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Abstract

This paper presents the results of an experimental and
theoretical investigation into the fundamental mechanisms that
govern ultrasonic propagation in fibre slurries . An experimental
apparatus which measures the attenuation and velocity of
ultrasound in slurries is described . Measurements on wood fibre
slurries show, in contrast to previous work, that the effect of
the fibre on the velocity of ultrasound is negligible . This
observation led to the development of an isolated segment model,
which can predict attenuation as'a function of fibre properties
and ultrasonic frequency . The theory assumes the fibres are
isolated, isotropic, infinite cylinders . It accounts for
scattering, heat conduction, viscous losses in the fluid, and
relaxation processes in the fibre. Experiment and theory are
shown to be in good agreement for some synthetic fibre slurries .
In the more complicated case of wood fibre suspensions, the
theory predicts attenuation to the correct order of magnitude
and permits speculation about the effects of fibre properties .

Introduction

Non-destructive analysis of fibre slurries using ultrasonic
techniques may some day be a valuable tool for determining fibre
properties . Previous authors( 1,2) have described how ultrasonic
attenuation in a wood fibre suspension is proportional to its
consistency. They have also demonstrated that the attenuation at
a given consistency varies with furnish . Adams( 2 ) reported how
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A schematic diagram of the apparatus

	

is shown in figure 1 .
The rf signal from a stable continuous wave (CW) source is mixed
with a pulse to produce a pulsed rf signal . This is applied to a
piezoelectric transmitter which is immersed in the suspension .
An identical transducer receives the signal after it has passed
through a length, L, of fibre suspension. The signal received is
attenuated to a standard level, amplified, and mixed with the
continuous wave.

Fig 1 �-Schematic diagram of the apparatus for the ultrasonic
characterization of fibre suspensions.

The phase of the received signal depends on the phase shift
in the suspension, 2 TC Lf/V, where f represents the frequency of
the CW signal and V is the velocity of ultrasound in the
suspension, plus the phase shift in the transducers . The mixed
signal amplitude reaches a maximum when the phase difference
between the CW signal and the received signal is an integral
multiple of 2TL .

	

As frequency changes, the phase of the
received signal progresses and the mixed - output oscillates.

	

The
velocity of sound in the suspension can be calculated from the
frequency difference between minima in the mixed output, provided
the phase shifts outside the suspension can be accounted for . The
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degree of attenuation in the suspension can be determined from
the value of attenuation of the CW signal necessary to produce
the standard signal level .

In order to obtain very accurate velocity measurements, our
apparatus differed from Adams in two ways. The CW signal
source is not an oscillator, but a frequency synthesizer stable
to one part in 107 .

	

This gives a resolution of one part in 105
in the frequency shift measurements in homogeneous fluids . In
addition, the transducers are mounted so that their separation
distance can be varied .

	

This allows the frequency-dependent
phase shifts in the transducers to be measured, thus allowing
correction of the velocity data .

	

Adams estimated these shifts
from a mathematical model of the transducers .

The suspension is con-
tained in a plexigl ass tank
0 .5m long, 0 .2m wide and 0.2m
high (see figure 2) . Four
transducer pairs are mounted
in a frame and suspended
above the slurry on precision
screws .

This allows the transducer
separations to be varied .
The four transducer pairs are
necessary to cover the
frequency range from 0 .6 MHz

	

Fig 2-Simplified cross section of sample chamber.

t o 13 MHz . The entire
assembly is immersed in a
water bath whose temperature
is controlled to within 0 .01 0C .

	

The suspension is mixed by a
pair of stirrers mounted behind the transducer assemblies and
rotating in opposite directions.

A second technique can be used for measuring the ultrasound
velocity . The sample chamber can be separated into two parts by
inserting a - 0.006mm thick Mylar membrane between the transducer
assemblies .

	

By placing water in one compartment and the fibre
suspension in the other, the velocity can be measured by a second
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strain and temperature to the governing differential equations of
continuity, motion, and energy conservation .

