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Abstract

This paper presents the results of an experimental and
theoretical investigation into the fundamental mechanisms that
govern ultrasonic propagation in fibre slurries. An experimental
apparatus which measures the attenuation and velocity of
ultrasound in slurries is described. Measurements on wood fibre
slurries show, in contrast to previous work, that the effect of
the fibre on the velocity of ultrasound is negligible. This
observation led to the development of an isolated segment model,
which can predict attenuation as’a function of fibre properties
and ultrasonic frequenéy. The theory assumes the fibres are
isolated, isotropic, infinite cylinders. It accounts for
scattering, heat conduction, viscous losses in the fluid, and
relaxation processes in the fibre. Experiment and theory are
shown to be in good agreement for some synthetic fibre slurries.
In the more complicated case of wood fibre suspensions, the
theory predicts attenuation to the correct order of magnitude
and permits speculation about the effects of fibre properties.

Introduction

Non-destructive analysis of fibre slurries using ultrasonic
techniques may some day be a valuable tool for determining fibre
© properties. Previous authors(1’2) have described how ultrasonic
attenuation in a wood fibre suspension is proportional to its
consistency. They have also demonstrated that the attenuation at

a given consistency varies with furnish. Adams(z) reported how
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278 ultrasonic characterisation of fibre suspensions

the attenuation is also a function of the amount of refining.
Ultrasonic attenuation is thus sensitive to the origin and
treatment of a wood fibre suspension. It should be possible to
characterise the slurry by measuring attenuation as a function of
frequency. However, progress in this area is hampered by the
lack of understanding of wave propagation in fibre suspensions.
In fact, from previous work, it is not even possible to identify
the major loss processes.

The theoretical models of wave propagation in heterogenous
fluid-solid mixtures can be classified as isolated segment models
or as porous solid models. The isolated segment models calculate
the loss due to a single solid element surrounded by the fluid
and assume that the total 1loss is the sum of the effects of the
individual elements. Interactions between solid elements are not
considered. An example of this, for cylindrical segments, is the
Rayleigh-Sewell model(3).In this, losses from scattering and
viscous processes caused by the presence of rigid, immovable
cylindrical inclusions in a viscous fluid are calculated. The
Rayleigh-Sewell model predicts that the slope of the curve of
1n(a/f2) vs. 1n(f) should always increase with f (a is the
attenuation coefficient and f is the frequency). This is
contrary to the results of the experiments on wood fibre
suspensions described by McFarlane and Llewellyn(1), and by
Adams(z). A more complete isolated segment model is that of
Allegra and Hawley(u). It allows for shear and normal strains
in the solid, considers thermodynamic effects, and accounts for
relaxation processes in the solid. The Allegra-Hawley theory
predicts the attenuation ys. frequency behaviour of polystyrene
spheres in water from independently determined bulk properties of
polystyrene(u). Curiously, in the ranges of frequencies and radii
studied, energy dissipation due to heat conduction in the solid-
boundary region is the dominant loss process. Sadly, the Allegra-
Hawley model is developed only for spherical segments and is not
applicable to fibre suspensions.

In the porous solid models, the solid fraction is assumed to
form a porous structure, and the mechanical properties of the
structure are important. The Biot model(5) is a well-developed
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porous solid theory which assumes that the fluid is contained in
parallel cylindrical capillaries and that the attenuation arises
from viscous flow within them. It is possible to include the
effects of solid relaxation processes, but scattering and thermal
loss processes are ignored. An additional drawback of the Biot
theory is the difficulty of estimating model parameters. It is
hard enough to obtain the bulk fibre properties needed by the
isolated solid theories, but discovering the mechanical
parameters for the structures and the interaction parameters
between structure and fluid needed by the Biot model is far more
difficult.

If frequency-dependent velocity changes existed and could be
measured along with attenuation, there would be additional
information available for slurry characterisation. This was the
path taken by Adams(z), who measured velocity and attenuation. he
reported that wood fibres do cause a frequency-dependent velocity
shift. Since porous solid models predict a frequency-dependent
velocity shift, while isolated segment models do not, Adams made
use of the Biot model to explain his results. He also obtained
data indicating that attenuation is not linear when different
fractions of two different pulps are mixed. This is contrary to
the predictions of the isolated segment models. In contrast,
M and Adams(z) found that attenuation is
linear with solid fraction, an observation more in line with the
predictions of the isolated segment models than with those of the
porous solid models. Adams did not attempt to predict his
experimental results from independent determinations of the Biot
parameters: but he did show that Biot parameters do exist which
give the observed shape of the velocity and attenuation curves.

McFarlane and Llewellyn

Experimental

The apparatus we constructed to measure ultrasound velocity
and attenuation in fibre slurries is a pulsed radio frequency
(rf) interferometer designed to operate over a range from 0.6 to
13 MHz: this was similar to Adams’ design.
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A schematic diagram of the apparatus is shown in figure 1.
The rf signal from a stable continuous wave (CW) source is mixed
with a pulse to produce a pulsed rf signal. This is applied to a
piezoelectric transmitter which is immersed in the suspension.
An identical transducer receives the signal after it has passed
through a length, L, of fibre suspension. The signal received is
attenuated to a standard level, amplified, and mixed with the
continuous wave.
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Fig 1—Schematic diagram of the apparatus for the ultrasonic
characterization of fibre suspensions.

