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Common solid wood panel defects affect the appearance of timber 
products and reduce their value for use. It is necessary to remove defects 
from solid wood panels to achieve a panel layout. A whole wooden beam 
column is cut into solid wood panels of different sizes, according to the 
requirements. Aiming to overcome problems of weak convergence ability, 
single-objective optimization, and the poor optimization effect of solid 
wood panel layout optimization based on a traditional genetic algorithm, 
an improved multi-objective solid wood panel layout optimization based on 
NSGA-II (Non-dominated sorted genetic algorithm-II) algorithm was 
proposed. Reverse learning was used to generate a reverse population to 
increase the search capability of the algorithm and to solve the problem of 
insufficient population diversity in the genetic algorithms. A combination of 
directional variation and uniform variation was used to improve the 
optimization effect and solve the problem of small individual differences in 
the evolution of the algorithm. The improved multi-objective optimization 
algorithm showed better optimization and stability than the NSGA-II 
algorithm. The number of convergence iterations was reduced and 
simultaneous optimization of multiple objectives can be realized.  
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INTRODUCTION 
 

In the traditional solid wood panel processing industry, live knots, dead knots, 

cavities, cracks, and decay are some of the most representative types of defects in solid 

wood panels during defect detection. These defects affect the appearance of the timber 

product and result in a reduction in the value of the timber product for use. Workers 

therefore need to find defects that are beyond a certain size and remove them. Workers 

mainly rely on human vision to manually remove the defects of solid wood panels and then 

lay the samples of panels according to the specified specification size (Chen 2004). Due to 

the limitation of workers' vision, the efficiency of manual sample placement is low 

(Augustas et al. 2019). The utilization rate of solid wood panels often depends on the 

experience level of workers, and there is serious waste in the processing, which limits the 

development of automation in solid wood panel processing (Chang et al. 2018). With the 

combination of computer technology and the wood processing industry becoming 

increasingly mature, an automatic layout and optimization system for solid wood panels 
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can improve the utilization of solid wood panels while reducing labor costs and labor 

intensity (He et al. 2019).  

At present, solid wood cutting in most plate manufacturers is one-dimensional 

cutting, which only considers the change in length direction. The whole process of manual 

nesting is tediously calculated (Shao et al. 2020). If surface defects are encountered, the 

response procedures slow down the production line and make it difficult to adapt to modern 

industrial development (Meng and Zhang 2000). Therefore, the use of computer-based 

layout optimization algorithms to achieve automatic cutting and layout of solid wood 

panels is of great significance to reduce wood waste and improve economic efficiency (Liu 

et al. 2013). 

In recent years, some scholars have made some achievements in the application of 

intelligent optimization algorithms in wood layout. Fang et al. (2015) used a traditional 

genetic algorithm for sawing and defective wood after obtaining the area and location of 

wood surface defects using image processing technology. Sun et al. (2019) studied a wood 

cutting system based on a particle swarm annealing algorithm, which can successfully 

avoid defects. Shan (2020) optimized the performance of the genetic algorithm and 

improved the efficiency of nesting by changing the crossover and mutation probability 

through an improved adaptive strategy.  

Evolutionary algorithms mainly include neural network algorithms, particle swarm 

algorithms, simulated annealing algorithms, genetic algorithms, etc. However, not every 

algorithm is applicable to the layout optimization of a solid wood plate (Zhang et al. 2016). 

The neural network algorithm requires a large number of samples to train the network, 

which is not suitable for wood layout. The particle initial position and update speed of the 

ordinary particle swarm algorithm are continuous functions, which are not applicable to 

the discrete problem of solid wood panel layout. The simulated annealing algorithm has a 

great dependence on the selection of initial values, and a poor choice will cause slow 

convergence. In this paper, the NSGA-II (Non-dominated sorted genetic algorithm-II) 

algorithm was selected. The NSGA-II algorithm can be applied not only in multi-objective 

solid wood plate layout optimization, but also in other fields. Xu et al. (2017) introduced 

the NSGA- II algorithm into the multi-objective model for tolerance allocation of 

compliant sheet metals and a multi-objective optimization model for tolerance allocation 

of auto-body is established (Xu et al. 2017). Li et al. (2021) conducted a comprehensive 

multi-objective nonlinear optimization of the optimal structural parameters of the ANSD 

using the NSGA-II algorithm to effectively improve the performance of MANSS on 

seismic protection. 