The model considers a single solid segment in a fluid medium .
The solution must be a plane compressional wave far away from the
inclusion and the boundary conditions of equal stress, velocity,
temperature, and heat flux must be met over the solid-fluid
interface. The solution is found by expanding the incoming plane
wave in terms of spherical harmonics. Solutions are expressed in
terms of three scalar potentials in the fluid and three in the
solid. The total solution is the plane wave plus the potentials
expanded in spherical harmonics with undetermined coefficients .
The coefficients are found by applying the boundary conditions to
each order of spherical harmonics . The result is six .equations
and six unknowns for each order. These are solved numerically for
the zeroth, first, and second order. As long as the radius of the
sphere is less than the wavelength of the compressional wave, the
series converges rapidly, and the first few orders are sufficient
for a practical solution . The attenuation is calculated from
these coefficients .

In order to apply this model to fibres, the calculation is
repeated for infinite cylindrical, isotropic inclusions. For this
case the plane waves and potential functions are expanded in
terms of Bessel functions and sinusoidal functions .

	

For the
spherical case, symmetry arguments show there is no velocity or
stress in the ~O direction .

	

For the cylinder there are velocities
and stresses in the z, r, and 0 directions ; therefore, there are
more boundary conditions and a fourth potential is needed . In
addition, the solution depends on the orientation of the incoming
wave to the plane of the cylinder ; thus, attenuations are found
for a set of orientations and numerically integrated to get the
result for randomly orientated fibres . The result of this
theoretical development is a computer program that gives the
attenuation as a function of frequency when the following
parameters are given :

cylinder radius (R")
solid and fluid compressional wave velocity (c",c)
densities (p",p)
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as a function of e , the angle between the plane of the fibre and
the incoming radiation, at different values of loss tangent .
Notice the strong peak for low loss tangents . This occurs when
the wave-vector of the incoming radiation, as projected along the
fibre, equals the wave-vector of the zeroth order longitudinal
rod mode in the cylinder . The velocity of this mode is
approximately (E'/p") 1 /2 when the wavelength of the bulk
compressional wave in the solid is much greater than the radius
W is Young's modulus of the solid and p' is the solid density) .

Fig 4-Theoretical plots of the relative loss per single fibre vs. the
angle, E, between the incoming radiation and the plane of the fibre.
The slurry parameters are p = 996 kg/m 3 ; p' = 1340 kg/m3 ;17 =
9.4 x 10

	

nt'sec/m , K= 0.59 watts/m K, K = 0.038 watts/m
o
K -

c =1490 m/sec; c' = 4000 m/sec;

	

v' = 0.35;
K,
Cp
ß==

4.14 x 103 J/kgbK;
Cp

,
= 1 .02 x 10 3 J/ka K; ß = 2.36 x 1 04/0

	

1.7 x 10 5/o K,;,,
f = 1 MHz; T = 2960 K; and R'= 13x 1 Q6 m. A list of symbols is
in the appendix.
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modulus, p, might equally have been used, since

	

E'/2(1+V') .
In figure 5, for the theoretical attenuation curve the loss

tangent was set equal to 0.1, the lower handbook value . Actually
the effect of loss tangent on these curves is quite small, a
change from 0 .05 to 0 .2 causing only 10% difference in the
curves . The only significant unknown parameter, therefore, is
the Poisson's ratio, and this may be varied to obtain the, best
fit. Good agreement between experiment and theory occurs when it
has the value 0 .3 .

Fig 5-Experimental attenuation data for a nylon 6,6 fibre slurry
with radii from 13 to 16 ym and a length of 2.3 mm. The
accompanying lines are theoretical curves for different values
of fibre Poisson's Ratio. Model fibre parameters are p' = 1090

103
kg/M3 ; VoR' .=,1660 m/secs Ko' = 0.36 watts/m°K; Cp' = 1.42~x

J/kg K, (3 1 .0 x 10F5/OK;tan 5 0.1, R' = 15 .2 x 10 m;
and s = 1 .08%. For water parameters see Figure 4.
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17 MHz. This means that the infinite cylinder model should not
be applicable over most of the frequency range.

Fig 7-Experimental attenuation data for a polyester fibre
slurry with a radius of 10.7 pm and a length of 2.30 mm.
The model fibre parameters for the theoretical curve are
p'=1340 kg/M3 ; c'=5860m/sec;v'=0.4 ; K'=3.8x102
watts/m°K; Cp' = 1 .02 x 103 J/kg °K; ß' = 1 .7 x 10 5/°K;
R'=13 x106 m; and s=1.00%.