The phase of the received signal depends on the phase shift
in the suspension, 2T Lf/V, where f represents the frequency of
the CW signal and V is the velocity of ultrasound in the
suspension, plus the phase shift in the transducers. The mixed
signal amplitude reaches a maximum when the phase difference
between the CW signal and the received signal is an integral
multiple of 2T . As frequency changes, the phase of the
received signal progresses and the mixed output oscillates. The
velocity of sound in the suspension can be calculated from the
frequency difference between minima in the mixed output, prévided
the phase shifts outside the suspension can be accounted for. The
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degree of attenuation in the suspension can be determined from
the value of attenuation of the CW signal necessary to produce

the standard signal level.

In order to obtain very accurate velocity measurements, our
apparatus differed from Adams’ in two ways. The CW signal

source is not an oscillator,

but a frequency synthesizer stable

to one part in 107. This gives a resolution of one part in 105

in the frequency shift measurements in homogeneous fluids. In

addition, the transducers are mounted so that their separation

distance can be varied. This allows the frequency-dependent
phase shifts in the transducers to be measured, thus allowing
correction of the velocity data. Adams estimated these shifts
from a mathematical model of the transducers.

The suspension is con-
tained in a plexiglass tank
0.5m long, 0.2m wide and 0.2m
high (see figure 2). Four
transducer pairs are mounted
in a frame and suspended
above the slurry on precision
screws.

This allows the transducer
separations to be varied.
The four transducer pairs are
necessary to cover the
frequency range from 0.6 MHz
to 13 MHz. The entire
assembly is immersed in a
water bath whose temperature
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Fig 2—Simplified cross section of sample chamber.

is controlled to within 0.01°C. The suspension is mixed by a
pair of stirrers mounted behind the transducer assemblies and

rotating in opposite directions.

A second technique can be used for measuring the ultrasound

velocity. The sample chamber can be separated into two parts by
inserting a 0.006mm thick Mylar membrane between the transducer
assemblies. By placing water in one compartment and the fibre
suspension in the other, the velocity can be measured by a second
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technique. The transducer assemblies are moved along the
supporting screws with their separation fixed, thus changing the
relative amountsof water and fibre seen by the transducer pairs.
The velocity is then calculated from the change in distance
necessary to move the mixed output signal between minima.

Velocity measurements

Equation (1) gives the velocity of sound, V, in the fluid,
accounting for the frequency-dependent phase shifts in the
transducers.

LAF
1- %‘?%f (1)

Here L is the transducer separation, Af is the frequency
difference between minima in the mixed signal output, and d¢ /df
is the derivative of the transducer phase shift with respect to
frequency. By making measurements at two transducer separations
and setting the resulting left hand side of Equation (1) equal,
the transducer effect can be calculated.

The transducer effect in terms of the Af's at two separa-
tions is

@ _ LAf, - LAT, | )
ar Af1Af2(L2 - L17

1
w o= =
21

This approach was first tested on distilled water.
Measurements of Af were made with the four transducer pairs
at three separations (50, 100 and 150 mm). The three possible
values of w were calculated and averaged. The velocity was then
calculated from Equation (1) for the three values of L and Af.
Figure 3 shows the results for one transducer pair (5 MHz).
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The three lower solid curves represent the apparent

velocities

(L Af) at each separation distance, and the top solid

curve is the average corrected curve for distilled water.

At all frequencies, the
corrected water values
were within 0.15% of the
value of the velocity in
distilled water given in
tables.
above 1.2 MHz, the agree-
ment was to better than
0.07%. The system is thus
able to give stable and
accurate measurements of
ultrasonic velocities in

At frequencies

homogeneous fluids.

The results obtained
by applying the same pro-
cedure to a 0.48% consis-
tency bleached kraft pulp
beaten to 90 CSF are
shown in figure 3 as
dashed lines. The pulp
slurry has a different
mechanical impedance from
pure water so that the
correction for transducer
phase shifts is smaller.
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Fig 3—Apparent and corrected velocities as a function
of frequency. The solid points and curves are for
distilled water at transducer separations of 49.835 mm
(@), 99.987 mm (m), and 149.896 mm (A). The open
points and dashed lines are for a 0.48% consistency
bleached kraft pulp, at the same transducer separations.
The two uppermost curves are the corrected water and
slurry velocities.

Over the entire 0.6 - 13 MHz range, the corrected velocity of
the pulp is an average of 0.06% higher than that of water, with a

standard deviation of 0.05%.

So, there is a small increase in

velocity, but no significant frequency dependence.
Tests were conducted on pulps of up to approximately 3%

consistency.

The apparent velocity was measured at the 50 mm

transducer separation only, and the values of w found from the
water experiments were used to calculate the corrected
velocities, thus tending to overestimate the slurry velocity.
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However, the largest deviation from the velocity in distilled
water was only +0.6%, and again no frequency dependence was
detected.

Since the effect of fibres on the velocity of ultrasound in
water is a crucial question, the second velocity measurement
technique was also used. This was the water-diaphragm-pulp
method discussed above. A constant separation of 150mm was
maintained between transducers, and the apparent velocity was
measured as the transducers were moved relative to the diaphragm.
As the transducers were moved, the components due to the
transducer phase shifts remained constant. The only change,
therefore, was in the path lengths of the ultrasound in pulp and
water. These measurements were made in a 0.96% consistency
slurry of 90 CSF bleached kraft pulp, and a 0.77% consistency
slurry of 720 CSF bleached kraft pulp. For the pulp of 720 CSF
the velocity was 0.12(+0.11)% greater than for water, and for the
90 CSF pulp the velocity was 0.12(+0.4)% greater than for water.
This is consistent with our earlier results.

