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Chitosan (CS) is a natural polysaccharide isolated from insects, molluscs, 
and fungi. The specific properties of chitosan can be enhanced using 
physicochemical processes. The composites prepared using CS and 
graphene oxide (GO) contain active functional groups such as epoxide, 
carboxyl, and hydroxyl, which possess excellent biocompatibility, high 
adsorption capacity, and biodegradability. Their low cost and ease of scale-
up make them employable for multiple applications in water-treatment 
plants, electronics, solar cells, and pharmaceuticals. This review provides 
an overview of sources, types, and properties of chitin, chitosan, and 
graphene oxide. The use of these composites for the preparation of anti-
microbial drugs has been discussed here. The article also explores the 
applicability of such composites for removal of heavy metals (lead, copper, 
chromium, cobalt, mercury, etc.), dyes (methylene blue and other reactive 
dyes), and organic and inorganic contaminants (ofloxacin, naphthanol, 
phenol, and oil, etc.). The article highlights various knowledge gaps in the 
field and the scope of future work. 
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INTRODUCTION 
 

 Polymer-based nanocomposites have applications in various fields such as 

wastewater treatment, electronics, energy, pharmaceuticals, and medicine. Low cost, high 

recyclability, biocompatibility, ease of degradability, and scalability make bio-based, 

commonly available, natural polymers such as chitosan (CS) materials of choice for 

multiple fields ranging from wastewater treatment to medicinal applications (Dutta et al. 

2004; Cheung et al. 2015; Palza 2015). Their high affinity for metals, organic and inorganic 

particles coupled with the higher surface area makes them promising materials for the 

removal of contaminants from wastewater (Chen et al. 2013; Schwarz et al. 2016; Singh 

et al. 2019; Suri 2020; Suri et al. 2021; Upadhyay et al. 2021). In combination with 

graphene oxide (GO) and inorganic nanoparticles such as ZnO, Fe3O4, GO, and TiO2,  it is 

possible to introduce additional functional groups that can increase their chelation capacity, 

improve the surface area and active sites, and assist in further modification of their 

properties (Kyzas and Bikiaris 2015; Morsy 2015; Salam 2017; ZabihiSahebi et al. 2019).  

The presence of heavy metals in soil and water is a significant threat to the 

ecosystem. Heavy metals, dyes, and inorganic pollutants are widespread through various 

sources and taken up by plants in the environment. As a result, they enter into the food 

chain and are ingested by humans and animals. Consistent efforts are being made to 
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effectively remove contaminated water and soil samples (Chauhan et al. 2020). Various 

heavy metals like copper, chromium, and mercury are removed from contaminated samples 

using composting, landfarming, coagulation, flocculation, membrane separation, and 

adsorption processes (Kaur et al. 2020). Attempts have been made in the literature to 

develop green adsorbents for wastewater treatment. 

Cs and GO are promising materials with unique properties such as biocompatibility, 

safety, and antimicrobial capacity. They are also proven to be effective as drug delivery 

agents. Attempts on forming nanocomposites made from natural materials such as CS and 

GO in various ways have yielded properties even better than individual CS or GO used 

alone (Ates et al. 2020). Thus, the present literature study covers the essential aspects of 

CS and GO-based nanocomposites and their applicability in the specified areas. It explores 

the sources, types, and properties of CS and GO. The applications of modified CS-GO-

based composites for removing heavy metals, dyes, and pollutants from wastewater are 

reviewed. An overview of its antimicrobial properties and potential as a medium for drug 

delivery is also presented. This information can serve as a reference document for 

technologists and scientists to research and develop new systems based on Cs-GO 

nanocomposites (Ahmad et al. 2017).   

 

  

ORIGIN AND SOURCES OF CHITIN AND CHITOSAN   
 
  The word chitin is derived from the Greek word “Chiton”, meaning covering or 

envelope. It was discovered as a new polysaccharide and reported for the first time in 1811 

by French professor Henri Braconnot as fungine while researching edible mushrooms. 

Later, in 1823, Antoine Odier named it chitine because of its unique presence in insects' 

cuticles (Crini 2019). Later, its structure was determined by Albert Hofman (Hofmann 

1979). In 1859, Charles Rouget described deacetylation of chitin to obtain a modified form 

of chitin, which was later termed chitosan by Hoppe-Seyler in 1894 (Crini 2019). The 

polysaccharides chitin and chitosan are made up of amino sugars D-glucosamine and  N-

acetyl-D-glucosamine. The ratio of amino sugars D-glucosamine and N-acetyl-D-

glucosamine indicates whether the polysaccharide is considered chitin or chitosan 

(Brigham 2017). Chitosan is a linear cationic copolymer consisting of alternating units of 

N-acetyl-glucosamine (20%) and D-glucosamine (~80%) obtained by deacetylation of 

chitin, whereas chitin is a linear polymer composed of repeated units of β-1,4-linked N-

acetylglucosamine (50%) (Philibert et al. 2017; Hahn et al. 2020b). Both polymers have 

exclusive properties and find applications in various fields (Cheung et al. 2015; Younes 

and Rinaudo 2015). Chitin consists of huge crystalline nitrogen-containing polysaccharides 

with an estimated production of about 1011 to 1014 tons per annum (Bastiaens et al. 2019). 

Due to versatility and accessibility, chitin is the second most abundant polysaccharide after 

cellulose and hemicellulose.  

  The primary sources of chitin and chitosan are shown in Fig. 1. The most common 

source of chitin is shellfish and other aquatic invertebrates. These species are found in 

considerable quantities in the fish processing industry (Yadav et al. 2019). Chitin is located 

in the exoskeleton of sea animals such as annelids,  molluscs, coelenterate, crustaceans 

(crabs, shrimps, and lobsters), and insects such as honey bee, silkworms, scorpions, spiders, 

ants, beetles, and cockroaches as supporting tissues of organisms (Kaur and Dhillon 2014). 

The content of chitin is highest in shrimp cuticle and squid pen waste, ranging from 15 to 

40% as compared to other crustacean waste since shrimps have a thinner shell wall than 
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lobsters and crabs  (Tharanathan and Kittur 2003; Wang et al. 2020; Tan et al. 2020; 

Khayrova et al. 2021; Kou et al. 2021). While insects are a viable substitute source for 

chitin, being an abundant species globally, a lower quantity of chitin is extracted from fungi 

such as F. fomentarius and L. vellereus (Bastiaens et al. 2019, Sagheer et al. 2009). A 

significant part of the head and shell waste is obtained only from shrimp (about 60%). At 

the same time, the cuticle can contain up to 80% chitin (Pal et al. 2014). The amount of 

chitin depends on the type of species, body part, season, and growth rate. 

  In contrast, chitosan is a partially deacetylated copied form of chitin (Letourneau 

et al. 1976). Chitosan content of 1 to 10% on dry biomass base has been found, with a 

reported degree of deacetylation of 83 to 94%. Chitosan is produced synthetically by 

converting chitin in the presence of a deacetylase enzyme (Dhillon et al. 2013).  

 
Fig. 1. Sources of chitin and chitosan 

 

 In addition to fungi, bacteria can be used for the production of chitosan using 

enzymatic deacetylation. Kaur and Dhillon (2014) isolated chitosan from soil bacteria 

(Bacillus sp. and Serritia sp.) through chitin’s deacetylation. However, the efficiency of 

this process is affected by the insolubility and degradation of chitin (Aranaz et al. 2009). 

In addition, Kaur et al. (2012) suggested that the fast-growing bacteria or the isolated 

enzymes can be used for natural chitosan production. Over 10 billion tons of chitin are 

produced annually from the seafood processing industry (Casadidio et al. 2019). Chitin 

and chitosan are now extracted commercially in India, Japan, Poland, Australia, and the 

US. In the future, chitin's production rate will increase significantly due to increased waste 

generation of insects, exuviae, and exoskeletons. More research is required for surplus 

sources and utility of chitin/chitosan in the near term (Dutta et al. 2004). 

 Three types of crystal-like forms of chitin α, β, and γ (mixer of α and β chitin) are 

found in nature (Aam et al. 2010). Different types of chitin allomorphs are shown in Fig. 

2. Of these, α chitin is typically isolated from the shells and the exoskeleton of crustaceans,  

insect cuticles, shrimps, crab, and lobsters (Kaur and Dhillon 2014; Yadav et al. 2019). In 
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α chitin, polysaccharide chains are organized in an antiparallel direction, allowing 

maximum bonding. Hence, α chitin is highly stable, having a high degree of crystallinity 

(80%). β chitin is usually found in squid pens, aphrodite chaetae, seaweeds, protozoa 

(Sagheer et al. 2009; Hajji et al. 2014). Here, polysaccharide chains are organized in 

parallel, with a crystallinity index of 70%. The target distance between the adjacent 

polymer chains makes it more reactive and soluble in solvents (Yadav et al. 2019).  The γ-

chitin exists mainly in fungi and yeast. It is recognized by two parallel and one antiparallel 

sheet arrangement.  