The explanation for the observed oscillations becomes clear
when it is noticed that the period and phase are length
dependent. The loss tangent is small and the fibres are short
enough that a significant resonant vibration can occur when the
fibre length is an integral number of half wavelengths of the
longitudinal rod mode . The frequencies at which the first
resonance should occur, using the measured rod velocities, are



294 ultrasonic characterisation of fibre suspensions

marked at the tops of figures 7 and 8 . This resonance phenomenon,
of course, is not predicted by the infinite cylinder theory .

Fig 8-Experimental attenuation data for a polyester fibre
slurry identical to that of Figure 7, except Q' = 1 .66 mm .
The model curve is the same as in Figure 7.

3 . RAYON

Rayon is similar to nylon in that it is hygroscppic, and that
water acts as a plasticiser. The velocity of the longitudinal
rod wave in saturated rayon is less than in nylon, so that finite
length effects are even less significant thin in nylon. For the
fibre radii studied (R"> 7pm), thermal effects contribute only a
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few percent to the attenuation . Preliminary theoretical curves
indicate that attenuation is more sensitive to the value of the
loss factor in rayon than in nylon . This means there are two
adjustable parameters, the loss factor and Poisson's ratio (fibre
modulus is found from the measured rod velocities) . Loss
tangent is a function of frequency but, for simplicity, the model
neglects this .

Fig 9-Experimental attenuation data for regular modulus,
2.3 mm long rayon fibres with radii from 11-15 hum. The
theoretical curves have different loss tangents . The model
fibre parameters are p' = 1400 kg/m3; c' = 1090 m/sec;
V'= 0.32; K' = 0.15/m°K; Cp' = 1 .5 x 103

J/kg°
K; (3' =

3.6 x 10-4/"K; R'

	

13x 10

	

m; and s

	

1 .25% .

Figure 9 shows the theoretical and experimental curves for
normal modulus, 9 .Opm radius, 2 .3mm long rayon fibres . The value
of Poissons ratio is 0 .32 and the loss factor has been varied to
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produce the different model curves . The rod longitudinal velocity
was measured as 0,91 km/s . Good agreement with , experiment is
obtained when the `values of the Poisson's ratio and loss factor
are 0 .32 and 0 .1 respectively, but there are surely other
combinations giving an equally good fit.

Fig 10-Experimental attenuation data for regular modulus, _2 .3 mm long
rayon fibres with radii from 11--15 pm . The theoretical curves have
different Poisson's ratios . The model fibre parameters are p' = 1400
kg /p, 3 ; c4=1090 m/sec ; K' = 0.15/m K; Cp' = 1 .5 x 103 Jo/kg°K ; ß'
3.6x10 0F4/OK;R =13x10 m;tan5=0.1 ;ands=1.25/0 .

Figure 10 is a set of model curves for this rayon fibre with
the value of the loss factor set to 0 .1 and variable Poissons
ratios . Notice this trend is the reverse of nylon (Figure 5)
where increasing values of Poissons ratio (or decreasing shear
modulus) led to increasing attenuation.
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Fig 11--Experimental attenuation data for high wet modulus, 2.3 mm
long rayon fibres with radii from 7 to 10 hum.

Figure 11 shows the experimental results for a 7.5pm high wet
modulus rayon fibre slurry . The rod longitudinal velocity is
1 .27 km/s in the saturated fibre. The level of attenuation is
about the same as for the other rayon fibre, although the curve
is flatter at the lower frequencies . Reasonable values of the
loss factor and Poisson's ratio can be chosen to give the correct
average value of attenuation, but the theory is not as successful
in reproducing the shape of the curve. It is possible that the
theory is less suitable for high wet-modulus rayon because it is
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more elastically anisotropic. Another possible explanation is
that there is a visco-elastic absorption peak in this frequency
regime so that the loss factor varies rapidly with frequency.
This is consistent with the observations that the loss factor
necessary to fit average theory to experiment is greater than in
the regular rayon.

Fig 12-Average experimental attenuation data for a bleached
kraft softwood pulp at freenesses of 720, 380 and 90 CSF . Each
data point is the average of about 25 measurements .
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WOOD FIBRES

Figure 12 shows the experimental data for a bleached kraft
softwood pulp at different refining levels .

	

Each data point is
the average of about 25 measurements .