We must conclude that the velocity of ultrasound in a wood
fibre suspension does not, to the first order, differ from the
velocity in water, and is not frequency dependent. The above
results allow us to reject the porous solid models discussed
earlier and to use an isolated segment model to explain the
attenuation results. Such models have parameters that are more
likely to be independently determined. The Allegra-Hawley model
is the only isolated segment model complete enough to handle
realistically polymeric fibre suspensions, but it only applies to
spherical inclusions. It was necessary, therefore, to develop an
Allegra-Hawley model for infinite length cylindrical inclusions.
The resulting theory, which will be published elsewhere, is
outlined in the Appendix and briefly described below.

Theory

The Allegra-Hawley isolated segment model for spheres
calculates the attenuation by finding exact solutions for the
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strain and temperature to the governing differential equations of
continuity, motion, and energy conservation.

The model considers a single solid segment in a fluid medium.
The solution must be a plane compressional wave far away from the
inclusion and the boundary conditions of equal stress, velocity,
temperature, and heat flux must be met over the solid-fluid
interface. The solution is found by expanding the incoming plane
wave in terms of spherical harmonics. Solutions are expressed in
terms of three scalar potentials in the fluid and three in the
solid. The total solution is the plane wave plus the potentials
expanded in spherical harmonics with undetermined coefficients.
The coefficients are found by applying the boundary conditions to
each order of spherical harmonics. The result is six.equations
and six unknowns for each order. These are solved numerically for
the zeroth, first, and second order. As long as the radius of the
sphere is less than the wavelength of the compressional wave, the
series converges rapidly, and the first few orders are sufficient
for a practical solution. The attenuation is calculated from
these coefficients.

In order to apply this model to fibres, the calculation is
repeated for infinite cylindrical, isotropic inclusions. For this
case the plane waves and potential functions are expanded in
terms of Bessel functions and sinusoidal functions. For the
spherical case, symmetry arguments show there is no velocity or
stress in the ¢ direction. For the cylinder there are velocities
and stresses in the z, r, and 0 directions; therefore, there are
more boundary conditions and a fourth potential is needed. In
addition, the solution depends on the orientation of the incoming
wave to the plane of the cylinder; thus, attenuations are found
for a set of orientations and numerically integrated to get the
result for randomly orientated fibres. The result of this
theoretical development is a computer program that gives the
attenuation as a function of frequency when the following
parameters are given:

cylinder radius (R")
solid and fluid compressional wave velocity (c’,c)
densities (p’,p)
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solid Poisson’s ratio (v")

fluid viscosity (V)

the thermal conductivities (K’,K)

the thermal expansion coefficients (B’,B)
the heat capacities (Cp”,Cp)

temperature (T)

solid loss tangent (tan 6)

and solid volume fraction (fr).

Although the different processes interact, it is possible to
make some qualitative statement about the relative importance of
scattering, viscous losses, thermal losses, and solid relaxation
processes. Thermal effects peak at a frequency where the skin
depth of the thermal wave is of the order of the radius. For the
radii of interest (1 to 100 pm) this happens below the lowest
experimental frequency (0.6 MHz), and thermal processes make a
significant contribution only for the thinnest fibres at the
lowest frequencies. Since in most cases this means that the
thermodynamic coefficients are not important, the complexity of
the prediction process is reduced. Viscous drag is a maximum when
the skin depth of the fluid viscous wave is of the order of the
radius. This occurs at a higher frequency than for the thermal
case and viscous processes make a strong contribution at the
lower frequencies and radii studied. Relaxation contributes at
all frequencies and can be the dominant attenuation component
when the loss tangent is large and there is a good impedance
match between fluid and solid. Scattering is a major factor at
the higher radii and frequencies.

Limitations to the theory when applied to actual fibre
suspensions result from

D fibre anisotropy
(2) finite fibre length
and (3) non-cylindrical fibre shapes.

Concerning item 2, a difference between finite and infinite
fibres arises when the loss factor is small. Figure 4 shows
theoretical plots of the relative attenuation of a single fibre
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as a function of e , the angle between the plane of the fibre and
the incoming radiation, at different values of loss tangent.
Notice the strong peak for low loss tangents. This occurs when
the wave-vector of the incoming radiation, as projected along the
fibre, equals the wave-vector of the zeroth order longitudinal
rod mode in the cylinder. The velocity of this mode is
)'/2 uhen the wavelength of the bulk
compressional wave in the solid is much greater than the radius
(E” is Young’s modulus of the solid and p” is the solid density).

approximately (E'/p
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Fig 4—Theoretical plots of the relative loss per single fibre vs. the
angle, €, between the incoming radiation and the plane of the fibre.
The sIur[X parameters are p = 996 kg/m3 0’ =1340kg/m3;n =

9.4 x 107 nt’ sec/m K = 0.59 watts/m°K; K’ = 0.038 watts/m°K;
c= 1490 m/sec; ¢’ = 4000 m/sec; V' =0.35; Cp=4.14x 103 J/kg K;
Cp'=1. 02x103J/ko K;B =236x104/°K; ' = 1.7 x 105/°K;
f=1MHz; T=296°K; and R' = 13 x 1076 m. A list of symbols is

in the appendix.
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At this particular angle, for an infinite cylinder,
disturbances from the incoming radiation on the cylinder
interfere constructively, and large motions are excited in the
cylinder. This phenomenon requires communication between
distant parts of the fibre and would not be seen experimentally
on short fibres. When the loss factor is high, communication
over larger distances is lost, even for infinite cylinders, and
the theory is more applicable. Differences between experiment
and the infinite cylinder model are expected when the quantity
2T f.tan 8/¢” is less than the inverse fibre length.