 
Fig. 2. Different types of Chitin Allomorphs 

 
 
PROPERTIES OF CHITIN AND CHITOSAN 

 
CS is more versatile than chitin due to amino groups at the C-2 positions (Dutta et 

al. 2004). Modification of chitin and CS help in the increasing of its solubility and 

versatility (Ishihara et al. 2012). Both chitin and CS can form films, chelate with metals, 

and moderate water permeability (Dutta et al. 2004). Due to low toxicity and digestibility, 

they can be used as food additives. Also, they are shown to be helpful to lower cholesterol 

in human blood (Knoor 1983). Both prevent the invasion of pathogens. However, chitosan 

is known to exhibit better properties and thus applicability than chitin.  Chitin is a white, 

rigid, inelastic, nitrogenous polysaccharide (5 to 7% nitrogen).  Being hydrophobic, it is 

insoluble in water and organic solvents. Due to its one reactive amine and two hydroxyl 

groups, chitosan has higher solubility, hydrophilic character, and adsorption capacity than 

chitin. CS is also soluble in aqueous solutions of acids. Solubility in aqueous solution gets 

further enhanced by N-alkylidinations and N-acylation (Muzzarelli 1997). It has an 

extensive semicrystalline structure. It has low immunogenicity and binds to mammalian 

and microbial cell aggregates (Dutta et al. 2004; Cheung et al. 2015). CS also displays 

mucoadhesive film-forming and chelating activity (Patra et al. 2018). The pH sensitivity 

and high biological compatibility of chitosan motivate researchers to explore its application 

in drug delivery systems, especially for cancer treatment (Dutta et al. 2004; Philibert et al. 

2017; Yassue-Cordeiro et al. 2018;  Ramachandran et al. 2019). Due to its long shelf-life 

and ability to form semipermeable, rigid, permanent and impermeable films, it can be used 

to wrap food products (Muzzarelli et al. 1986). CS is effective to remove endotoxins found 

in proteins as contaminants. Endotoxins are pH and heat stable and are not easily 

destroyable using normal sterilising conditions. CS can interact with endotoxins and help 
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in downstream protein purification processes (Wang et al. 2013a). 

CS is biocompatible, non-toxic, biodegradable, and has broad-spectrum 

antimicrobial activities (Jiang et al. 2014). The antifungal activity of CS is higher than 

chitin (Limam et al. 2011). CS can promote bone formation because it can be shaped into 

structures and geometries suitable for cell in-growth and post-growth conditions 

(Figueiredo et al. 2015).  With unique biological activities, including analgesic, antitumor, 

haemostatic, and antioxidant properties, CS finds application in the biomedical field 

(Brigham 2017; Casadidio et al. 2019). 

 
 

METHODS OF EXTRACTION OF CS 
 

The chitosan family consists of different D-N-deacetylated forms of chitin, and its 

properties are highly dependent on the degree of deacetylation and its molecular weight 

(Younes and Rinaudo 2015; Philibert et al. 2017). CS is extracted from chitin through 

demineralization, deproteinization, deacetylation, and decolourization using chemical or 

biological processes such as enzymatic treatment or fermentation. It can be synthesized 

through nitrogen and oxygen substitution, copolymerization, and numerous other methods 

(Wang et al. 2016, 2020).  

The difference in alkali solution concentration, reaction time, temperature, 

chitin/alkali solution ratio, CS with different degrees of deacetylation can be obtained. The 

degree of acetylation represents the percentage of N-acetyl-d-glucosamine units to the total 

number of units. Hence for CS, the percentage degree of acetylation is below 50. Acetyl 

groups are removed arbitrarily, and a de-polymerization reaction occurs, which is indicated 

by changes in the molecular weight of CS. Various methods for the extraction of chitin and 

CS have been reported, although no standard practice has been implemented. However, 

demineralization and deproteinization are mostly chosen either using chemicals or 

biological agents. Few studies for extraction of chitin and chitosan using chemical and 

biological extraction are discussed below. 

Different researchers have investigated various chemicals and solutions to extract 

CS and chitin. Deproteinization is a fundamental step used to extract protein, while 

demineralization is an acidic step used to remove the inorganic calcium carbonate 

(Khanafari et al. 2008; Tan et al. 2020). In the demineralization process, hydrochloric acid, 

nitric acid, sulfuric acid, acetic acid, and formic acid are used. In contrast, the alkaline 

method for deproteinization is commonly used for protein extraction (Brine and Austin 

1981). Figure 3 explains the general procedure used for the extraction of chitin from crab 

and shrimp waste. 
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Fig. 3. Flowchart of procedure used for the extraction of chitin 

 

 
Fig. 4. General flowchart of procedure used for the biological extraction of chitin  
 

Chitin can be processed chemically as well as biologically to produce chitin, as 

shown in Fig. 4. While deacetylation is done with sodium hydroxide in chemical processes, 

biological processes utilise lactic acid bacteria for the same. Researchers have tried to 

modified these processes using different agents under different reaction conditions. The 

extraction of chitin and CS is affected by the body parts and the type of organism used. 

Biological methods of CS extraction use fermentation processes for shrimp or other 



 

PEER-REVIEWED REVIEW ARTICLE                  bioresources.com 

 

 

Khandegar et al. (2021). “Chitosan nanocomposites,” BioResources 16(4), 8525-8566.  8531 

organism waste. The solid and liquid fraction can be separated to allow for chitin 

extraction. Demineralization and protein removal steps can be done, as was in the chemical 

procedure. Nessa et al. (2010) extracted chitosan from sun-dried prawn shells by producing 

coarse particles in a centrifugal grinding machine. Some coarse particles were 

demineralized with 10% HCl acid at 27 C for 22 h. Deproteinising was done using NaOH 

solution for 24 h at 70 °C, then decolourization and drying under vacuum. A crispy powder 

of chitin was produced. Deacetylation of chitin was attained using NaOH for 45-72 h. The 

resulting chitosan was rinsed with distilled water and oven-dried. The yield of chitin was 

20%, and CS was 19.6%. Tarafdar and Biswas (2013) reported extraction using two 

different prawn shells and shrimp waste. In the first method, 10 g of prawn shell waste was 

washed and demineralized by adding 1.5 N HCl at 25 C for 1 h followed by de-

proteinisation with 0.5 to 3% NaOH at 100 C for 30 min. Deacetylation of chitin produced 

CS, which was prepared by treating with 42% aqueous NaOH at 95 °C for 1.5 h and washed 

then dried. In the second method, 5 g of shrimp waste was soaked then deproteinized in an 

aqueous NaOH solution at 25 C for 21 h. The deproteinized shell was demineralized by 

4% HCl at 25 C for 12 h. The chitin was dried at ambient temperature. CS was obtained 

by treating chitin with 50% aqueous NaOH at 40 C for three days. CS was dried at ambient 

temperature.  The overall procedures used in chemical, biological methods investigated in 

literature using insects, shellfish and fungi are shown in Fig. 5. 

 

 
Fig. 5. Chemical and biological extraction of chitosan from chitin 
 

Mohammed et al. (2013) extracted chitin and CS from prawn shells. Initially, 

frozen prawn shells were washed with boiled water then dried at 60 °C. The dried prawn 

shells were crushed and treated with 5% NaOH and refluxed at 60 °C for 2 h, followed by 

acetone treatment to remove colours at 25 °C for 24 h. To dissolve the calcium carbonate, 

these were further treated with a 0.5 or 1% HCl solution for 24 h at 25 C. Chitosan was 
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obtained by deacetylation process using NaOH solution at elevated temperature and 

concentration. After the procedure, chitosan was washed several times with distilled water 

and dried at 60 °C in a vacuum oven. Figure 6 depicts the relative comparison of chemical 

and biological processes to produce chitosan. While chemical extraction methods are 

quick, consume less time, and are applied on a commercial scale, they consume more 

energy and make protein components unsuitable for animal feed. As an alternative, 

biological processes offer the advantage of environmental safety and the production of 

valuable by-products for animal feed. Investigations to reduce the processing time and cost 

is still underway.  

 

 
 
 

Fig. 6. Comparison of chemical and biological extraction methods 

 

Table 1. Chitin and Chitosan Extraction from Different Species 

Source  Chitin (%) Chitosan (%) Reference  

Bombyx mori  15 to 20  70 to 80  (Zhang et al. 2000) 

Bombyx mori 2.59 to 4.23  73% to 96.75 (Paulino et al. 2006) 

Mud crab Scylla 
tranquebarica  

Carapace: 10.74  
Claw: 7.91; Legs; 14.62  

6.59  
4.12; 8.42  

(Thirunavukkarasu and 
Shanmugam 2009) 

Zophobas morio 35  25  (Mohammed et al. 
2013) 

Leptinotarsa 
decemlineata 

7 to 20 67 to 72 (Kaya et al. 2014) 

Shrimp 20  14.9    (Hajji et al. 2014) 

Crab 10  5.3  (Hajji et al. 2014) 

Cuttlefish 5  1.2 (Hajji et al. 2014) 

Fomitopsis pinicola 30.11  71.75  (Kaya et al. 2015) 

Gryllus bimaculatus 2.35 1.79 (Kim et al. 2017) 

Zophobas morio 4.8 to 5.4 66 to 76  (Soon et al. 2018) 

Brachytrupes 
portentosus 

4.3 to 7.1 2.4 to 5.8 (Ibitoye et al. 2018) 

Macropipus 
holsatus 

12.23 9.52 (Pădurețu et al. 2019) 

Potamon algeriense 8.27  5.89 (Fadlaoui et al. 2019) 

Hermetia illucens 46 80  (Khayrova et al. 2019) 

Hermetia illucens  9 to 30  18 to 29  (Khayrova et al. 2020) 

Hermetia illucens 83 to 87 13 to 43 (Hahn et al. 2020a) 
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Table 1 lists previous work on chitin and chitosan extraction from different species 

(Bolat et al. 2010; Limam et al. 2011; Isa et al. 2012). Sagheer et al. (2009) extracted 

protein content in chitin from the crustaceans of Arab Gulf states. Similarly, Abdou et al. 