	

The data are taken on
pulp with consistencies from 0 .48% to 2 .89% . The transducer
separation distance varies from 50 to 150mm . Important points to
notice are the following :

1) the level of attenuation is considerably lower than that
measured for rayon fibres ;

2) there is

	

remarkably larger decrease in attenuation
during the early stages of refining ;

3) for highly beaten pulp the decrease wanes and reverses
at the lower frequencies .

Wood fibre slurries are, of course, much more complex than
synthetic fibre slurries . There are broad distributions in the
shapes and sizes of the fibres, and the cross sections are not
cylindrical.

	

The mechanical and thermodynamic properties vary
in a similar way and are not easily determined .

	

Beating is not
well understood in terms of its effect on the geometric,
thermodynamic, and mechanical fibre properties. Nonetheless, with
insight gained from the work on synthetic fibres, it is possible
to conjecture as to what may be happening in this wood pulp
system .

A possible explanation for the difference between rayon and
wood fibres in the level of attenuation may be due to a higher
degree of crysta l l inity in the wood fibres .

	

This leads to a
lower loss tangent and, therefore, lower attenuation . It was
shown in figure 9 that rayon is quite sensitive to change in loss
tangent .
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There is a number of changes occurring during refining that
could alter the curves . The theory predicts that a decrease in
the representative radius of the fibres would lower the
attenuation. However, this effect is not large enough to explain
the large decrease in attenuation brought about by refining, if
the radius is assumed to be initially less than about 20um.
Large particles (50 to 500}ßm radii) in the slurry would produce
a scattering peak in the experimental frequency range . Though
small in number, these particles could make a large contribution,
and if refining reduced their number, it could significantly
reduce attenuation.

One effect of refining could be to reduce the fibre shear
modulus while keeping Young's modulus relatively constant . In
the theoretical model, this corresponds to an increase in
Poisson's ratio at constant rod longitudinal velocity .

	

As shown
in figures 5 and 10, changing Poisson's ratio can have a large
effect on attenuation. For rayon fibres, where the velocity of
the longitudinal . wave in the fibre is lower than in water,
increasing Poisson's ratio decreases attenuation .

	

For nylon,
where the velocity is greater than in water, the trend reverses .
Wood fibres probably have a greater velocity than rayon and may
be in a transition region .

	

If the wet modulus of the wood
fibres is not too much greater than that of rayon, the decrease
in attenuation with refining might be due to decreasing shear
modulus .

It is clear that more work needs to be done on well-
characterised wood pulp systems before we have a clear
understanding of ultrasound attenuation in pulp . However, the
major effects have been identified . Quantitative results have
been correctly predicted for synthetic fibre systems, and
quantitative explanations for the observed behaviour in wood pulp
systems suggests that further study is warranted.
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APPENDIX
Outline__of the theoretical development

List of symbols

r,0,z Cylindrical co-ordinates acc ~ R"kcc"
aligned with the fibre

t Time kt (iwPC 1/2P/K)
R" Cylinder radius at R"k t

T Temperature ktc (kt2-kes
2 ) 1/2

fr Solid volume fraction atc R~ktc
W Angular frequency ks (iwp/q) 1/2

e Angle between the plane as R~ks
of the fibre and the
incoming radiation-A Transverse wave vector ks ' w(p,/P - ) 1 /2

potential
Comparison wave potential as ~ R ,ks ,

Scalar potentials for ksc (ks2-kes2)1
/2

transverse wave
c Compressional wave velocity ksc ~ (ks

,2-kcs
2 ) 1/2

1~ Fibre length asc R'ksc

p Density be - OTU)2/C P

r} Viscosity C1 2 c2+4i"/3p

Solid Poisson's ratio C 12 " c'2-4u,/3p

Solid shear Lamé constant Y 1 + 02Te2/CP

K Heat, conductivity coefficient bt
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Primed symbols refer to the solid and unprimed to the liquid .
When primed symbols are unlisted they have definitions analogous
to the unprimed symbols .