Attenuation results

Preliminary attenuation measurements on wood fibre slurries
confirmed many of the results reported by Adams(z). Within
experimental error, attenuation was proportional to consistency.
This was also true for the synthetié fibre systems. Air bubbles
had a lérge effect on attenuation at the lower firequencies.
Slurries had larger attenuation before degassing at frequencies
below about 2 MHz. Because of the air effects, slurries were
routinely degassed overnight before testing. Also, as will be
discussed later, refining tended to decrease the attenuation in
bleached kraft pulps.

Because of problems in characterising wood pulp'fibre sytems,
the majority of the data presented here are from synthetic fibre
suspensions. Such fibres have similar dimensions and physical
properties, which is helpful in identifying those parameters most
important in ultrasound attenuation. The properties of the
synthetic fibres studied are included in Table 1.

The results of the experimental and theoretical attenuation
studies are reported by fibre category. The data are
represented, as is customary, by plots of attenuation divided by
frequency squared vs. frequency. The attenuation data are
divided by the consistency to normalise the curves to a 1%
consistency slurry. The data come from four transducers at two
Separations (100mm and 150mm) and often two consistencies.
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Fibre Type Radius Rod Velocity Instron Figures Comment

at 60 KHz Modulus
pm km/s 109 N/m?
Nylon 6,6 13-16 1.66(wet) 3.09 5
Nylon 6 110-120 2.13(dry) 2.87 6
Polyester 13 4.00(wet) 10.7 7,8
Rayon 11-15 0.91(wet) 9,10 Regular
' Modulus
Rayon 7-10 1.27(wet) 11 Hi-wet
Modulus
Table 1

Synthetic fibre properties

1. NYLON

Nylon is very hygroscopic, and water acts as an effective
plasticiser. This leads to a relatively high loss tangent. For
swollen nylon fibres in the frequency range studied, handbook
values indicate a loss tangent value of between 0.1 and 0.2. The
theoretical model predicts that thermal phenomena should not have
a significant effect on the attenuation. Thermal processes would
contribute if the radii were of the order of 1 um, or if the
frequencies used were two orders of magnitude smaller (10 kHz).

Figure 5 gives results for a slurry made from a 15.2+1 pm
radius nylon 6,6 fibre, cut to lengths of 2.3 mm.

The model requires that the elastic properties of the fibres
be known. For an isotropic solid two independent elastic
parameters must be specified. The longitudinal wave velocity in
a rod can be measured to fix one parameter, since this velocity
equals (E'/p31/2. Using techniques developed for in-plane
measurements on paper, the velocity of this mode in the saturated
nylon fibres was 1.66km/s at 60 kHz. The value of Poisson’s ratio
was taken as the other unknown parameter, though the fibre shear
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modulus, p, might equally have been used, since p” = E/2(1+v").

In figure 5, for the theoretical attenuation curve the loss
tangent was set equal to 0.1, the lower handbook value. Actually
the effect of loss tangent on these curves is quite small, a
change from 0.05 to 0.2 causing only 10% difference in the
curves. The only significant unknown parameter, therefore, is
the Poisson’s ratio, and this may be varied to obtain the best
fit. Good agreement between experiment and theory occurs when it
has the value 0.3.
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Fig 5—Experimental attenuation data for a nylon 6,6 fibre slurry
with radil from 13 to 16 um and a length of 2.3 mm. The
accompanying lines are theoretical curves for different values

of fibre Poisson’s Ratio. Model fibre parameters are p’ = 1090
kg/m3; VR’ = 1660 m/sec; K’ = 0.36 watts/m°K; Cp’ = 1.42 x
103 J/kg°K; B =1.0x 105/°K; tan 6= 0.1; R' = 15.2x 106 m;
and s = 1.08%. For water parameters see Figure 4.
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The value of kg;.1'.tan & 1is unity at about 1.4 MHz,
indicating that deviation between theory and experiment might be
expected at lower frequencies due to the finite length of the

fibres.
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Fig 6—Experimental attenuation data for a nylon 6 fibre slurry with
radii from 110 to 120 um and a length of 2.3 mm. The theoretical

lines are for different values of the loss tangent. Model fibre parameters
are p’ = 1090 kg/m3 ; ¢’ = 1340 m/sec; V' = 0.30; K’ = 0.36 watts/m°K;
Cp'=1.42x 103 J/kg’K; ' =1.0x 105/°K; R"= 115x 106 m; and s
= 1.08%. Figure 4 has the water parameters.
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The effect of radius can be predicted by calculating
theoretical curves at the same consistency, but with different
radii. The results show that attenuation increases somewhat with
radius, ie d(1ln a)/d(1ln R") = 0.27 at 1 MHz.

Figure 6 shows the results for much larger (R'=115+5 pm)
nylon 6 fibres. The theoretical plots show the effects of
different loss tangents. The Poisson’s ratio is assumed to be
0.3 because of the good fit in figure 5. Because of difficulties
in measuring ultrasound velocities in saturated fibres of this
type, the longitudinal velocity was estimated by assuming that
the ratio between the wet and dry state velocities is the same in
this sample as in the other nylon fibres tested. The maximum in
the attenuation at 1.7 MHz for both theoretical and experimental
curves is due to scattering. Notice that the low loss tangent
theoretical curve has three scattering peaks. These peaks become
more prominent at still lower values of loss tangent. The loss
tangent appears to have a significant effect at the lower
frequencies but becomes inconsequential at higher frequencies
once scattering dominates the attenuation.

2. POLYESTER

The attenuation data for 2.3mm long polyester fibres with
13uym radii and 4.0 km/s rod velocities are shown in figure
7. Figure 8 shows the results for the same material cut to 1.6mm
lengths. The evenly spaced oscillations in the experimental data
are surprising.