(2008) reported the production of chitin and its various derivative from crustaceans. Bolat 

et al. (2010) reported the extraction and characterization of chitin and chitosan from the 

crab. Though different experimental conditions are found in the literature, mild conditions 

are preferable to obtain chitin and chitosan with a high percentage of the degree of 

acetylation (Percot et al. 2003).  
 

 
SPECIFIC PROPERTIES OF CS-GO COMPOSITES 

 

Graphene oxide (GO), a novel 2D nanomaterial, is mainly produced by the 

modified Hummers method from natural graphite powder. For many years it attracted 

significant attention due to having various properties such as being readily exfoliated into 

monolayer sheets, hydrophilic functional groups on its basal planes and edges, interfacial 

interactivity with a target matrix, and electronic properties. Covalently grafting CS onto 

GO sheets improves the solubility of graphene. Many researchers grafted or crosslinked 

the CS onto GO. Various researchers synthesised or prepared the different types of CS-GO 

materials such as nanoparticles, green adsorbents, casting on membranes, hydrogel and 

aerogels. Some of the studies are discussed here to provide insight into the chemistry of 

CS-GO. Studies have shown the solid electrostatic interactions occurred between the 

cationic CS and the negatively charged GO composites (Suri and Khandegar 2021). Horse-

radish-peroxidase (HRP) was adsorbed onto CS-GO through covalent bonding, which 

assisted in enhancing the mechanical strength of HRP at a reasonably low cost. The 

reusability studies specified that the HRP- CS-GO could be reused for a minimum of 5 

cycles (Suri et al. 2020). Researchers have designed CS nanoparticles embedded into GO 

to be used for a drug delivery system. The XRD analysis showed that the composite has an 

amorphous structure bonded with intramolecular hydrogen bonding and excellent porous, 

rough surface morphology and flaky structure, as shown in Fig. 7 (Hosseini et al. 2021).  

 
Fig. 7. Methods of synthesis of CS-GO for drug delivery system (Hosseini et al. 2021) 
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APPLICATIONS OF CHITOSAN COMPOSITES  
  

Polyfunctional CS is an organic molecule that is used in a wide range of 

applications. The chemical modification of CS increases the selectivity and adsorption 

potential of the target; amendment adjusts the Lewis basicity by introducing functional 

groups. These groups are different in donor ability than the amine and hydroxyl groups. 

Improvement can be carried out with or without crosslinking agents. Various forms of 

chitosan and adsorbent synthesis techniques are given in Fig. 4. GO has distinctive 

properties including high conductivity, flexibility, and controllable permittivity with 

hydrophilicity (Kostarelos and Novoselov 2014). These properties facilitate the 

development of GO-based multifunctional biomedical devices. Therefore, GO has been 

developed in different sizes and forms by the chemical modifications process.  GO is made 

by chemical exfoliation of graphite powders through strong oxidants (Wang et al. 2013b). 

It shows high specific surface area (e.g. 2,600 m2/g) (Sponza and Alicanoglu 2017). This 

property can help as a support medium to make the nanoparticles without accumulation in 

the adsorption process. Graphene consists of a single layer of sp2 bonded carbon atoms. 

Graphene is the thinnest material and the most robust material due to its particular thermal, 

mechanical, optical, and electrical properties (Geim 2009). Oxygen functionalities in GO 

permit the interactions with the positive ion and provide active sites for the nucleation and 

growth of nanoparticles (Guria et al. 2016).  

 
Fig. 8. Forms and modification of chitosan to improve its properties 

 

 GO has plenty of functional groups and high mechanical strength as the prospective 

material for removing heavy metals (Menazea et al. 2020). However, inter-functional solid 

bonds between graphene sheets result in static surface chemical properties, lower surface 

area, and poor aqueous solutions dispersion. Reduced adsorption efficiency limits its use 

in wastewater treatment (Li et al. 2009b). CS and GO-based nanocomposites can be used 

in several cosmetics, as a fixative in photography, and as an adsorbent and flocculating 

agent in wastewater treatment, in the paper and textile units agriculture sector (Dutta et al. 

2004; Philibert et al. 2017). Chemical, physical, or combinations of both modes of 

modification are used for CS. The physical transformation comprises blending and 

conversion of chitosan’s forms. The physical change leads to expansion of the polymer 
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chains of chitosan. As a result, internal sorption sites increase, and their crystalline state 

decreases. Blending chitosan with active carbon, graphene, Fe3O4, γ-Fe2O3, and clay is 

another suitable method for synthesizing better strength, adsorption, sensitivity, and 

magnetism property nanocomposite (Badry et al. 2017; Wang and Zhuang 2017). Chitosan 

modifications by chemical treatments are either crosslinking or graft co-polymerisation. 

Chemical changes improve complex formation properties with metal ions and surfactants 

(Rinaudo 2006; Alves and Mano 2008). Different cross-linkers such as epichlorohydrin, 

tripolyphosphate, and glutaraldehyde are used to modify (Mojiri et al. 2019). 

Homogeneous crosslinking of chitosan improves metal binding capacity relative to 

heterogeneous cross-linking (Varma et al. 2004). Figure 8 shows the different forms and 

modifications of CS, which can help to strengthen its properties. 

 
Biomedical Applications  

A drug delivery system is defined as a formulation or a device that enables the 

administration of a therapeutic substance or active pharmaceutical ingredient in the body, 

improves its efficacy as well as safety by controlling the rate, time, and place of release of 

drugs (Jain 2020). Researchers have investigated the potential of nanoparticles such as 

dendrimers, liposomes, self-assembling peptides, water-soluble polymers, and polymeric 

micelles as effective drug delivery agents. They find unique applications for cancer 

treatment where nanoparticulate drug carriers improve cure efficacy by reducing off-target 

systemic toxicity and passive drug targeting to tumour cells or tissues (Yu et al. 2016; 

Edgar and Wang 2017). Graphene oxide (GO), reduced graphene oxide, and graphene 

quantum dots have shown high surface area, which provides sufficient drug loading 

capacity along with biocompatibility. Functionalization of GO or reduced GO with 

polyethene glycol, mannose, and sulfonic acid conjugated to folic acid has improved 

biodegradability, biocompatibility, and thermosensitivity, facilitates pH-dependent and 

targets specific controlled release of the drug to tumour cells (Karki et al. 2020). Also, GO 

displays low uptake in the reticuloendothelial system and extended blood circulation time 

(Zhao et al. 2018). Still, these GO-based nanocomposite systems have limitations related 

to drug solubility (colloidal instability due to aggregation), controlled and targeted drug 

release to cancer cells, hemolytic properties, and in vivo toxicity (McCallion et al. 2016; 

Karki et al. 2020). Extensive research is being carried out to identify new and novel 

functional groups for GO modifications, where CS has emerged as an excellent helpful 

natural modifier of GO. CS-based nanocomposites are biocompatible, non-toxic, and 

display increased drug efficacy (Thakur and Thakur, 2014). Due to their small size, these 

nanoparticles or nanocomposites can move through blood-brain barriers, thus using 

efficient drug delivery systems (Li et al. 2018). Despite the above advantages, owing to its 

low solubility and poor mechanical properties, the application of CS is still minimal. 

Different formulations of CS and its composites with several other compounds are being 

worked upon to increase targeted drug action and efficacy for drug delivery systems (Ali 

and Ahmed 2018; Li et al. 2018; Ashrafizadeh et al. 2019).  

 

Drug delivery system 

Derivatized chitosan has been used to modify GO to prepare nanocomposites for 

drug delivery to cancerous cells. Rana et al. (2011) developed chitosan-graphene oxide 

nanocomposites. The chitosan-functionalized graphene oxides served as a drug delivery 

system, which was loaded with Ibuprofen and 5-fluorouracil. It displayed controlled release 

and long term biocompatibility in human lymphoblastic leukemia and MCF7-human breast 
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cancer cells. Another functionalized nanocarrier based on CS-GO nanocomposite was 

prepared by Bao et al. (2011) through the amidation process. CS-GO nanocomposite was 

applied to load the anti-cancer drug Camptothecin. Cell toxicity was analyzed against 

HepG2 and HeLa cancer cells using MTT assay, where a 50% growth inhibition 

concentration was observed at 29 µm. Thus, the novel nanocarrier was potent against 

cancer cells. An in vitro drug release experiment showed that 17.5% camptothecin could 

be released. This CS-GO nanocomposite camptothecin complex exhibited enhanced 

stability and a high loading capacity.  

