC greater than 75) (Tofanica et al. 2011; Gülsoy and Şimşir 

2018). A higher rigidity of fiber has a negative influence on the mechanical strength 

properties of the resulting paper and provide porous papers with lower resistance (Nasser 

et al. 2015; Saeed et al. 2017a). 

Plant material fibers with a RR less than 1 are suggested as preferable raw material 

for pulp and paper production, since these fibers are more flexible, easily collapsed, and 

less rigid, thus forming papers with improved strength. Previous studies indicated that 

fibers with a RR above 1 are stiffer, less flexible, exhibit lower interfibrillar bonding, and 

form bulkier papers (Agnihotri et al. 2010; Tofanica et al. 2011; Nasser et al. 2015; Gülsoy 

and Şimşir 2018). 

A higher average FL, combined with a higher SR, a higher FC, and lower RR values 

indicate higher tensile, tear, and burst strength properties. Thus, non-wood plant sources 

that have these morphological characteristics should be considered optimal candidates as 

feedstocks in the pulp and paper industries. 

 

Table 3. Estimated Morphological Indices Values of the Investigated Agricultural 
Residues (AgRs) 

Agricultural Residue Source SR FC RR 

Wheat straw (Triticum spp.) 46.31 49.44 0.98 

Barley straw (Hordeum vulgare) 43.86 45.67 1.17 

Rice straw (Oryza sativa L.) 49.90 41.97 1.34 

Maize stalks (Zea mays spp) 43.81 56.63 0.87 

Sunflower stalks (Helianthus annuus L.) 28.08 57.80 0.72 

Rapeseed up. (Brassica napus L.) 38.70 53.0 0.87 

Rapeseed low. (Brassica napus L.) 30.24 58.13 0.70 

Sugarcane bagasse (Saccharum officinarum L.) 58.11 51.72 0.88 

Coconut husk/coir fibers (Cocos nucifera) 38.32 60.8 0.62 

Miscanthus x giganteus stalks MG-S-02-V 32.85 37.97 1.68 

Miscanthus x giganteus stalks MG-S-01-P 46.21 45.30 1.18 

 

According to the RR values classified by Tofanica et al. (2011), wheat straw, 

rapeseed straw, maize stalk, sunflower stalks, and sugarcane bagasse fibers (with a RR of 

0.50 to 1.0), are suitable for paper manufacturing products and are further characterized as 

flexible fibers with a medium thickness cell wall. The remaining AgRs, i.e., barley straw, 

rice straw, and miscanthus straw fibers (with a RR of 1.0 to 2.0), were found to be stiff, 

with thick cell walls, and small lumen fibers, and therefore are less suitable for paper 

products (Table 3). The morphological indices of the investigated AgRs revealed that 

Miscanthus MG-S-O2-V seems unsuitable as a pulp feedstock. However, wheat straw, 

maize stalks, rapeseed upper straw, sugarcane bagasse, and coconut husk were found to be 

suitable as a raw materials for pulp production. The remaining AgR sources can be 
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classified as having intermediate suitability as a non-wood pulp feedstock. In addition, 

barley straw, rice straw, and Miscanthus MG-S-01-P had a RR greater than 1, whilst 

sunflower stalks and rapeseed lower part straw fibers had an SR less than 33. 

 

Table 4. Morphological Indices Values per AgRs Source According to Literature 
References 

Agricultural Residue Source SR FC RR References 

Wheat straw (Triticum spp.) 

55.9 30.45 0.21 Deniz et al. (2004) 

85.76 68.69 0.47 Garay et al. (2009) 

86.76 41.76 1.39 Singh et al. (2011) 

96.4 78.2 0.28 Nasser et al. (2015) 

 
Rice straw (Oryza sativa L.) 

 

60.13 43.24 1.98 Tutus et al. (2004) 

134.70 38.77 1.58 Garay et al. (2009) 

76.58 41.96 1.38 Kiaei et al. (2011) 

Maize stalks (Zea mays spp.) 

54.32 44.03 1.27 Usta et al. (1990) 

180.95 52.38 0.91 Garay et al. (2009 

44.08 54.27 0.84 Kiaei et al. (2011) 

Sunflower stalks 
(Helianthus annuus L.) 

76.04 34.43 1.90 Khristova et al. (1998) 

42.03 48.68 1.05 Kiaei et al. (2011) 

40.55 50.49 0.49 Rudi et al. (2016) 

Rapeseed straw 
(Brassica napus L.) 

50.83 54.30 0.84 Enayati et al. (2009) 

43.21 42.5 1.25 Yousefi (2009) 

42.26 62.9 0.59 Hosseinpour et al. (2010) 

39.59 64.26 0.55 Kiaei et al. (2011) 

36.8 68.21 0.51 Tofanica et al. (2011) 

91.0 26.00 0.58 Mousavi et al. (2013) 

Sugarcane bagasse 
(Saccharum officinarum L.) 

202.4 61.9 0.61 Khristova et al. (2006) 

70.56 29.30 2.46 Agnihotri et al. (2010) 

75.86 46.37 1.16 Hemmasi et al. (2011) 

62.97 46.08 1.15 Kiaei et al. (2011) 

Coconut husk/coir fibers 
(Cocos nucifera) 

45.55 61.99 0.58 Dam et al. (2006) 

41.81 67.64 0.65 Main et al. (2014) 

Miscanthus x giganteus stalks 68.3 41.5 1.3 Ververis et al. (2004) 

 

It should be noted that several morphological indices variations are documented in 

various literature (Table 4). The indicated differences appear to verify the necessity of an 

identical, integrated morphological analysis, to assess the suitability of the primary AgRs 

sources, which has been carried out in this work.  

However, in addition to the morphological parameters of the fibers, high cellulose 

and low lignin contents are also essential evaluation criteria of a material planned to be 

used as a feedstock in pulp and paper industries and should be taken under consideration 

(Amode and Jeetah 2021). From a chemical point of view, cereals crop residues, i.e., wheat, 

maize, barley, rice, and rapeseed straw, contained an average lignin content of 

approximately 17% to 20% and an average cellulose content of 37% to 41%. Sunflower 

straw exhibited intermediate lignin and cellulose compositions, i.e., 25.2% lignin and 

34.8% cellulose contents. Miscanthus grass has been reported to exhibit considerably high 

cellulose (46.3%) content. On the contrary, sugarcane bagasse, which in this study 

displayed excellent morphological results, has been reported to hold relatively low 

cellulose (26.8%) values (Thorenz et al. 2018). 
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CONCLUSIONS 
 

Agricultural residues (AgRs) have already been used or examined as feedstock 

materials for pulps. Fiber morphological analysis is one of the most essential prerequisites 

to illustrate their suitability for this purpose. However, several variations are documented 

in the literature relevant to their morphological characteristics and indices. In this study, it 

was attempted to deal with such considerations. Therefore, a comparative morphological 

analysis under an identical maceration and measurement analysis was performed among 

the major AgR crops worldwide. 

1. From a morphology point of view, wheat straw, maize stalks, rapeseed straw, sugarcane 

bagasse, and coconut husk fibers were found to present the minimum potential required 

morphological parameters and therefore considered as the most suitable feedstocks for 

papermaking processes. 

2. This outcome is very encouraging since these residues primarily account for a majority 

of the total residual biomass availability in their classified groups, i.e., cereals, oil, and 

sugar crops, respectively. It was also shown that the average rapeseed fiber length was 

slightly different, depending on the height of the plant. 

3. Similarly, the average miscanthus fiber length was greatly influenced by the originated 

genotype.   
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