Unlike nylon, polyester is not hygroscopic and has a small
loss tangent. The theoretical curves are insensitive to the
value of the loss factor, making Poisson’s ratio the only
adjustable parameter. It is possible to choose a value of this
such that the theory predicts the average behaviour of
the experiments. The solid lines in figures 7 and 8, which
approximate the data if the oscillations are ignored, have
Poisson’s ratio 0.4. This average fit may be fortuitous because
for the 2.3 mm fibres, ké.l'.tan d has the value unity at about
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17 MHz. This means that the infinite cylinder model should not
be applicable over most of the frequency range.
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Fig 7—Experimental attenuation data for a polyester fibre
slurry with a radius of 10.7 um and a length of 2.30 mm.
The model fibre parameters for the theoretical curve are
p' = 1340 kg/m3; ¢’ = 56860 m/sec; v’ = 0.4; K’ = 3.8 x102
watts/m°K; Cp’ = 1.02 x 103 J/kg K; f' = 1.7 x 1075/°K;
R =13x 10 m; and s = 1.00%.

The explanation for the observed oscillations becomes clear
when it is noticed that the period and phase are length
dependent. The loss tangent is small and the fibres are short
enough that a significant resonant vibration can occur when the
fibre length is an integral number of half wavelengths of the
longitudinal rod mode. The frequencies at which the first
resonance should occur, using the measured rod velocities, are
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marked at the tops of figures 7 and 8. This resonance phenomenon,
of course, is not predicted by the infinite cylinder theory.
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Fig 8—Experimental attenuation data for a polyester fibre
slurry identical to that of Figure 7, except £' = 1.66 mm.
The model curve is the same as in Figure 7.

3. RAYON

Rayon is similar to nylon in that it is hygroscopic, and that
water acts as a plasticiser. The velocity of the longitudinal
rod wave in saturated rayon is less than in nylon, so that finite
length effects are even less significant than in nylon. For the
fibre radii studied (R”> Tpm), thermal effects contribute only a
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few percent to the attenuation. Preliminary theoretical curves
indicate that attenuation is more sensitive to the value of the
loss factor in rayon than in nylon. This means there are two
adjustable parameters, the loss factor and Poisson’s ratio (fibre
modulus is found from the measured rod velocities). Loss
tangent is a function of frequency but, for simplicity, the model
neglects this.
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Fig 9—Experimental attenuation data for regular modulus,
2.3 mm long rayon fibres with radii from 11—15 um. The
theoretical curves have different loss tangents. The model
fibre parameters are p’ = 1400 kg/m3; ¢’ = 1090 m/sec;

v’ =0.32; K' = 0.15/m°K; Cp’ = 1.5 x 103 J/kg’K; f =
3.6x 104/°K; R"=13x 106 m; and s = 1.25%.

Figure 9 shows the theoretical and experimental curves for
normal modulus, 9.0um radius, 2.3mm long rayon fibres. The value
of Poisson’s ratio is 0.32 and the loss factor has been varied to
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produce the different model curves. The rod longitudinal velocity
was measured as 0.91 km/s. Good agreement with experiment is
obtained when the *wvalues of the Poisson’s ratio and loss factor
are 0.32 and 0.1 respectively, but there are surely other

combinations giving an equally good fit.
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Fig 10—Experimental attenuation data for regular modulus, 2.3 mm long
rayon fibres with radii from 11—15 um. The theoretical curves have

different Poisson’s ratios. The model fibre parameters are p’ = 1400

kg/m?3; ¢’ = 1090 m/sec; K’ = 0.15/m K; Cp' = 1.5 x 103 J/kg K:B'=
3.6x10%/°K; R"=13x 106 m; tand = 0.1; and s = 1.25%.

Figure 10 is a set of model curves for this rayon fibre with
the value of the loss factor set to 0.1 and variable Poisson’s
ratios. Notice this trend is the reverse of nylon (Figure 5)
where increasing values of Poisson’s ratio (or decreasing shear

modulus) led to increasing attenuation.
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Fig 11—Experimental attenuation data for high wet modulus, 2.3 mm
long rayon fibres with radii from 7 to 10 um.

Figure 11 shows the experimental results for a 7.5um high wet
modulus rayon fibre slurry. The rod longitudinal velocity is
1.27 km/s in the saturated fibre. The level of attenuation is
about the same as for the other rayon fibre, although the curve
is flatter at the lower frequencies. Reasonable \values of the
loss factor and Poisson’s ratio can be chosen to give the correct
average value of attenuation, but the theory is not as successful
in reproducing the shape of the curve. It is possible that the
theory is less suitable for high wet-modulus rayon because it is
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more elastically anisotropic. Another possible explanation is
that there is a visco-elastic absorption peak in this frequency
regime so that the loss factor varies rapidly with frequency.
This is consistent with the observations that the loss factor
necessary to fit average theory to experiment is greater than in
the regular rayon.
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Fig 12—Average experimental attenuation data for a bleached
kraft softwood pulp at freenesses of 720, 380 and 90 CSF. Each
data point is the average of about 25 measurements.
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4. WOOD FIBRES

Figure 12 shows the experimental data for a bleached kraft
softwood pulp at different refining levels. Each data point is
the average of about 25 measurements. The data are taken on
pulp with consistencies from 0.48% to 2.89%. The transducer
separation distance varies from 50 to 150mm. Important points to
notice are the following:

1) the level of attenuation is considerably lower than that
measured for rayon fibres;

2) there is a remarkably larger decrease in attenuation
during the early stages of refining;

3) for highly beaten pulp the decrease wanes and reverses
at the lower frequencies.