 Yang et al. (2016) modified GO with carboxymethyl chitosan and further 

conjugated it with hyaluronic acid and fluorescein isothiocyanate. This conjugate 

combination was used as a drug delivery vehicle for doxorubicin, a model anti-cancer drug, 

to study in vitro release behaviour. It specifically targeted cancer cells and inhibited the 

growth of HeLa, CD44 overexpressing cells. It exhibited pH-dependent release and a drug 

loading efficiency of 95%. Pan et al. (2016) developed a GO-CS nanocomposite by 

conjugating GO with carboxymethyl chitosan, fluorescein isothiocyanate, and lactobionic 

acid to be used as a targeted anti-cancer drug delivery system; nanocomposite without LA 

conjugate was used as the control. Functional group lactobionic acid is recognized 

explicitly by asialoglycoprotein receptors overexpressed on cancerous hepatic cells. High 

drug loading content and efficiency of >96% was observed in SMMC-7721 cancer cells. 

The pH-sensitive release of the nanocomposite was followed, which is typical due to 

reduced pH microenvironment of cancerous cells. Higher uptake was observed using this 

nanocomposite for SMMC-7721 cancer cells through confocal microscopy and cell 

toxicity assays, strengthening its use as an anti-cancer drug delivery system. Further, Wang 

et al. (2018) synthesized a galactosylated CS-GO-doxorubicin drug delivery system 

against hepatocellular carcinoma. The action of the synthesized composite was 

investigated against HepG2 and SMMC-7721 hepatocarcinoma cell lines. After coating 

glycosylated-CS over the surface of GO, drug loading capacity was found to be 98%. Drug 

release to hepatic carcinoma cells was studied using cellular assays such as cell 

proliferation and cellular uptake assay. An in vivo anti-tumour efficacy study showed 

efficient inhibition of tumour cells as compared to control. The above drug conjugated 

system might be used as biomedicine and may effectively target liver cancer cells. 

 In another study, developed chitosan/sodium alginate products were functionalized 

using magnetic GO-based nanocomposites and were loaded with doxorubicin. The 

functionalized magnetic graphene oxide nano sheets have high drug loading efficiency (Xie 

et al. 2019). A nanocarrier system based on reduced-GO was loaded with doxorubicin and 

coated with CS for stabilization was developed, which displayed high biocompatibility and 

efficiency for entrapping doxorubicin (~65%) and depicted controlled release (~50% 

release in 48 h). Furthermore, it was demonstrated to precisely deliver doxorubicin 

intracellularly in PC-3 prostate cancer cells with cytotoxicity >65% (SreeHarsha et al. 

2019). Researchers have also synthesized folic acid coupled CS and GO nanocomposites. 

These composites were used for loading polyprenol and fullerene. They depicted good drug 

loading and encapsulation efficiency, drug release property, and storage stability. Also, 

cytotoxicity analysis of this nanocomposite in human hepatic cell line MHCC97H, 

exhibited greater inhibition capacity than regular human hepatic non-cancerous cell line 

(Tao et al. 2019). Shi et al. (2016) also prepared carboxymethyl-CS-GO-based 

nanoparticles using the electrostatic droplet generation method, which effectively adsorbed 

gatifloxacin, ofloxacin bovine serum albumin, lysozyme, and doxorubicin hydrochloride 

(Tao et al. 2019). Very recently, Anirudhan et al. (2020) synthesized CS and folic acid 
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nanocomposite by conjugating through N,N´-dicyclohexylcarbodiimide coupling. 

Furthermore, itaconic acid and acrylic acid monomers were grafted to the hydroxyl groups 

of prepared nanocomposites to generate -COOH functional groups and combined with 

modified amine GO. Further, the anti-tumour drug was loaded onto the modified amine 

CS-GO conjugated folic acid nanocomposite through π-π stacking and hydrogen bonding 

interactions. The loading capacity of doxorubicin in the polymeric matrix was determined 

to be 95%. An advanced CS-GO hybrid-responsive system of enhanced biocompatibility, 

high doxorubicin-loading ability, and tumour-inhibition efficacy was developed.   

 
Table 2. CS-GO Nanocomposites with Chemotherapeutic Activity Against 
Cancer Cells 

Nanocomposite/Drug Composite Drug Conjugated 
Type of Cancer or 
Cancer Cell Line 

References 

CS-GO Camptothecin 
HepG2 and HeLa 
cell lines 

Bao et al. 
(2011) 

Chitosan-functionalized GO 
Ibuprofen and 5-
fluorouracil 

CEM human 
lymphoblastic 
leukemia and 
MCF7-human 
breast cancer 

Rana et al. 
(2011) 

GO conjugated with 
Carboxymethyl chitosan, 
hyaluronic acid and fluorescein 
isothiocyanate 

Doxorubicin 
HeLa, CD44 over-
expressed cells 

Yang et al. 
(2016) 

GO conjugated with 
carboxymethyl chitosan, 
fluorescein isothiocyanate, and 
lactobionic acid 

Doxorubicin 
SMMC-7721 
cancer cells 

Pan et al. 
(2016) 

Functionalized GO with CS 
sodium alginate 

Doxorubicin 
MCF-7 Human 
Breast cancer cell 
line 

Lei et al. (2016) 

Galactosylated CS-GO-
doxorubicin 

Doxorubicin 

HepG2 and 
SMMC-7721 
hepatocarcinoma 
cell lines 

Wang et al. 
(2018) 

Dispersion of GO Ag nanohybrid 
particles in the chitosan 
hydrogel matrix 

Doxorubicin 
Human colon 
cancer cells 
(SW480) 

Rasoulzadehza
li and Namazi 
(2018) 

Magnetic GO nanosheets 
functionalized with CS and 
sodium alginate  through non-
covalent layer-by-layer self-
assembly 

Doxorubicin 
hydrochloride 

Human lung 
cancer cell line 
(A549) 

Xie et al. 
(2019) 

Folic acid coupled CS-GO 

Ginkgo Biloba 
Leaves polyprenol 
and Fullerene 
(C60F) 

MHCC97H 
Tao et al. 
(2019) 

Chitosan-based hybrid 
nanoparticle of DOX-loaded 
reduced form of GO 

Doxorubicin 
Prostate cancer 
cells PC-3 

SreeHarsha et 
al. (2019) 

Amine functionalized GO 
conjugated with chemically 
modified CS with folic acid 

Doxorubicin 
MCF7 and Hela 
cells 

Anirudhan et 
al. (2020) 
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For hybrid preparation, deprotonated carboxyl of GO nanoparticles and the 

protonated amine of CS’s backbone were allowed to self-assemble. The developed hybrid 

was loaded with doxorubicin and displayed charge reversal from negative charge during 

blood circulation (pH 7.4) to positive charge at tumour extracellular microenvironment (pH 

6.5). Biocompatibility, cell toxicity, in-vitro triggered release, and intracellular uptake of 

the prepared nanocomposite were studied in HepG2 cells; cell viability of HepG2 cells 

upon treatment the nanohybrids were found to be around 96% (Zhao et al. 2018). Another 

drug delivery system was synthesized by Rasoulzadehzali and Namazi (2018) by 

dispersion of GO-Ag particles in the CS-based hydrogel matrix for controlled release of 

doxorubicin, and a sustained-controlled drug release profile was observed. Additionally, 

Lei et al. (2016) developed another nanocarrier with functionalized graphene oxide, 

chitosan, and sodium alginate. The composite displayed significant pH-dependent 

doxorubicin release behaviour and cytotoxicity in MCF7 anti-cancer cells. 

Over the last decade, different research groups have used vivid strategies to 

generate CS-GO drug delivery systems with many drugs, as summarized in Table 2. These 

studies support the application of graphene-chitosan based material as a chemotherapeutic 

agent. These new drug delivery systems promise targeted delivery, controlled release, and 

enhanced therapeutic efficiency of many anticancer drugs for cancer treatment.  

 
Antimicrobial properties 

Microbial infection is responsible for a plethora of diseases. Anti-microbials are 

agents that target microbes such as bacteria, fungi, protozoans, and viruses. Antibiotics are 

used widely to treat bacterial infections; however, antibiotic resistance has become a 

significant public health challenge as multidrug-resistant microorganisms are steadily 

rising. Nanotechnology-based antibiotics or nanobiotics have promising results in targeting 

antibiotic resistance in several diseases. These nanoparticles act through multiple 

mechanisms, load multiple drugs onto a single nanoparticle, thereby reducing the chances 

of antibiotic resistance. Metal-containing nanoparticles, chitosan-containing nanoparticles 

and graphene-based nanoparticles, cationic liposomes, and dendrimers are a few examples 

(Pelgrift and Friedman 2013; Gómez-Núñez et al. 2020; Vassallo et al. 2020). Due to its 

structure, graphene has intrinsic anti-bacterial activity. Hence in nanoparticles based on 

graphene, bacterial cell walls and membranes are damaged by sharp edges of graphene, 

leading to the release of intracellular content followed by bacterial cell death. The 

generation of reactive oxygen species has been speculated as another cause (Gómez-Núñez 

et al. 2020). 