At present, the traditional genetic algorithm-based solid wood optimization model 

often has the problem of premature convergence in the process of population evolution, 

falling into local optimum in advance, and failing to obtain the optimal layout plan (Ding 

et al. 2021). For infeasible solutions, the traditional genetic algorithm directly eliminates 

individuals that do not meet the constraints, and to some extent, some excellent information 

is lost. This optimization scheme can only meet the single-objective optimization and 

cannot be used for multi-objective optimization. In view of the above problems, this paper 

realizes the multi-objective solid wood plate layout optimization based on the NSGA-II 

algorithm, which optimizes the evaluation index and includes one or more of yield, value, 

and size optimization (Li et al. 2015). The directional mutation is introduced to accelerate 

the convergence speed of the algorithm and improve the optimization efficiency. Random 

crossover and mutation are used to inhibit individual aggregation. The reverse solution in 
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the particle swarm optimization algorithm is introduced to expand the search range and 

enrich the diversity of the population. 

 

 

EXPERIMENTAL 
 

Models 
In the traditional solid wood plate layout optimization system, only a single 

indicator is often selected, and the traditional genetic algorithm cannot solve the 

optimization of multiple indicators. In this paper, the multi-objective optimization 

algorithm NSGA-II is used, which can optimize the wood layout not only for a single index, 

but also for a composite index. According to the actual production situation, three 

indicators of material rate optimization, value optimization, and length optimization are 

defined and modeled as optimization objectives. 

A schematic diagram of solid wood panel model is shown in Fig. 1. It is assumed 

that there is a solid wood plate of length L, which needs to be cut into small pieces of size 

m. Panels of different sizes are the same width and different lengths. Panels of the same 

size are all the same length and width. The size of the small solid wood plate of size 1 is 

𝑠1, the number of pieces that can be cut is 𝑎1, the economic value is W1, and the priority 

weight of cutting is 𝑞1. The size of the small solid wood plate of size 2 is 𝑠2, it can be cut 

in the quantity of 𝑎2, the economic value is 𝑊2, and the priority of cutting is 𝑞2. The size 

of the small solid wood plate of size m is 𝑠𝑚 , it can be cut in the quantity of 𝑎𝑚 , the 

economic value is 𝑊𝑚, and the priority of cutting is 𝑞𝑚. The final remaining waste is b. 

The numerical subscripts represent different sizes of panels. 
 

  

L

s1 s2 s3 sm b

W1 q1 W2 W3q2 q3 Wm qm

 
Fig. 1. Diagram of solid wood plate model 

 

Preferred output rate  

The optimal yield is to process one solid wood panel, so that the final processing 

waste value is kept to a minimum. This optimization scheme can effectively improve the 

utilization rate of solid wood panel and reduce costs and is the most common optimization 

scheme in wood layout optimization. The mathematical model established in this paper is 

based on the optimization of wood yield and follows the principle of maximum wood yield 

to minimize the generated waste. The wood layout optimization is completed with other 

indicators. The specific formula is shown as Eq. 1, 

 𝑏 = 𝐿 − ∑ 𝑠𝑗 × 𝑎𝑗
𝑚
𝑗=1

         (1) 

where b indicates the final remaining waste value of this solid wood plate. 

 

Value preference 

For different sizes of small solid wood panels corresponding to different values, the 

same solid wood panel using different cutting schemes was used to obtain different gains. 
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The essence of value optimization is to maximize the value of the cutting scheme and 

improve the economic benefits of the enterprises. The specific formula is shown as Eq. 2, 

 𝑊 = ∑ 𝑊𝑗 × 𝑎𝑗
𝑚
𝑗=1

         (2) 

where W denotes the total value of economic value generated by this solid wood plate. 

Size preference 

For the production and processing of solid wood panels of a specific size, it is 

important not only to pursue the maximum utilization of solid wood panels, but also to 

prioritize the processing of the size with the greatest demand. Priority is set for processing 

solid wood plates with different sizes. After more plates with the largest priority cannot be 

processed, the remaining materials are processed according to priority. The specific 

formula is shown in as Eq. 3, 

 𝑞 = ∑ 𝑞𝑗 × 𝑎𝑗
𝑚
𝑗=1

         (3) 

where q denotes the final corresponding weight of this solid wood plate. 