Wood fibre slurries are, of course, much more complex than
synthetic fibre slurries. There are broad distributions in the
shapes and sizes of the fibres, and the cross sections are not
cylindrical. The mechanical and thermodynamic properties vary
in a similar way and are not easily determined. Beating is not
well understood in terms of its effect on the geometric,
thermodynamic, and mechanical fibre properties. Nonetheless, with
insight gained from the work on synthetic fibres, it is possible
to conjecture as to what may be happening in this wood pulp
system.

A possible explanation for the difference between rayon and
wood fibres in the level of attenuation may be due to a higher
degree of crystallinity in the wood fibres. This leads to a
lower loss tangent and, therefore, lower attenuation. It was
shown in figure 9 that rayon is quite sensitive to change in loss
tangent.
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There is a number. of changes occurring during refining that
could alter the curves. The theory predicts that a decrease in
the representative radius of the fibres would 1lower the
attenuation. However, this effect is not large enough to explain
the large decrease in attenuation brought about by refining, if
the radius is assumed to be initially less than about 20pm.
Large particles (50 to 500pm radii) in the slurry would produce
a scattering peak in the experimental frequency range. Though
small in number, these particles could make a large contribution,
and if refining reduced their number, it could significantly
reduce attenuation.

One effect of refining could be to reduce the fibre shear
modulus while keeping Young’'s modulus relatively constant. In
the theoretical model, this corresponds to an increase in
Poisson’s ratio at constant rod longitudinal velocity. As shown
in figures 5 and 10, changing Poisson’s ratio can have a large
effect on attenuation. For rayon fibres, where the velocity of
the longitudinal wave in the fibre is lower than in water,
increasing Poisson’s ratio decreases attenuation. For nylon,
where the velocity is greater than in water, the trend reverses.
Wood fibres probably have a greater velocity than rayon and may
be in a transition region. If the wet modulus of the wood
fibres is not too much greater than that of rayon, the decrease
in attenuation with refining might be due to decreasing shear
modulus.

It is clear that more work needs to be done on well-
characterised wood pulp systems before we have a clear
understanding of ultrasound attenuation in pulp. However, the
major effects have been identified. Quantitative results have
been correctly predicted for synthetic fibre systems, and
quantitative explanations for the observed behaviour in wood pulp
systems suggests that further study is warranted.



ultrasonic characterisation of fibre suspensions 301

REFERENCES

McFarlane, I.D., and Llewellyn, J. D., Paper 2/2, 2nd
International Federation of Automatic Controls, Proc.
Brussels, 1971.

Adams, D.J., 3rd International Federation of Automatic
Control Proc. Brussels, 1976. p. 187.

Adams, D.J., Ultrasonic Transmission Through Paper Fibre
Suspensions. Ph.D. Thesis. University of London, 1975.
Lord Rayleigh, Theory of Sound,. Vol. II, Dover, 1945.
Allegra, J.R. and Hawley, S.A., J. Acoust. Soc. Am., 1972
51(5,Part 2), p.1545

Biot, M.A., J. Acoust. Soc. Am. 1956, 28(2), p.168

and 1962, 33(4), p.1482

Epstein, P.S., and Carhart, R.R., J. Acoust. Soc. Am.,
1953, 25(3), p.553



302 ultrasonic characterisation of fibre suspensions

r,0,z

=)

$,€

APPENDIX

OQutline of the theoretical development

List of symbols

Cylindrical co-ordinates
aligned with the fibre
Time

Cylinder radius

Temperature

Solid volume fraction
Angular frequency

Angle between the plane
of the fibre and the
incoming radiation
Transverse wave vector
potential

Comparison wave potential

Scalar potentials for
transverse wave
Compressional wave velocity
Fibre length

Density

Viscosity

Solid Poisson’s ratio

Solid shear Lamé constant

Heat conductivity coefficient

Rk,
. 1/2
(fdpcp/K)

(ktz'kcsz)1/2
Rk,
(iwp/n
Rkg

)1/2

’ ’

R kS

2 2y1/2
(ks “Kog )

2 2y1/2
(kg™ =Kog )
R'ksc
- BTWP/C

p

2 4
c“+H4iwn/3p
0’2-4p’/3p

1+ 32T02/Cp
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Cp Heat capacity

¢ Thermal expansivity

tan ® Solid loss tangent

k w/c

ag R /kc

k,” w/c’(1-itan 5)1/2

c
aq R kc
kcs kc sin e
dss R Keg
kcc kc cos e
er R kcc

. .2 2
koo (kg ™“=kog )

by

In

(1)
Hy

u{1

(1)
Hn

n’th order Bessel
of first kind

n’th order Hankel
function of first
kind

1st derivative of
Jn

2nd derivative of
In

1st derivative of
(D

n

2nd derivative of
(1)

Hy

Bn'cn'Dn'En Undetermined

coefficients
consistency
frequency

Velocity vector

Primed symbols refer to the solid and unprimed to the liquid.
When primed symbols are unlisted they have definitions analogous

to the unprimed symbols.

The problem is to find a solution for temperature and
velocity to the continuity equation, the equations of motion, and
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the energy conservation equation, which meets the required boundary
conditions at the cylinder-fluid interface and is a plane wave at
an angle e to the axis of the cylinder far away from it. It is
shown by Epstéin and Carhar‘t(s) and Allegra and Hawley(u) that
the governing equationé can be linearised for small motions and
expressed in teerms of potentials, A and . The governing
equations are satisfied if equations (1) - (4) are obeyed and the
velocity and temperature are related to the potentials as in
equations (5) and (6).