The antimicrobial effectiveness of CS-containing nanoparticles is probably due to 

their cationic nature. These particles associate with negatively charged cell walls or 

membranes on bacterial cells, altering their permeability leading to efflux of cytoplasmic 

contents and eventually bacterial cell death. These nanoparticles can associate with 

negatively charged bacterial DNA and chelates metal ions necessary for the functioning of 

enzymes and membrane integrity, thereby exerting solid antimicrobial activity (Pelgrift 

and Friedman 2013; Yilmaz Atay 2019). CS-GO based nanocomposites display intense 

antimicrobial action against bacteria, fungi, and yeasts. Over the last decade, many research 

groups have developed several CS-GO-based nano-composites with different functional 

groups having potent anti-microbial activity. Keshvardoostchokami et al. (2020) 

synthesized GO-based silver nanocomposites, where CS was used as a substrate. A broad-

spectrum antibacterial activity of these nanocomposites was observed against both Gram-

positive (C. glutamicum) and gram-negative bacterium (E. coli strain DH5α). 
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Approximately 5 µL (2 g/L) of the nanocomposite efficiently reduced 108 colony-forming 

units (CFU)/ml to zero. An antimicrobial biofilm from CS-iron oxide coated GO hydrogel 

(CH-GIO) displayed robustness and, during characterization, showed significantly 

improved mechanical and thermal properties. Hydrogel biofilm incredibly worked against 

both Gram-positive and negative bacterial species such as S. aureus (methicillin-resistant), 

S.aureus, E. coli, and against fungus C. albicans. The effect was assessed by agar diffusion 

and cell viability assay using MTT dye. 105 CFU/mL of bacteria were seeded onto agar 

plates. Upon treatment with CS-GO films, the cell population was reduced to zero, possibly 

due to the generation of reactive oxygen species when these particles enter through the cell 

membrane. 

Further, post-treatment with CS-GO  films, the cell viability of mouse L929 

fibroblastic cells were 80 to 93% higher than controls, thus confirming the non-cytotoxic 

nature of the synthesized films. The least inhibitory concentration value of CS-GO against 

E. coli was 32 (g/ml) (Li et al. 2016). Another composite, AgO-CoO-CdO/Poly(alanine)-

chitosan-reduced graphene oxide (PACSGO) nanocomposite was developed by Zhang et 

al (2020). This composite worked as a nano-photocatalyst for the substantial degradation 

of organic dye compounds from water. Additionally, the group reported enhanced anti-

bacterial activity against S.aureus, E. coli, P. aeruginosa, and B. cereus medium and 

increased inhibition zone value with the addition of the nanocomposites. This 

nanocomposite showed a higher percentage of scavenging activity of AgO-CoO-CdO/ 

PACSGO than other composites.  

 de Faria et al. (2015), using GO and silver particles nanocomposites, fabricated 

electrospun mats, where the blend of CS and poly(lactide-co-glycolide) (PLGA) was used 

as biopolymeric fibre. These PLGA/chit-GOAg electrospun mats displayed a bacterial 

inactivation rate of ~ 98% for E. coli and P. aeruginosa compared to control (nonmodified 

control PLGA-chitosan). A lower inactivation rate of 79.41% was observed against S. 

aureus due to a thick peptidoglycan layer in the cell wall of Gram-positive bacteria. 

Additionally, Yang et al. (2019) synthesized an antibacterial nano agent by coating 

quaternized chitosan (QCS) on the surface of Fe3O4 nanoparticles-anchored GO. This 

nanocomposite killed pathogens upon generation of hyperthermia through photothermal 

near infra-red irradiation.  

 The anti-bacterial efficacy of CS-GO based film was also investigated in detail by 

Marin et al. (2019). Electrospun CS-GO-and polyvinyl alcohol-based composite 

nanofibrous membrane was synthesized and analyzed. With the percentage of GO at 1%, 

the scaffold membrane showed antibacterial properties against gram-positive bacteria, B. 

cereus and S. aureus, and gram-negative bacteria, S. enterica and E. coli. The anti-bacterial 

inhibitory effect of the electrospun nanocomposite scaffold might be due to GO, as its 

edges penetrate the cell membrane, leading to membrane rupture and lipid peroxidation. 

Thus, the nanofibrous composite membrane might be used as a scaffold in exposed wounds 

and infected areas where the risk of bacterial infection is grave. Khalil et al. (2020) also 

showed that GO-CS and GO-EDTA based nanocomposites display anti-microbial 

activities against E. coli, S. aureus, and C. albicans. There have been a few pre-clinical 

investigations on their wound healing applications (Moradi et al. 2021). For instance, a 

temporary skin graft was made of CS-polyvinyl pyrrolidone-GO nanosheets. Live and dead 

assays were performed in-vitro. Cell viability and bactericidal capacity of this membrane 

were increased by using GO in the sheet. Accelerated healing tests were done using the 

rat’s skin. A period of 14 days was required for complete regeneration of skin at a large 

wound. Nanosheet made of CS-GO covering was able to heal the wound almost completely 
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(>99%) after 21 days following the injury (Mahmoudi et al. 2017).  

 CS-GO-PVA composite was prepared using synthesized guanidine modified GO 

with (0, 0.1, 0.2, 0.5, and 1.0 wt%). In-vivo experiments validated that CS-GO ().5%)-PVC 

sheets had a high antibacterial activity (50% more than GO used alone). In vivo studies on 

mice had shown 41% faster wound healing capacity than the control (Chen et al. 2020). 

The synergistic effect was observed on combining CS-GO-polylactic acid (PLLA) for 

wound healing. CS-PLLA-based scaffolds were coated with GO. Pig iliac endothelial cells 

and female Sprague-Dawley rats were used for cytocompatibility and wound healing 

investigations. GO-coated CS/PLLA scaffolds resulted in a 60.48% decrease in the size of 

the wound. The wound was recovered in 21 days that shows its effectiveness as a wound-

healing material. The scaffold was an effective bactericidal agent against E. coli and S. 

aureus (Yang et al. 2021).  

 
Environmental Applications  

CS finds extensive application in removal of metals in water treatment, as the amine 

and hydroxyl groups present in it easily form chelates with metal ions. CS-based 

membranes are reported to be useful to treat wastewater (Thakur and Voicu 2016). CS’s 

insolubility in water and alkaline solution can be modified by GO, an excellent adsorbent 

with a high surface area. The self-agglomeration of GO is a limiting factor for its more 

comprehensive application. Various researchers have attempted to synthesis composite 

material using CS-GO. The negative charges on the surface of aqueous dispersed G sheets 

bond chemically with the cationic group present in chitosan's amino polysaccharides. 

Carboxylic groups of GO react through the amine group of CS, in some cases creating an 

amide bond between them. Various modifying agents such as EDTA can be added to the 

composite to functionalize these composites further. There is a wide range of applications 

of these composites, varying from water purification to electrode development. Most 

studies have been performed using optimization of parameters including solution 

properties including pH, temperature, an initial amount of adsorbent, contact time, swelling 

behaviour, and adsorbent properties such as its amount, form, and recyclability. Many 

active sites and more adsorbate in the waste stream have led to a higher mass gradient 

between solution and adsorbate. The ease of separation of adsorbents from the waste stream 

is also an essential factor influencing the adsorbent's broad choice. 

 

Removal of heavy metals 

 Various functional groups including epoxy, hydroxyl, and carboxylic in GO 

provide oxygen to bind with metal ions. Likewise, amino groups present in CS binds with 

metal ions and can adsorb them from contaminated effluent. However, various limitations, 

including low operation efficiency, stability, and aggregation, are related to graphene oxide 

and chitosan usage alone. Hence, scientists have performed studies to crosslink and 

functionalize CS with polar groups such as graphene oxide. The modification of CS-GO 

composite has been performed using various materials. Table 3 lists multiple metals, CS-

GO, and their modified composites and maximum adsorption efficiency. The research 

work shows its potential for adsorption of metals like Cu, Cr, As, Pb, Hg, Au, Pd. Heavy 

metals such as Cr(VI) can lead to severe hazardous effects on the environment and human 

beings. While Cr(III) is an essential trace nutrient, it is limited in drinking water to 170 

(mg/L) by WHO (Altundogan 2005). 

On the other hand, Cr(VI), occurring as chromate and dichromate, is a mutagen and 

carcinogen. The Word Health Organization limit of Cr (VI) in drinking water is 0.050 
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mg/L, an excess of which may lead to various skin diseases and even cancer in human 

beings (WHO 1997). Multiple researchers have investigated CS-GO nanocomposites as an 

adsorbent to remove chromium (Anush et al. 2020; Samuel et al. 2018). Samuel et al. 

(2018) showed that this composite on exposure to chromium contaminated water possesses 

an adsorption capacity of 104.2 mg/g at pH 2.0 for the contact time of 420 min recyclability 

of 10 times. Copper and chromium metals were removed using a composite of CS-GO 

modified using 3-(p-anisyl)-4-formylsydnone by Anush et al. (2020). They studied 

wastewater contaminated with copper and chromium and reported that the pseudo-second-

order kinetic reaction that followed Langmuir isotherm-model was best for their study. 

Furthermore, the metal removed was a vital function of initial metal concentration 

in the water to be treated. The maximum removal capacity for Cu (II) and Cr (VI) was 

found to be 111.1 and 142.8 (mg/g), respectively. The reaction was a thermodynamically 

favourable process, being spontaneous and endothermic. Arsenic is a heavy metal and a 

prominent constituent of industrial waste. The World Health Organization has set the limit 

of 10 (μg/L) in drinking water (Minatel et al. 2018). Arsenic is a toxic metal released into 

the ecosystem through industrial activities. Entering the food chain causes nephrotoxicity, 

diabetes, cardiovascular, pulmonary, and skin diseases (De Loma et al. 2019). 