The industrial camera (MER-030-120GM/C-P; DAHENG IMAGING, Beijing, 

China) is used to shoot images of defects in solid wood plate, and the computer is used to 

process the image data to locate surface defects in solid wood panels. The relevant 

information is: solid wood plate number N, solid wood plate length L, defect type Q, defect 

number n, defect location P and defect length l, as shown in Fig. 2. 
 

L

N
Q1Qn

...

l1ln

P1

P2

 
Fig. 2. Information diagram of solid wood sheet 

 

For solid wood plate processing enterprises, the only way to improve economic 

efficiency, reduce costs, and achieve the required evaluation indicators is to cut the solid 

wood plate reasonably because the information on the length, number of defects, and defect 

location of individual solid wood panels is inconsistent. Therefore, it is necessary to 

establish a mathematical model for the solid wood plate optimization, i.e., to determine the 

fitness function of the genetic algorithm. Assuming that the size to be cut is 𝑠𝑗 and the 

number of different sizes of solid wood panels to be cut is 𝑎𝑖𝑗, the final remaining waste is 

𝑏𝑖, the value generated is 𝑊𝑖, and the weight is 𝑞𝑖, where i denotes the i-th cutting scheme. 

For the solid wood plate with defects, the location P and length l of the defect Q 

are obtained. The defect is removed, and then the layout was conducted according to the 

layout without defects. Finally, the mathematical model of wood layout optimization is 

shown as Eq. 4,  

 𝑃SWP = min{𝑏𝑖，−𝑊𝑖，− 𝑞𝑖} 
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{
 
 
 
 

 
 
 
 

𝑗 ≤ 𝑚
𝑚 ≥ 1
𝑠𝑗 ≤ 𝐿

𝑎𝑖𝑗 ≥ 0

𝑎𝑖1 ≤
𝐿

𝑠1

𝑎𝑖𝑗(𝑗 ≥ 2) ≤
𝐿−∑ 𝑎𝑖𝑗×𝑠𝑗

𝑗−1
𝑗=1

𝑎𝑖𝑗

𝑖 ∈ 𝑁∗

        (4) 

where min{𝑏𝑖 , -𝑊𝑖 , -𝑞𝑖} denotes the multi-objective optimization to obtain the cutting 

solution with minimum waste, maximum value, and optimal size satisfaction. 𝑎𝑖1 ≤
𝐿

𝑠1
 

indicates that the upper bound of the cutting number of the first specification size of the 

small solid wood plate in the first scheme is the maximum cutting number of the whole 

solid wood plate, only cutting this specification size of the small solid wood plate. After 

the upper bound of 𝑎𝑖𝑗  (j ≥2) satisfies the determination of the cutting number of all 

previous specifications, the remaining length of solid wood sheets are all used to cut the 

maximum cutting number of small solid wood sheets with this specification size. 

 

Methods 
Genetic algorithm is a global search algorithm, which is an optimal combination 

algorithm based on biological evolutionary mechanisms such as natural selection and 

genetic variation. NSGA-II algorithm is the improvement of NSGA algorithm (Deb et al. 

2002). The improved algorithm proposes fast non-dominated sorting, which reduces the 

complexity of the algorithm (Liu et al. 2005). The elite strategy is introduced to expand 

the sampling space, maintain the excellent individuals in the population, and improve the 

accuracy of the results. The NSGA-II algorithm flow is shown in Fig. 3. 

 

 
 

Fig. 3. NSGA-II algorithm flow 

 

In the single-objective optimization problem, there is usually only one optimal 

solution, while in the multi-objective optimization problem, each goal is mutually 

constrained. The improvement of the performance of one goal often loses the performance 

of other goals, and it is difficult to have an optimal solution that meets all performance 

goals (Vargas Dênis et al. 2021). For multi-objective optimization problems, the core is to 
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coordinate the relationship between the various objective functions. Finding the optimal 

solution set that makes the function value of each objective function smaller, which is 

usually a Pareto solution set. 