> >
VA =0 (1)
V2¢c = —ko2¢, (2)
V2 = =k¢20¢ (3)
> > > >
VxVxA = —kg2A (4)
> > > > >
V= Voo - Vop + VxA (5)
T = bede + brde (6)

Equations (1) - (6) apply in the solid as well as in the
fluid. Here the cor‘r‘esppnding symbols will be denoted by a prime.

When the incoming plane wave is expanded in terms of Bessel
functions, it becomes

Yo = [Jo(keer) + 2 nz ifcosn® Jp(keer)]el(kegzwt) (7)

1

Solutions to equations (2) and (3) can be expanded similarly with
undetermined coefficients. The results are:

9 = Py rPL+ 9y, (8)
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and,9” = @,  + ¢’ (9)
Where
(1) 3 i
Qr = BOHOl (kccr) + 2 g;;Bnin cosn@ Hil)(kccr) el(kcsZ _(»t),(lo)
)
9, = CoHél)(ktcr) + 2 gi;cnin cosn® Hil)(ktcr) ei(kcsZ _(ut),(ll)
>
P, = BéJo(kécr) +2 ;;lBﬂin cosné Jn(kécr) ei(kcsz —(»t), (12)
)
O, = CéJo(k%cr) +2 E;;cgin cosné Jn(k%cr)'ei(kcsz _‘“t), (13)

In the above, solutions which have the same time and z dependence
as the incoming radiation (i.e., el(kcs'(”t)) are being sought.

The boundary conditions at r = R™ are

2) V=V, D R A
AT =T e) KT,r = k'T",r f) t,. =t..~
g) trg= trg’ h) tpy = tpy

To meet these eight boundary conditions, two linearly
independent solutions to equations (1) and (4) are needed. It can
be shown that A, and A, are solutions to equations (1) and (4)
when

Ag = v x ¥k and A, = ¥ xV x £k,
if U2y = g%y and  v2g = -kg2¢

Now the §’s and {’s are expanded in Bessel and cosine functions.
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ke2E = [DoHo(1) (kger) + 2 £ ppin 9%3"9 Hy (1) (kg or)Jed (Kegz—wt)  (14)
iko.gY = [EoHo(l)(kscr) + 2 nzl E,in gﬁggﬂg Hn(l)(ksc)]ei(kcsz—wt) (15)
kg'6! = [Dg'Jo(kge'r) + 2 nzl Dy 4% éggsne Jn(kge'r)Jeilkeszwt) (16)
ik..¥Y' = [E g (k [] -4 1in dcosn® ' -(k
cs o Jolkge'r) + 2 Zl Ep'if ——5— Jn(kgc'r) et csz™wt) (17)
n=

When the velocities and temperature are expressed in terms of
the potentials by equations (5) and (6), the eight boundary

conditions can be expressed in terms of eight sets of
undetermined coefficients. Because of the orthogonality of the
cosn®’s, the boundary conditions must hold for each order of
coefficients. This results in eight equations and eight unknowns
for each order, n, of the coefficients. The resulting equations

are

(a) acedn'(ace) + BnaccHn(l)'(acc) + CnatcHn(l)'(atc) - EnascHn(l)’(asc) +
nZDan(l)(asc) = -~iw[Bp'acc'Ip'(ace') + Cn'ate'Jn'(age') -

En'age'Jn'(age') + nan'Jn(aSC')],

(®) JIn(ace) + BubinM(ace) + i (ape) - Eq,(M(age) + Dyagety (1) (age)

(18)

—im[Bn'Jn(aCC') + Cn'Jn(atc') - En'Jn(asc') + Dn'asc'Jn'(asc')], (19)
(@) acs2Unlace) + acsanHn(l)(acc) + acgCaty (M (age) + asc2Enty (P (ae) =

‘1w[ac523n'Jn(acc') + acszcn'Jn(atc') + asc'zEn'Jn(asc')]r (20)
(d) Pc[Jn(acc) + Ban(l)(acc)] + than(l)(atc) = —iw[b.'By'JIp(ace') +

bt 'Ch'JInlage )1, (21)
(&) K[acebe(Jn'(age) + Ban(l)'(acc)) + CnbtatcHn(l)'(atc)] =

’imK'[Bn'bc'acc'Jn'(acc;) + Cu'be'age"In' (age")], (22)
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() n([(ag2-2ac2)In(ace) = 2acc2dn'"(ace)] + Bl(ag? = 2ac?)Hn(ace)
—2a.20, (1) " (age)] + Cy[(ag2~2a (D (age) - 2a:20, (1) " (ag) ) +
2Epage 2y (D" ' (age) + 20402 [Hy (D (age) = agetin1)'(ase) 1) =
By' [(w20'R'2 = 2u'ac'2)Ip(ace’) = 2u'ace p' (e ]+
Cal(w2e'R'2 = 2u'ar'2)In(age ') = 2u'agc'2dy" "(age )] +

2“'En'asc‘2Jn(asc') + zu'Dh'“z[Jn(asc') - age'JIplase’)],

(® lacedn'(ace) = Jnlace) + Bylacehn () (ace) - B(D(ace)] +
G Taeehn D (are) - BV are)] + 22 (2 (D(age) - ageta (D) (age) +
ase28,(1)" " (age)] + By [Hn(M(age) = agetaD) (agedl) =
b (B [2ceJIn' (ace') = In(ace] + Cy'lage'In' (age') = Jnlage")] +
Dn'

2 [ann(asc') - age'Jn'(age') + E‘sc'2 Jn''(age")] + Ep'[Jn(ase") -

aSC'Jn'(asc‘)]jy and
(h) 2nagcacgldn'(ace) + B, (1) (ac)] + MagcacsCalin (1) (age) +
nEan'(asc)[ascz - acszlasc/acs + nDnnzacan(l)(aSC) = 2u'agc'acs
Bu'Jdn'(ace') + 2u'ape'Cp'In'(age'dacs + U'Dn'“zacsjn(asc') +

“'En'Jn'(asc')asc'[asc'z - acszl/acs'
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(23)

(24)

(25)

These eight simultaneous equations are solved numerically for
n=0,1, and 2. When k,R" and k,'R” are less than one, the series
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converges rapidly, and the first three terms provide an excellent
approximation to the solution.