Functionalized CS-GO composite can be used as a potential adsorbent for arsenic removal 

from the aqueous medium. Kumar and Jiang (2016) reported that GO and CS composite 

performance depends on pH of the solution. Their study's optimum pH was 4.3 to 6.5 for 

As (V) removal with endothermic, spontaneous metal adsorption process, which follows a 

pseudo-second-order kinetic model. The composite was able to adsorb As(III) and As(V) 

with the maximum adsorption capacity of 64.2 and 71.9 (mg/g), respectively, with material 

recyclability of 3 cycles.  

CS-GO composite’s functionalization using gadolinium resulted in improved 

efficiency to separate arsenic from aqueous medium. This composite's enhanced adsorption 

capacity of 252.1 (mg/g) showed its potential to treat arsenic-contaminated wastewater 

(Choi et al. 2020). The adsorption capacity of GO-Gagolinium without chitosan is much 

lower than the composite modified using chitosan 216.7 (mg/g) (Lingamdinne et al. 2021). 

Graphene oxide and reduced graphene oxide mixed with magnetic particles removed 

As(III) and As(V) from the aqueous solution. The studies showed that treatment time, 

initial arsenic concentration, pH, temperature, anions, and humic acid affected the 

composite's arsenic removal efficiency. Likewise, magnetically modified CS-GO 

nanoparticles were efficient for Ni (II) adsorption from waste-water with the maximum 

adsorption of 12.2 (mg/g) (Tran et al. 2019). Mercury is also a harmful metal and is one of 

the major pollutants in river water. Chitosan was investigated as filler material inside the 

GO matrix to form CS-GO nanocomposite. GO, and CS adsorption capacity improved 

from 381 mg/g to 397 mg/g upon nano filling magnetically modified CS into GO matrix 

(Kyzas et al. 2014). EDTA was used to alter the properties of the CS-GO composite. 

Magnetically modified CS-GO composites were functionalized using EDTA and were 

found to be potential adsorbents for metals like Pb(II), Cu(II), and As (III) (Shahzad et al. 

2017a). The CS-GO composite was prepared by freeze-drying and investigated for 

selectivity of lead metal. The composite prepared by adsorption with 5 wt% GO in CSGO 

exhibited high mechanical strength and the maximum Pb (II) adsorption as 99 mg/g (He et 

al. 2011). Attempts were made to prepare the membrane by combining EDTA, GO, and 

CS to remove Pb (II). The adsorption efficiency using CS/EDTA/GO (0.3%) membrane 

was obtained at 889 (mg/g) (Croitoru et al. 2020). Studies on the adsorption capacity of 

this membrane for other heavy metals can also be undertaken. 
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Table 3. CS-GO Nanocomposites for Heavy Metal Removal  

Adsorbent  Heavy 
Metal     

Adsorption 
Capacity (mg/g) 

Reference  

CS with PVA  Cr (VI) 
Cu (II) 
Zn (II) 

3.5 
5.3 
2.8 

(Jaros et al. 2005) 
 

Magnetic CS and GO Au (III)  
Pb (II) 

Au (III)): 1076.6   
Pb (II): 216.9 

(Liu et al. 2012) 

Cyclodextrin- CS and GO Cr (VI) 61.31 (Li et al. 2013) 

GOCS10 Cu (II),  
Pb (II) 

Cu (II): 70  
Pb (II): 90  

(Chen et al. 2013) 

Magnetic CS and GO Pb (II) 76.94  (Fan et al. 2013) 

Magnetic CS and GO Hg (II) 381 (Kyzas et al. 2014) 

β-cyclodextrin/magnetic 
GO/EDTA  

Cr (VI) 68.41 (Wang et al. 2014) 

Magnetic CS and GO Cr (VI) 82.14 (Debnath et al. 2014) 

    

CS and GO nanofibrous 
composite 

Cu (II),  
Pb (II) 
Cr (VI) 

Cu (II): 423.8 
Pb (II) :461.3,  
Cr (VI) :310.4 

(Najafabadi et al. 2015) 

TGOCS  Cr (IV) 219.5 (Ge and Ma 2015) 

CS and GO with disodium EDTA-
2Na 

Cr (VI) 86 
 

(Zhang et al. 2016) 

CS and GO As (III)  
As (V) 

As (III): 64  
As (V): 72  

(Kumar and Jiang 2016)  

CS-GO and CS/rGO Cu (II) 202 and 150  (Yan et al. 2016) 

EDTA functionalized magnetic CS 
and GO  

Pb (II),  
Cu (II) 
As (III) 

Pb (II): 206.52  
Cu (II): 207.26,      
As (III): 42.75  

(Shahzad et al. 2017b) 

Phosphorylated CS and GO  U(VI) 779.44   (Cai et al. 2017) 

GO-CS aerogel U(VI) 250  (Huang et al. 2017) 

CS and GO Cr (VI) 104.16 (Samuel et al. 2018) 

Magnetic CS and GO Cu (II) 217.4 (Hosseinzadeh and 
Ramin 2018) 

Low molecular CS Cu (II) 80 (Boamah et al. 2016) 

Cross-linked CS and GO  Pb (II) 566 (Sharma et al. 2019) 

CS and GO Cr (VI) 178  (Moghaddam et al. 2019) 

Grafted CS and GO Cr (VI) 270.27  (Samuel et al. 2019) 

GO-CS-PVA hydrogel Cd (II) 
Ni (II) 

Cd (II):172  
Ni (II): 70 

(Li et al. 2019) 

Magnetic CS and GO As (III) 45 (Sherlala et al. 2019) 

Magnetic CS and GO Ni (II) 12.24 (Tran et al. 2019) 

GO-CS sponge Co (II) 
Ni (II) 

Co (II): 224.8 
Ni (II) :423.7 

(Di et al. 2019) 

Membranes using CS-GO  Pb (II) 767 (Croitoru et al. 2020) 

GO-CS Gadolinium composite As(V) 252 (Choi et al. 2020) 

CS and GO Cd (VI) 
Cu (II) 
Pb (II) 

Cd (VI): 48.7, 
Cu (II) : 60.7, 
Pb (II) : 32.3 

(Li et al. 2020) 

Modified CS with 3-(p-anisyl)-4-
formylsydnone and GO 

Cr (VI) 
Cu (II) 

Cr (VI): 142.85 
Cu (II): 111.11 

(Anush et al. 2020) 

GO-Gadolinium composite As(V) 216 (Lingamdinne et al. 2021) 

GO-CS-Fe3O4 Cd (II)  84 (Parastar et al. 2021) 
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 Bessa et al. (2020) reported Hg (II) removal efficiency (97%) from ultra-pure water 

with a small mercury dose using CS-GO composite. Simultaneously, using the tap water, 

river, and seawater, removal efficiency was reduced to about 81%, 13%, and 7%, 

respectively. Their study concluded that chlorine in an aqueous medium significantly 

reduced the removal efficiency of the composite due to the formation of steady chloro-

mercury complexes. CS-GO nanocomposite could adsorb Pd(II) and Au(III). CS with 5 

wt.% GO combination showed maximum adsorption 1077 (mg/g) for Au(III) and 216.9 

(mg/g) for Pd(II) (Liu et al. 2012). Other studies highlighted hydrogel's potential obtained 

using CS-GO and polyvinyl alcohol (PVA) in various proportions, with the optimum being 

1:2:4. Adsorption studies showed that the model followed Langmuir isotherm. Co-CS-

PVA matrix showed the maximum adsorption capacity for Cd (II) and Ni (II) as about 172 

and 70 mg/g, respectively, for the contact time of 16 h (Li et al. 2019). GO was mixed with 

4-aminothiophenol and NaNO2 to form GO-SH material, mixed with chitosan powder to 

obtain GO-CS-SH composite material. In multi-metal effluent, the material was found to 

be most suitable for adsorption of Cd(II), followed by Cu(II) and Pb(II) (Li et al. 2015). 

Similarly, studies on Go-Cs composite material without any functionalization resulted in 

the maximum adsorption capacity for Cu(II), Pb(II), and Cd(II) as about 60, 48, and 32 

mg/g, respectively (Li et al. 2020). Menazea et al. (2020) studied the interactions of heavy 

metals with CS-GO and proposed a model using density functional theory and suggested 

that high heavy metal removal can be achieved by CS-GO combination. 

 

Removal of dye 

The textile and printing industry produces dye-containing effluent, which should 

be treated before discharge into water bodies. Approximately 1 to 15% of the dye is 

released into waste water during the dying process, eventually entering the ecosystem 

(Galindo 2001). Aromatic compounds in paints make their biodegradation an arduous task. 

Coloured substances in water inhibit the permeation of light and hinder the photosynthesis 

process. If ingested, these dyes can cause eye burns, nausea, vomiting, dyspnea, and 

cyanosis disease (Senthilkumaar et al. 2005).  