The problem is to find a solution for temperature and
velocity to the continuity equation, the equations of motion, and
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the energy conservation equation,which meetsthe required boundary
conditions at the cylinder-fluid interface and is a plane wave at
an angle e to the axis of the cylinder far away from it . It is
shown by Epstein and Carhart (6) and Allegra and Hawley (4) that
the governing equations can be l inearised for small motions and
expressed in teerms of potentials-, A and ~P . The governing
equations are satisfied if equations (1) - (4) are obeyed and the
velocity and temperature are related to the potentials as in
equations (5) and (6) .

o ~A = o

	

(~)

02~c = -kc2~c

	

(2)

o 2~t = -kt 2~t

	

(3)

vxvxA = -k 2Á

	

((4)

V = -v~C - v~ t + vxA

	

(5)

T = bc~c + bt~t

	

(b)

Equations (1) - (6) apply in the solidas well as in the
fluid. Here the corresponding symbols will be denoted by a prime.

When the incoming plane wave is expanded in terms of Bessel
functions, it becomes

kPo = [JO(kccr) + 2 n l incosn6 Jn(kccr)]ei(kesZ-wt)

	

(7)

Solutions to equations (2) and (3) can be expanded similarly with
undetermined coefficients . The results are :
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and, ~P' = ~pc" + qpt"

	

(9)

Where

00

tp

	

= B H(1 ) (k

	

r)

	

+ 2

	

B in cosn9 H(1) (k

	

r)

	

el(kcsZ
-- wt) (10)

r

	

o o

	

cc

	

~- n

	

n

	

ccn=1
00

t = CoHo(1)(ktcr)

	

+ 2

	

T. C in cosn8 H ( ~ ) (k

	

r)

	

el(kcs

	

'
z

	

- Wt)

	

(il)
n=1 n

	

n

	

tc
00

tp

	

,

	

= B IJ

	

(k'

	

r)

	

+ 2

	

B' in

	

cosn9 J

	

(k'

	

r)

	

el(kcs z

	

- wt) ,

	

(12)c

	

o o

	

cc

	

~ ,

	

n

	

n ccn=1 .
00

= C'J (k' r) + 2

	

C l in cosn8 J (k' r)-el(kcsz

	

wt) ,	(13)t

	

o o tc

	

n=1 n

	

n tc

In the above, solutions which have the same time and z dependence
as the incoming radiation (i.e ., el(kcs- Wt)) are being sought .

The boundary conditions at r = R" are
a) Vr =Vr "

	

b) V® =V© "

	

c) Vz =Vz
d) T = T"

	

e) KT,r = k"T",r

	

f) trr = trr"
9) trE)= trE)h) trz = trz

To meet these eight boundary conditions, two linearly
independent solutions to equations (1) and (4) are needed . It can
be shown that A 1 and A2 are solutions to equations (1) and (4)
when

A l = V x fk

	

and

	

A2 = V x V x ci,
if

	

V2T

	

_ ks 2T

	

and

	

V2 E

	

_

	

-ks2~

Now the ~"s and ~"s are expanded in Bessel and cosine functions .
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kS2~ - [DOHo(1) (kscr) + 2 E Dnin dcosn8
Hn( 1 )(kscr)]e l (kcs z-wt) ( 14 )n=1 d8

ikcs 'Y =

	

[EOHo(1) (kscr ) + 2

	

É

	

Enin dcosn8 Hn(1) (ksc) ] e i (kcsz~t) (15)n 1

	

d8

ks ' ~ ' - [DO'J,(ksc'r) + 2 É Dn'in dcosn8 Jn(ksc'r)]ei(kcsz-wt) (16)
n=1 d.8

ACSY'

	

=

	

[Eo ' JO(ksc'r)

	

+ 2

	

E

	

En " in dcosn9

	

Jn(ks

	

, r) ] ei(kcsz--wt) (17)n=1 d8 c

When the velocities and temperature are expressed in terms of
the potentials by equations (5) and (6), the eight boundary
conditions can be expressed in terms of eight sets of
undetermined coefficients . Because of the orthogonality of the
cosn8's, the boundary conditions must hold for each order of
coefficients . This results in eight equations and eight unknowns
for each order, n, of the coefficients . The resulting equations
are

(a) accJn ' (acc) + BnacCHn(1)'(acc) + Cnat cHn ( 1 ) ' (a tc ) - Enas cHn ( 1 )'(a sc ) +

n2DnHn(1) (asc) = -iw [ Bn ' acc ' Jn ' (acc') + C n 'a tc ' Jn ' (atc') -

En'asc ', Jn'(asc') + n2Dn ' Jn(aSC',) ],

	

(18)

(b) Jn(acc) + BnHn (1)(acc) + CnHn(1) (atc) - EnHn(1)(asc) + DnascHn(1)'(asc)