If the ranking preference is set to a single-objective problem in NSGA-II, the fast 

non-dominated sort becomes sorted based on the size of the fitness function value, the 

crowding degree becomes infinite and degenerates to a basic genetic algorithm. 

 

Adaptation function 

The NSGA-II algorithm was used to complete the multi-objective optimization of 

wood ranking preferences. The mathematical modeling of the three indicators, yield, value, 

and size, were completed, so these three models were used as the fitness functions. For 

multi-objective optimization, the optimization results were the relative optimal solutions 

of these three indicators. Among them, a smaller value of waste b indicator optimization 

in the yield preference is better, while the larger value of W and size weight q is better. 

Therefore, in the fitness function, the value W and the size weight q take opposite numbers 

and are converted into a minimum value problem. 

In actual production, it is also possible to select one or two of the three indicators 

for ranking. If only one indicator is selected for ranking, then the multi-objective 

optimization is converted into single-objective optimization, and the model is still 

applicable. 

 

Coding 

In genetic algorithms, coding is the key to transforming the individual potential 

solutions of the problem into chromosomes. In the problem of solid wood plate layout 

optimization, the real number encoding is selected. Chromosome sequence contains 

multiple decision variables and fitness function, the structure of which is shown in Fig. 4. 

 

a1 a2 a3 a4 ··· am b W q
 

 
Fig. 4. Chromosome structure 

 

Selection 

The method of tournament selection is used in solving. This selection operation is 

performed based on the ordinal value and the crowding distance. A smaller ordinal value 

resulted in better fitness ability of the individuals, so a smaller ordinal value for different 

individuals, means the easier they are selected. When the individuals have the same ordinal 

value, the crowding distance of the individuals needs to be calculated. For the multi-target 

problem, the crowding distance of an individual is obtained by adding the crowding 

distance of each sub-target, and the larger the crowding distance of an individual represents 

the better diversity of individuals, so the larger the crowding distance is, the easier it is to 

be selected. 

An elite strategy is introduced to expand the sampling space. The parent population 

and its offspring population are combined together to produce the next generation of the 

population through competition. This is beneficial to maintain the excellent individuals in 

the father generation and ensure that the excellent individuals are not discarded in the 

evolution process, to improve the accuracy of the optimization results. Additionally, 
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through hierarchical storage of all individuals in the population, the best individuals will 

not be lost, which can rapidly improve the population level. 

 

Crossover and mutation 

The crossover operation adopts a three-point crossover. Three gene crossover 

points are randomly selected from the selected two parents, and the corresponding cutting 

schemes of the selected parents are exchanged at the three gene crossover points. 

The mutation is mainly a process by which organisms change alleles on 

chromosomes with a small probability during the genetic process to maintain the diversity 

of the population, thus helping the population to escape from local optimal solutions. In 

this paper, directional and uniform mutations were selected to use directional mutations to 

speed up the optimal search in the early iterations of the genetic algorithm, when the 

population diversity is rich. In the later stages of the genetic algorithm, the population 

diversity decreases, and uniform variation is used to generate new chromosomes. Uniform 

variation randomly selects a gene fragment from the range of desirable cuts instead of the 

original value and mutates to produce new individuals. 

 

Termination principle 

There are two ways of genetic algorithm termination principle. The first one is to 

set the number of iterations, and the second one is to judge whether the optimization is 

terminated according to whether the fitness function changes. In this paper, the first way, 

i.e, the method of maximum termination generations, was chosen to determine whether the 

evolutionary process is terminated or not. The numbers of 5, 20, and 100 iterations were 

selected, and the change curve of fitness values were plotted as shown in Fig. 5. 

 
Fig. 5. Variation of fitness value with different number of iterations 

 

It can be seen from Fig. 5 that the algorithm has converged after 10 iterations, at 

which point the fitness value function was near stable and unmoving. To reduce the 

computation time, the maximum number of termination generations was selected as 15. 
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Improvements to the Methods 
The population generated randomly in the population initialization of nesting 

optimization is a discrete integer and needs to meet the constraints, so the feasible solution 

is relatively small. Therefore, when the traditional genetic algorithm is used to optimize 

the layout of solid wood panels, the initial population individuals are more concentrated 

and repeated. When there is chromosome crossover and mutation, the new chromosome 

changes less, resulting in inbreeding. In the late genetic chromosome phase, the same issue 

is encountered, with premature phenomena. Therefore, the population initialization and 

variation were improved to increase the population diversity and expand the search range. 