 Similar to the removal of metals, adsorption is the method of choice for dye 

removal. When used individually, CS and GO have shown a high affinity for the adsorption 

of dyes present in the wastewater (Chandel et al. 2020). However, composite formed using 

chitosan and graphene showed improved adsorption properties over several cycles of 

repeated usage. Table 4 depicts the various CS-GO composites like hydrogel, beads, 

spheres, and sponge investigated for dye removal from aqueous solution. However, the 

adsorption of methylene blue dye on GO adsorbent used alone was 287 mg/g. CS-GO 

composite material leads to adsorption capacity as high as 402.6 mg/g (Sabzevari et al. 

2018a). Due to the unique properties of CS-GO, they can be used for the adsorption of 

methylene blue dye. A sponge prepared using chitosan (9%) with GO exhibited an 

adsorption capacity of 275.5  mg/ g for methylene blue during a filtration process (Qi et al. 

2018b).  

 Due to the better removal ability of magnetic nanoparticles from an aqueous 

medium, synthesis and kinetic studies of magnetic nanoparticles for water treatment have 

been successfully reported. Tran et al. (2017b) demonstrated the enhanced adsorption 

efficiency of magnetically modified CS-GO composite. The studies reported the adsorption 

efficiency of 10% weight of GO in CS/Fe3O4/GO nanocomposite for MB dye after 95 h 

for five repeated operation cycles. Neves et al. (2020) prepared a magnetic CS-GO 

composite to remove basic brown four dye.  
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Table 4. CS-GO Nanocomposites for Dye Removal  

Adsorbent  Dye  Adsorption Capacity (mg/g)  Reference  

Magnetic CS grafted with GO MB 95.31  (Fan et al. 2012a) 

Chitosan/graphene oxide MB 180.83  (Fan et al. 2012b) 

CSGO10 MB 74  (Singh et al. 2019) 

CS-GO Reactive black 5 277  (Travlou et al. 2013a) 

Magnetic CS-GO  Reactive black 391  (Travlou et al. 2013b) 

Chitosan/graphene oxide 10 MB, Eosin Y  MB: 300  
Eosin Y: 302 

(Chen et al. 2013) 

GO-CS/silica CR  294.12  (Du et al. 2014) 

Magnetic CS-GO  MO  398.08  (Jiang et al. 2016) 

CS-GO foam MO 173.3  (Ma et al. 2016) 

GO was cross-linked with CS  Acid yellow 36 and  
Acid blue 74  

Acid yellow 36: 68  
Acid blue 74: 85  

(Banerjee et al. 2017) 

Magnetic GO-CS composite MO 30  (Tran et al. 2017a) 

CS-GO sphere  MO and Acid red 1 MO: 230.91  
Acid red 1:132.94 

(Zhang et al. 2018) 

GO-CS sponge MB 275.5  (Qi et al. 2018a) 

GO and CS-GO composite MB  GO composite: 287  
CS-GO composite: 402 

(Sabzevari et al. 2018b) 

Cs-Go aerogel Indigo Carmine and MB Indigo Carmine: 377  
MB:169  

(Luna et al. 2019) 

CS-GO sponge bionic filter Crystal violet dye 98  (Zhou et al. 2018) 

GO derivative containing quaternary 
ammonium salt and magnetic CS  

Basic brown 4  650  Neves et al. (2020) 

Polyacrylate CS-GO hydrogel MB and Food yellow 3 MB~ 296  
Food yellow 3: 280.3  

Chang et al. (2020) 

Cs reinforced Go-hydroxyapatite 
(CS@GO-Hap) matrix  

CR, Acid Red 1 and Reactive Red 2  CR: 43.06  
Acid Red 1: 41.32   
Reactive Red 2 :40.03  

Sirajudheen et al. (2020) 
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Composite graphene oxide functionalized using quaternary ammonium salt and 

magnetic chitosan provided the maximum adsorption capacity of 650 (mg/g) and 95(%). 

The study showed that in three successive adsorption and desorption cycles, the dye uptake 

efficiency was 64%. Graphene nanoplates, a graphene derivative crosslinked with chitosan 

to form composite spheres, were explored for the adsorption of methyl orange and acid red 

one dye. The high adsorption capacity for methyl orange and acid red 1 was 230.9 (mg/g) 

and 132.9 (mg/g), respectively, which showed the CS-GO sphere's potential as an efficient 

dye adsorbent. The adsorption capacity was maintained at 90% after five repeated usage 

cycles (Zhang et al. 2018). CS-GO bead adsorbent prepared by gel and GO and 

investigated by researchers for adsorption of various cationic and anionic dyes. For orange 

dye II, 84 (%) removal efficiency was observed with CS/Gel0.1GN.  

 Vo et al. (2020) prepared hydrogel materials in which chitosan chains crosslinks 

GO-nanosheets. GO and CS were mixed in solution in the above hybrid, followed by 

sonification to form hydrogel of GO-CS. While the higher GO level was beneficial for 

cationic dye's adsorption, higher chitosan hydrogel showed selectivity towards anionic 

dyes. The combination provides maximum loading of congo red dye about 176 (mg/g) 

(Kamal et al. 2016). Recently, biopolymer-based aerogels have been studied for 

application in adsorption and water purification processes. Chitosan-based aerogel has 

emerged as a potential material for the remediation of dye-contaminated water. Chitosan 

with active amine and hydroxyl groups has a strong tendency to bind with various types of 

dyes. Chitosan is a highly porous material that has limited application due to its high 

propensity to collapse. Besides acting as a good filler in the chitosan matrix, graphene 

oxide provides mechanical strength and enhances chitosan’s adsorption efficiency. Aerogel 

formed using nanocomposite CS-GO aerogels exhibited high retention ability for Indigo 

Carmine and MB, as 377 and 169 (mg/g), respectively (Luna et al. 2019). Similarly, 

aerogel prepared using CS-GO was an effective adsorbent for Metanil Yellow dye with 

removal efficiencies between 91 and 96 (%). This dye's adsorption capacity was 431.0 

(mg/g) at the adsorbent dose of 8 mg, concentration 400 (mg/L), for the contact time of 

about 35 min, maintained at a shaking speed of 175 rpm. The aerogel performed the 

adsorption and desorption up to 5 cycles, which resulted in an adsorption capacity of 

around 80 (%) (Lai et al. 2019). Qi et al. (2018b) synthesized GO-CS nanocomposite to 

remove MB  in column study. Optimum loading for CS into GO solution was 9% in CS-

GO hydrogel, which MB released efficiently.   

 

Removal of organic and inorganic pollutants 

Chitosan offers excellent potential for the removal of a variety of contaminants 

from effluents. Modified and unmodified chitosan-based nanocomposites have shown an 

effective adsorption potential to eliminate a variety of heavy metals, which include Cu (II) 

(Boamah et al. 2016; Modrzejewska et al. 2016), Pb(II) (Shahzad et al. 2017; Dinh et al. 

2018), Cr(VI) (Moghaddam et al. 2019; Samuel et al. 2019; Naicker et al. 2020), As(V) 

(Shahzad et al. 2017a), Ni(II) (Di et al. 2019; Tran et al. 2019), and Hg(II) (Kyzas et al. 

2014). Also CS used has been used for removal of inorganic nutrients (NO3 −, NO2-, and 

PO4 −3) (Jozwiak et al. 2017, 2019; Kumar et al. 2019) and organic pollutants ( Jozwiak et 

al. 2017; Escudero-Oñate and Martínez-Francés 2018). Further, Table 5 summarizes CS 

composites that have been used to remove organic and inorganic contaminants from 

wastewater.  
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Table 5. Inorganic and Organic Contaminant Removal using CS 

Pollutant  Adsorbent  Removal 
efficiency (%) 

Reference  

n-hexadecane Spores of Bacillus subtilis LAMI008 were 
entrapped in 3 mm chitosan 
beads and cross-linked with 0.3% 
glutaraldehyde 

100  Sar and Rosenberg 
(1983) 

Nitrate Protonated cross-linked chitosan gel beads 
by glutaraldehyde 

77 Jaafari et al. (2001) 

Hydrocarbons R. corynebacteriorides  immobilized on CS 60 
 

Gentili et al. (2006) 

Fluoride Chitosan loaded with titanium  89  Jagtap et al. (2009) 

Diheptyl phthalate Molybdate-impregnated chitosan beads   92.5  Barreto et al. (2010) 

Insecticide (permethrin) Modified CS with ZnO 99  Arayne et al. (2011) 

Pesticide  
(Atrazine)  

Cross-linked chitosan-silver nanoparticles 98  Saifuddin et al. (2011) 

Oil CS microspheres produced by ionic gelation of 
CS with sodium tripolyphosphate 

90  Grem et al. (2013) 

Hexadecane Bacterial strain B. pumilus 
entrapped in chitosan 

81.83  Costa et al. (2014) 

Naphthalene Carbon nanotubes mixed with CS/polyvinyl 
alcohol and cross-linked with silane 

97  Bibi et al. (2015) 

Oil Zirconium-chitosan composites 79  Elanchezhiyan et al. 
(2016) 

Hydrocarbons  Chitosan beads  99  Dellagnezze et al. (2016) 

Oil chitosan/magnesium-aluminum layered double 
hydroxide hybrid composite  

78  Elanchezhiyan and 
Meenakshi (2017) 

Oil Superhydrophobic and 
superoleophilic chitosan sponge 

99 Su et al. (2017) 

Fluoride  Zr (IV) modified CS-GO 90  Zhang et al. (2017) 

Oil Amphiphilic sodium salt 
of oleoyl carboxymethyl chitosan 

75-85  Doshi et al. (2018) 

Naphthanol Magnetic Cs-Go composite  99.8 Rebekah et al. (2020) 

Ofloxacin CS-GO 99 Suri et al. (2021) 
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Arayne and co-workers (2011) investigated the potential of raw and ZnO-modified 

CS beads to remove insecticide used for agriculture. They found that chitosan beads have 

outstanding adsorption and removed 49% and 99% of an insecticide (permethrin) when 

using raw and modified chitosan beads, respectively.  