-iw [Bn ' Jn(acc') + Cn 'J n(atc ' ) - En ' Jn(asc') + Dn 'asc ' Jn"'(asc')]f

	

(19)

(c) acs 2Jn(acc) + acs 2BnHn(1) (aCc) + aCS2CnHn(1)(atc) + asc2EnHn(i)(aCC) =

-lw [ a cs 2`Bn'Jn(acc') + acs2Cn ' Jrn(atc ' ) + asc' 2En'Jn(asc') ],

	

(20)

(d) ` be[Jn(acc) + B nHn ( 1 )(acc )] + btCnH n ( 1 )(atc) = -iw[b c 'Bn 'Jn(acc ') +

bt'Cn'Jn(atc')],

	

(21)

K [ accbc(Jn ' (a,CC) + BnHn(1)' (acc)) + CnbtatC H n ( 1 ) ' (atc )] =

-iWK'[Bn'bc'acc'Jn'(acc'/) + Cn 'b t 'a tc ' Jn ' (atc ' )] ,

	

(22)
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(f)

	

r~~[(as2°~ac~)Jn(acc)

	

.~ 2acc2Jn� (acc)] + gn[(asc - 2ac~)Hn(dcc)

-2acc2Hn( 1 ) "(a cc)] + ~[(a s z__2a t 2)Hn(~)(atc ) - ~atc2Hn~~ )fT (atc)] +

2Ena sc2Hn( 1 ) ~ ~ (asc)

	

+ 2~3nn~ [Hn(~- ) ( asc)

	

__ ascHn(1 )' ( asc) ]
Bn'

[(w2p'R'2 - 2t~'ac,2}.Jn(acc') _~ 2u'acc'~,~n" (acc ' )] ~}_

Cn
[(w2p fRtZ _ 2U'at'2)~n(atc') ~ 2u'atc'2~np'(atc')j +

2u'~n'asc'2Jn(asc') + ~t''Dh'n2 [Jn(asc ') ~- asc"~n(asc')]~

	

(23}

nCaccJn'(acc) - Jn(acc) + Bn[accHn(1)4(acc) _ Hn(1) (acc)] +

Cn [atcHn(1)(atc) - Hn(~)(atc)]
~. ~n

[n2Hn(1)(asc) _ ascHn (1)'( as~) +

asc2Hn(1)" (asc)] + En [Hn (1)(asc) ® ascHn(1)t(asc } ]~
u~ Cgn;.

[acc 'Jn ' (acc ' ) `~ Jn(acc ' )] + Ct-~' [atc ' ~n ' (atc') r Jn(a-tc ' ) ] +
D 'n

	

n2J (a

	

,) _ a

	

, J ,(a

	

,) + a

	

,2 d � ( a

	

~)] + En,[ .1n(asc') -
[ n sc

	

sc n sc

	

sc n sc

asc'Jn'(asc')]~~ and

	

(24)

(h) 2~taccacs[Jnt(acc) + BnHn(1) ~(acc)) + 2natcacs~nHn (1) ~(atc) +

nEnHn' (asc)[ascZ - acs~]asc~acs + nDnn2acsHn(~)(asc ) - 2u'acc'acs

Bn'Jn'(acc') + ~u'atc 9 ~n'Jn'(atc')acs + U~Dn'n2acs~n(asc ' ) +

u'En'Jn~(ase')asct[asc'2 -- acs2 ]~acs' ~

	

(25)

These eight simul taneous equations are solved numerical 1 ~ for
n ~ 0,1 , and 2 . When keR~ and kC~R" are less than one, the series





Discussion

Discussion following paper of Dr . G .A. Baum

Dr. D . Wahren, IPC : Chairman
It is very interesting to see such precise work being done.

I am especially interested to see that it doesn't affect the
results whether or not the fibres form a coherent network . Have
you any comment to make on this?

Dr . G .A . Baum, IPC
Our model assumes the fibres to be all independent . It is

possible that a coherent network exists, which if it did, would
represent a perturbation on the results .

Dr . D . Wahren
Your method of normalisation, which involves dividing by

consistency at constant freeness, implies that networks are not
very important .

Dr . G . A . Baum
From the observation that the quantity a/f2 is linear with

consistency, one would certainly reach that conclusion .