 

Introduction of the reverse solution 

In common evolutionary algorithms, population initialization generally adopts a 

pure random generation strategy. The goal is to randomly generate a set of initial solutions 

within the range of known upper and lower limits. The calculation time of the evolutionary 

algorithm is related to the distance between the individual and the optimal individual in the 

initial population. If an individual is born near the optimal value, then in this calculation, 

all individuals of the population will converge rapidly. The individual quality generated by 

the pure random generation strategy cannot be guaranteed, so the convergence speed 

cannot be predicted.  

Reverse learning strategy is a new technique in the field of intelligent algorithms in 

recent years. The algorithm needs to consider not only the influence of the current solution 

on the search result in the optimization process but also the role played by the reverse 

solution on the optimization result (Li et al. 2021). The introduction of the reverse solution 

expands the search range and enriches the diversity of the population to a certain extent. 

Let 𝑈𝑖 = [𝑎𝑖,1, 𝑎𝑖,2, ⋯ , 𝑎𝑖,𝑛]  be a currently feasible chromosome, then its 

corresponding reverse solution chromosome 𝑈̅𝑖 is defined as shown in Eq. 5, 

𝑎̅i,j = 𝑙min + 𝑙max − 𝑎i,j
        (5) 

where 𝑎̅i,j ∈ [𝑙min, 𝑙max] , 𝑎̅i,j  are the inverse decision variables, and  [𝑙min, 𝑙max]  is the 

dynamic boundary value of the decision variable. For the generated reverse solution and 

feasible solution, the fitness function is evaluated and the chromosome with higher fitness 

is selected to generate a new population. 

 

Directed variation 

The gradient information is introduced into the genetic algorithm to determine the 

variance and to speed up the convergence of the genetic algorithm as well as to improve 

the optimization efficiency of the algorithm (Li et al. 2021). Optimization of Solid Wood 

Sheet Layout is an optimization problem for finding the minimum value (Wang et al. 

2016), which is defined as the form of Eq. 6: 
 

min{𝑦 = 𝑓(𝑈)} 

𝑈𝑖 = [𝑎𝑖,1, 𝑎𝑖,2, ⋯ , 𝑎𝑖,𝑛]
        (6) 

Take the following for two individuals in the population: 

{
𝑈𝑘 = [𝑎𝑘,1, 𝑎𝑘,2, ⋯ , 𝑎𝑘,𝑛]

𝑈𝑘+1 = [𝑎𝑘+1,1, 𝑎𝑘+1,2, ⋯ , 𝑎𝑘+1,𝑛]
      (7) 

Find the value of the objective function for these two individuals, respectively: 
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{
𝑦𝑘 = 𝑓(𝑈𝑘)

𝑦𝑘+1 = 𝑓(𝑈𝑘+1)
        (8) 

Define the direction vector as Eq. 9: 

𝑑(𝑈𝑘+1, 𝑈𝑘) = sgn(𝑎𝑘+1,1 − 𝑎𝑘,1, 𝑎𝑘+1,2 − 𝑎𝑘,2, ⋯ , 𝑎𝑘+1,𝑛 − 𝑎𝑘,𝑛)
   (9) 

With the direction vector, it is then possible to perform a directional variation on 

individuals, as in Eq. 10: 

𝑈𝑘+1 = 𝑈𝑘 + 𝑑(𝑈𝑘+1, 𝑈𝑘) ∙ rand
       (10) 

If the objective function value of the new individual produced after directed 

mutation is improved, then the individual is retained to replace the original one, otherwise, 

it is discarded. In the early stage of the algorithm, the variability of individuals in the 

population is large, and the size of the directed variance should be as large as possible at 

this time to expand the search range to improve the adaptation ability of new individuals 

as soon as possible; in the late stage of evolution, the variability of individuals in the 

population is small, and the size of the directed variance should be as small as possible at 

this time to avoid destroying the good genes in individuals. Therefore, the size of directed 

variation should decrease as the number of iterations rises, as shown in Eq. 11, 

𝑈𝑘+1 = 𝑈𝑘 + (1 − 𝑘 𝑘max⁄ ) ∙ 𝑑(𝑈𝑘+1, 𝑈𝑘) ∙ rand
     (11) 

where k is the number of current iterations and 𝑘max is the maximum number of iterations. 