 Danalıoglu et al. (2017) prepared a novel magnetic activated carbon/chitosan 

composite to remove ciprofloxacin, erythromycin, and amoxicillin. They found the best fit 

with a Langmuir isotherm model, indicating that 90 (mg/g) ciprofloxacin, 178.6 (mg/g) 

erythromycin, and 526.3 (mg/g) amoxicillin had adsorbed. Danalıoglu et al. (2017) 

compared the adsorption potential of magnetic CS with activated carbon for ciprofloxacin 

with alginate-Fe3O4 hydrogel fibre and GO-Ca alginate adsorbent. About 154 μg/g 

ciprofloxacin was adsorbed using magnetic alginate-Fe3O4 hydrogel fibre and 18.45 to 

39.06 mg/g GO-Ca alginate adsorbent (Wu et al. 2013). 

Saifuddin et al. (2011) removed pesticide (atrazine) using CS-Ag NPs. Maximum 

98% atrazine (from 1 ppm solution) was removed from solution using a composite dosage 

of 2.0 g/L of Cs-Ag NPs. Other investigators have reported using chitosan beads modified 

with sodium alginate and calcium chloride to remove phenol and o-chlorophenol (Li et al. 

2009a). They said that modification in CS enhanced its stability and its sorption capacity 

toward pollutants. The maximum sorption capacities of 108.7 (mg/g) and 97.1 (mg/g) were 

achieved for o-chlorophenol and phenol, respectively. Zr(IV) is oxyphilic and makes a 

bond with oxygen present in GO. Researchers have prepared zirconium-chitosan/graphene 

oxide membrane (80 μm thick) and evaluated its adsorption capacity for anions present in 

wastewater. Zr(IV) forms an electro-positive ion. It has a  strong affinity for fluoride ions 

with more than 90% removal efficiency in the contact time of around 30 min. The 

membrane displayed high selectivity for bicarbonate and sulfate ions as well. The 

membrane with sufficient mechanical strength has been reported to have a high potential 

for water purification application (Zhang et al. 2017).  

CS has been recognized as one of the most effective biopolymers for removing oil 

droplets from water. CS exhibits a unique assembly that is prone to natural 

functionalization and permits the modification of novel sportive materials with oil-

enhanced selectivity and adsorption potential (Farzana and Meenakshi 2015;  

Elanchezhiyan et al. 2016). Nitrogen, phosphorus and potassium are the vital nutrients 

required for proper plant growth, but excessive fertilizers in the fields lead to leaching soil 

and water bodies. As per the World Health Organization, the limit NO3- and PO4
3- in 

drinking water is 40 and less than 0.5 mg/L, respectively. The excessive amounts of these 

components in drinking water are harmful and lead to various diseases such as 

methemoglobinemia and gastric cancer (Zheng and Wang 2010). Various researchers have 

explored chitosan composite for nutrient removal from water. Hybrid beads encapsulating 

chitosan on the graphene oxide functionalized using triaminotriazine have been used to 

remove nutrients from agricultural soil. These beads were tested on a non-aqueous medium 

enriched with nutrients such as NO3 - and PO4
3-. The retention capacity of beads for NO3 - 

and PO4
3 was 58.5 and 61.4 mg/g, respectively, which was much higher than any of these 

individual adsorbents (Kumar et al. 2019). In agriculture, pesticides are commonly used to 

control insects and pests that cause severe damage to the crop. The associated toxic effects 

of chemical pesticides have prompted researchers to look for biopesticides as an 

alternative. However, biopesticides' hydrophobicity is the most significant limiting factor 

in their wide range of applications (Lao et al. 2010). The organic solvents used in high 

quantities to improve their solubility in an aqueous medium are known to be highly 

polluting in nature (Muda et al. 2020). Researchers are looking for eco-friendly water 
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solubilizing carrier agents to stabilize biopesticides in an aqueous medium chemically. The 

binding mechanisms for carrier agents include encapsulation, entrapment, adsorption, and 

ligands (Meredith et al. 2016). 

 Strontium-90 is found mainly in nuclear waste. Its longer half-life, as well as its 

biocompatibility, make it toxic for human health. Among numerous methods to treat 

nuclear waste, adsorption is considered an effective technique to remove strontium. The 

low adsorption capacity of existing adsorbents such as clay and synthetic hydroxyapatite 

prompted researchers to develop adsorbents with higher selectivity. It has been found that 

the maximum adsorption capacity of strontium on GO and chitosan was 146, 112 mg/g, 

respectively. However, its adsorption capacity for GO-chitosan composite was 180 mg/g 

(Rouby et al. 2018). Rotenone (1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methyl-

ethenyl)-1-benzopyrano(3,5-b)furo(2,3-h)benzopyran-6(6h)-one) is a non-toxic organic 

pesticide for pests such as corn borers, apple and pea aphids, Mexican bean beetles, and 

household pests. Researchers have performed studies to improve the hydrophobicity of 

rotenone using a Cs-GO nano-composite using various Cs and GO proportions. The 

process parameters were optimized, resulting in 48.5 times higher dissolution of pesticide 

in Cs-GO nanocomposite than control (Muda et al. 2020). The effluent of the dye industry, 

as well as the pharmaceutical industry, contains 2-naphthol. The studies have shown the 

potential of magnetically modified Cs-GO composite for its adsorption. The maximum 

adsorption capacity was 169 mg/g with almost complete removal efficiency for the 

treatment time of 45 mins (Rebekah et al. 2020). 

 
 
CHALLENGES AND FUTURE DIRECTIONS 

 

CS and GO are natural materials that have shown excellent biomedical and 

adsorption capacity, which are further improved by combining the two materials. CS-GO, 

prepared as a nanocomposite, offers a large specific surface area and good electrical 

properties. These composites promise a bright future for many treatments, including cancer 

and tumour treatment. The enhanced therapeutic value of CS-GO composite materials has 

been evaluated using animal model-based studies. They are safe, efficient, and ensure drug 

delivery at specific locations in the body in a controlled manner. Although advancement 

has been achieved in in-vivo studies, much work lies in clinical level investigations. The 

ongoing research on CS-GO is not sufficient and must be enhanced. The analysis described 

in this review is still in its infancy. It is being continuously improvised, but stringent 

validation needs to be performed in vivo and in-vitro, followed by assessing long-term 

adverse effects through extensive clinical trials to obtain an efficient, viable, and safe 

product. Clinical trials can precisely identify and compare the environmentally most 

favorable options for many medicinal applications. More clinical data is required to 

understand the relative advantages and limitations of CS-GO composites compared to CS 

or GO used alone. 

The mounting number of metals, dyes, and organic pollutants can lead to severe 

environmental degradation. The effect of the same on human health and the eco-system 

can be disastrous if not addressed soon. CS-GO-based hydrogel, aerogel, beads, and 

spheres have helped remove metals including Cu, Cr, Pb, Pd, As, Au, and Hg, which are 

otherwise severely toxic. Currently, the research work is focused on the treatment of 

individual metals or dyes. However, the waste material in the field is a mixture of various 

metals. Thus, there is an urgent need to study the efficiency of these composite materials 
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to treat multi-metal waste. Magnetically modified composite emerged as a potential 

adsorbent for metals, dyes, organic, and inorganic contaminants. Under laboratory 

conditions, complete removal of pollutants has been achieved in a few studies. The 

retention capacity of these composite was found to be closer to 95%. Scale-up studies of 

these composite can lead to commercial application.  Furthermore, the reusability study 

must also be prioritized in future research to verify the effectiveness and successfully 

fabricated nanocomposites compared to conventional treatments. 

 
 
CONCLUDING COMMENTS  
 

This review has summarized the properties of chitosan (CS), graphene oxide (GO), 

and CS-GO materials. The application of chitosan and graphene oxide nanocomposite has 

been studied in the present review, especially its adsorption capability and antimicrobial 

activity. This unique category of chitosan-based products can be modified with various 

functional groups to control their hydrophobicity, as well as cationic and anionic 

properties. The literature that was surveyed in this work makes it clear that the chitosan is 

a low-cost biopolymer, environmental-friendly, and abundant in availability. However, the 

modified form of CS-GO has many applications and is cost-effective. Their unique 

attributes have allowed researchers to use them as a suitable medium to treat many diseases. 

Although the successful clinical translation of CS-GO composite has not been achieved 

yet, they have shown great promise, thereby providing hope for new treatment of various 

decreases soon.  In the current scenario, the costs associated with synthesis of CS-GO may 

not be lowered than other commercially available nanocomposites; therefore, more well-

organized and cost-effective ways are required to produce CS-GO. Future research could 

examine a low-cost CS-GO composite production technique without compromising 

environmental and health implications. 
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