Dr . D .W . Clayton, Paprican
Earlier you showed some results you obtained when you

increased the radii of some nylon fibres from 15 to 111 microns .
This seems like rather a large jump . Have you any results for
intermediate radii?

Dr . G . A . Baum
No, we did not obtain results for intermediate values. One

of the useful properties of the model is that it allows us to
change only one variable at a time .

	

As the fibre diameter is
increased then scattering phenomena become important at high
frequencies . Further increases of diameter extend downwards the
frequency at which scattering becomes important .

Transcription of Discussion



	

session 4 discussions

Prof. R . Kerekes, Paprican
I would like to say something here, which might help you with

your hypotheses. At Paprican we recently measured fibre
flexibility after beating in a PFI mill over the freeness range
from 720 to 300 CSF, similar therefore to the range you
investigated .

	

The measured increase in fibre flexibility is
approximately twofold .

	

As you know, the flexibility reflects a
combination of the elastic modulus and the geometric
configuration of the fibres, and may thus be an important
parameter in your studies .

Dr . G . A . Baum
Thank you. We are aware of your work and have tried to take

your results into account when explaining the effects with wood
pulp fibres .

Prof. K.I . Ebeling, Helsinki University of Technology,
Finland

All your analysis is based on the rigid rod model . Is it
possible that some of the discrepancies might be removed by
considering a porous solid model?

	

The porous nature would
obviously be derived from the presence of the lumen and the
fibrillar structure of the cell wall.

Dr . G . A . Baum
In our work we have tried to keep the model as simple as

possible. Adams was forced to consider a porous model because
he found that the ultrasonic velocity depended on frequency,
which cant be accounted for by the isolated segment model.

	

The
Biot model is very complicated and incorporates many parameters.
We have been successful in explaining our measurements on
synthetic fibre systems and plan to concentrate on well-
characterised fibre suspensions at present, while retaining the
simple model .

	

It is quite possible that the irregular shape and
anisotropic nature of wood fibres affects the attenuation .
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Dr . C .C . Habeger, IPC
A porous model would be expected to display some form of

percolation phenomenon, so that the attenuation could not be
expected to be linear with respect to consistency .

	

Since we
find this linear relationship between these two quantities, we
see no need to complicate the model at present .

Dr . M .B . Lyne, Paprican
In the samples where the pulp was beaten did you take any

steps to separate out the fibres, and do the fines have any
effect on the attenuation?

Dr . C.C . Habeger
We did not separate out the fines. The'model predicts that

the absorption per unit mass decreases with radius at these
frequencies, so that the part of the total mass present as fines
should not contribute significantly to the total absorption .

Mr . B . Radvan, Wiggins Teape, UK
It is curious that there should be no effect of any network

structure on the attenuation . It is just possible that this is
because the wavelengths you are using (of the order of fractions
of a millimetre) are too short to see the flocs . You have
observed the resonance between the wave and the ends of the free,
rigid cylinders, so if you were to increase the wavelength to the
order of 10 mm or so then you might observe the effect of the
floc structure .

Dr . C .C . Habeger .
That is perfectly possible, but, quite honestly, I would

expect the effect to be small .

Prof. T . Helle, The University of Trondheim, Norway.
If you used dried pulps, then the results shown in figure 12

are exactly as I would expect . At the commencement of beating,
the flat, ribbon--like fibres become more flexible, but as it
continues balloons start to develop because of the imbided water,
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and the fibres become stiffer . This would appear to account for
the results you obtained .

Dr . G .A . Baum
The model predicts that the attenuation should increase as

the fibre flexibility, given by 1/EI, increases .

Mr . A . de Ruvo, STFI, Sweden
The damping you refer to is the mechanical damping of the

material under study, and is at least partly associated with
plasticisation . Could you envisage performing your measurements
on a mechanical pulp at elevated temperatures around $0 - 900C
which we believe to be the glass transition temperature of
lignin? Could such an experiment be a good way of observing the
glass transition?

Dr . C .C . Habeger
The theory, and I think the experimental results, shows that

the absorption is quite sensitive to relaxation phenomena in the
fibre. If there was a relaxation peak in the lignin absorption
curve at the appropriate temperature and frequency, then the
attenuation ought to be dependent upon the amount of lignin
present .

Mr . A . de Ruvo
Then it might also be possible to check the influence of the

chemical environment, for example the effect of pH .