A flowchart of the solid wood panel row sample preference model is shown in Fig. 6. 
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Fig. 6. Flow chart of solid wood plate layout optimization 
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Experiment and Result Analysis 
According to the principle of the improved multi-objective optimization algorithm, 

the Matlab 2020a simulation software (MathWorks, Natick, MA, USA) was used to 

program the experiments for solid wood plate layout optimization. The experimental 

conditions were: the length L of the solid wood plate was 4660 mm, and the cutting 

specifications are shown in Table 1, where N = 20, 𝑃𝑐 = 0.8, and 𝑃𝑚= 0.05, the number of 

targets M was set to 2, and the number of iterations 𝐾𝑚𝑎𝑥 = 15. Twenty sets of primitive 

populations were randomly generated according to the constraints, and the primitive 

populations are shown in Table 2. The results of multi-objective NSGA-II nesting 

optimization are shown in table 3. The optimized results of solid wood layout obtained by 

the improved multi-objective optimization are shown in Table 4. 

 

Table 1. Information on Small Solid Wood Panels of Different Cutting Sizes  

Cutting Specifications Size (mm) Value 

𝑆1 660 80 

𝑆2 550 70 

𝑆3 420 60 

𝑆4 336 50 

𝑆5 180 25 

 
 
Table 2. Primary Populations 

Serial 
Number 

Number of 
Cuts 

Residuals 
Amount 
of Value 

Serial 
number 

Number of 
Cuts 

Residuals 
Amount of 

Value 

1 4 3 0 0 2 10 580 11 3 4 0 1 0 144 570 

2 0 1 2 8 3 42 665 12 2 2 4 1 0 224 590 

3 6 0 0 2 0 28 580 13 4 2 1 1 0 164 570 

4 0 7 1 1 0 54 600 14 1 3 4 0 2 310 580 

5 6 0 0 2 0 28 580 15 4 1 3 0 0 210 570 

6 2 6 0 0 0 40 580 16 6 0 1 0 0 280 540 

7 2 3 3 1 0 94 600 17 4 1 0 3 1 282 565 

8 3 4 1 0 0 60 580 18 2 2 0 3 4 512 550 

9 0 2 1 0 16 260 600 19 6 0 0 0 1 520 505 

10 1 5 1 2 0 158 590 20 3 1 2 2 0 618 530 

 

 

Table 3. Multi-objective NSGA-II Nesting Optimization Results 

Serial Number Number of Cuts Residuals Amount of Value 

1 0 4 5 0 2 0 630 

2 0 0 5 7 1 28 675 

3 1 1 5 4 0 6 650 

4 2 1 5 2 0 18 630 

5 4 0 4 1 0 4 610 

6 1 1 1 9 0 6 660 

7 3 1 3 2 1 18 615 

8 0 6 2 1 1 4 615 
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Table 4. Optimization Results of Improved Multi-objective Layout 

Serial Number Number of Cuts Residuals Amount of Value 

1 0 4 5 0 2 0 630 

2 0 0 5 6 3 4 675 

3 1 1 5 4 0 6 650 

4 0 4 5 0 2 0 630 

5 1 4 3 0 3 0 615 

6 1 2 4 2 3 8 635 

7 0 6 2 1 1 4 615 

8 1 4 3 0 3 0 615 

 

From the simulation results in Tables 3 and 4, the experiments were repeated eight 

times, and it can be seen that both NSGA-II and the improved algorithm were able to find 

the optimal solution, and the improved algorithm was able to find the solution with a 

smaller margin to make the population fitness value better under the condition of achieving 

the same value. The windows-based operating system was run using a computer with a 

processor of Intel Core i7-6700HQ with a main frequency of 2.6 GHz and 8 GB of memory 

(Pavilion 15-bc015tx; Hewlett-Packard, Palo Alto, CA, USA). The basic genetic 

algorithm, NSGA-II algorithm, and the improved algorithm were used as controls. To 

eliminate the influence of random factors, all simulation experiments were run 16 times 

independently, and the results were averaged. 

The number of fitness function calculations (NFFC) and the average deviation 

distance to evaluate the solution results were determined (Gao et al. 2006). The NFFC 

refers to the calculation number needed to find a feasible solution of the same quality. The 

smaller the value, the more efficient the search is represented. The average deviation 

distance is the average distance between the actual solution and the optimal solution 

obtained by the genetic algorithm. The deviation standard deviation indicates the degree of 

dispersion and precision of the search results of the genetic algorithm. The smaller the 

value, the better the stability is represented. The comparison results of the three algorithms 

in single-objective and multi-objective optimization are shown in Table 5. The comparison 

results of algorithm convergence are shown in Fig. 7. For the five algorithms, the data line 

graph of 16 experiments for each algorithm is shown in Fig. 9.  
 

 
       a) single-objective optimization     b) multi-objective optimization 
 
Fig. 7. Comparison of convergence of each algorithm  
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Table 5. Comparison of the Three Algorithms 

Algorithm Time (s) NFFC Offset Distance Standard Deviation 

Single Target GA 0.0874 12 11.250 7.512 

Single target NSGA- II 0.1834 8 7.125 3.672 

Multi-target NSGA- II 0.2147 8 7.500 7.297 

Improved single-target NSGA-II 0.2650 4 5.000 4.183 

Improved multi-target NSGA- II 0.2753 4 4.875 3.672 

 

From Table 5, when using typical modern computing devices, the time consumed 

using the NSGA-II algorithm was about twice that of the traditional algorithm. However, 

the final convergence value was more accurate. The NSGA-II algorithm can also achieve 

multi-objective optimisation, which is not available with traditional algorithms. From the 

comparative analysis of the convergence curves of Fig. 7, it can be learned that the NSGA-

II algorithm had lower convergence iterations and higher convergence speed than the 

traditional GA algorithm in single-objective layout optimization. Additionally, the 

population fitness function was better. In the multi-objective layout optimization, the 

NSGA-II algorithm was improved by combining the reverse solution with directional 

mutation and random mutation strategy, which overcomes the problem that NSGA-II is 

easy to local convergence in the middle and late stages. Further, the convergence was better 

than other algorithms. It was verified that the improved NSGA-II algorithm effectively 

improved the convergence performance. 

 

 
 
Fig. 8. Plot of 16 experimental data for the results of the five algorithms 

 

From Fig. 8, it can be seen that the fluctuation of the improved NSGA-II algorithm 

is less than that of the other two algorithms in single-objective and multi-objective layouts. 

The broken line position is lower than other algorithms, and the overall solution is better. 

This verifies that the improved NSGA- II algorithm has stronger applicability. 

 

 

CONCLUSIONS 
 

1. Aiming at the various problems existing in the traditional genetic algorithm in the solid 

wood plate layout problem, an improved multi-objective optimization algorithm was 

proposed, which effectively improved the convergence speed, and the optimization 

degree was further improved.  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Wang et al. (2022). “Smart layout for wood panels,” BioResources 17(1), 94-108.  106 

2. Taking the actual production problem as an example, the improved NSGA- II algorithm 

was used to optimize the layout of the solid wood plate, with the yield and value as the 

optimization objectives. The simulation results show that the improved multi-objective 

optimization algorithm was effective. In the multi-objective and single-objective tests, 

the time used by the algorithm was equivalent to that of the NSGA- II algorithm, and 

the calculation times of the fitness function and the average deviation distance were 

lower than those of the ordinary GA and NSGA- II. 

3. Although the NSGA-II algorithm and the improved NSGA-II algorithm used about 

twice as much time as the ordinary GA algorithm, the number of convergence iterations 

was lower than the traditional GA algorithm, the error rate was reduced, and the degree 

of optimization and stability were improved. The algorithm takes time to meet the 

speed requirements of industrial production lines and can be directly applied to 

practical production problems. 

4. Improving the speed and effect of wood layout optimization is an important measure 

to improve the utilization rate of wood and the income of enterprises, and it is also one 

of the main difficulties in the study of wood optimization processing algorithm. 

Continuous research and improvement are needed to get better optimization results. 
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