A rather lengthy calculation, modeled after the Epstein and
Carhart(s) spherical development, expresses the attenuation
coefficient, a, for fibres at an angle e to the radiation as

-4fr

= 'n_R'Tk—c. [Real(By) + n£1 2Real(Bg)]. (26)

The Bn's are function’s of e; therefore to find a for a
random orientation the simultaneous equations must be evaluated
at a series of e’s between 0° and 90° and averaged. This is done
by integrating numerically the following expression:

~4fr /2
8random = — 5 | Real[By + 2(By + By)]cose de. (27)
mR'4ks o

This process can be repeated at different frequencies, and
the attenuation vs. frequency relationship predicted from the
physical propertie: of the slurry.



Transcription of Discussion

Discussion

Discussion following paper of Dr. G.A. Baum

Dr. D. Wahren, IPC: Chairman

It is very interesting to see such precise work being done.
I am especially interested to see that it doesn’t affect the
results whether or not the fibres form a coherent network. Have
you any comment to make on this?

Dr. G.A. Baum, IPC

Our model assumes the fibres to be all independent. It is
possible that a coherent network exists, which if it did, would
represent a perturbation on the results.

Dr. D. Wahren

Your method of normalisation, which involves dividing by
consistency at constant freeness, implies that networks are not
very important.

Dr. G.A. Baum
From the observation that the quantity a/f‘2 is linear with
consistency, one would certainly reach that conclusion.

Dr. D.W. Clayton, Paprican

Earlier you showed some results you obtained when you
increased the radii of some nylon fibres from 15 to 111 microns.
This seems like rather a large jump. Have you any results for
intermediate radii?

Dr. G.A. Baum

No, we did not obtain results for intermediate values. One
of the useful properties of the model is that it allows us to
change only one variable at a time. As the fibre diameter is
increased then scattering phenomena become important at high
freqﬁencies. Further increases of diameter extend downwards the
frequency at which scattering becomes important.
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Prof. R. Kerekes, Paprican

I would like to say something here, which might help you with
your hypotheses. At Paprican we recently measured fibre
flexibility after beating in a PFI mill over the freeness range
from 720 to 300 CSF, similar therefore to the range you
investigated. The measured increase in fibre flexibility is
approximately twofold. As you know, the flexibility reflects a
combination of the elastic modulus and the geometric
configuration of the fibres, and may thus be an important
parameter in your studies.

Dr. G.A. Baum

Thank you. We are aware of your work and have tried to take
your results into account when explaining the effects with wood
pulp fibres.

Prof. K.I. Ebeling, Helsinki University of Technology,
Finland

Al1l your analysis is based on the rigid rod model. 1Is it
possible that some of the discrepancies might be removed by
considering a porous solid model? The porous nature would
obviously be derived from the presence of the lumen and the
fibrillar structure of the cell wall.

Dr. G.A. Baum

In our work we have tried to keep the model as simple as
possible. Adams was forced to consider a porous model because
he found that the ultrasonic velocity depended on frequency,
which can’t be accounted for by the isolated segment model. The
Biot model is very complicated and incorporates many parameters.
We have been successful in explaining our measurements on
synthetic fibre systems and plan to concentrate on well-
characterised fibre suspensions at present, while retaining the
simple model. It is quite possible that the irregular shape and
anisotropic nature of wood fibres affects the attenuation.
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Dr. C.C. Habeger, IPC

A porous model would be expected to display some form of
percolation phenomenon, so that the attenuation could not be
expected to be linear with respect to consistency. Since we
find this linear relationship between these two quantities, we
see no need to complicate the model at present.

Dr. M.B. Lyne, Paprican

In the samples where the pulp was beaten did you take any
steps to separate out the fibres, and do the fines have any
effect on the attenuation?

Dr. C.C. Habeger

We did not separate out the fines. The model predicts that
the absorption per unit mass decreases with radius at these
frequencies, so that the part of the total mass present as fines
should not contribute significantly to the total absorption.

Mr. B. Radvan, Wiggins Teape, UK

It is curious that there should be no effect of any network
structure on the attenuation. It is just possible that this is
because the wavelengths you are using (of the order of fractions
of a millimetre) are too short to see the flocs. You have
observed the resonance between the wave and the ends of the free,
rigid cylinders, so if you were to increase the wavelength to the
order of 10 mm or so then you might observe the effect of the
floc structure.

Dr. C.C. Habeger.
That is perfectly possible, but, quite honestly, I would
expect the effect to be small.

Prof. T. Helle, The University of Trondheim, Norway.

If you used dried pulps, then the results shown in figure 12
are exactly as I would expect. At the commencement of beating,
the flat, ribbon-like fibres become more flexible, but as it
continues balloons start to develop because of the imbided water,
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and the fibres become stiffer. This would appear to account for
the results you obtained.

Dr. G.A. Baum
The model predicts that the attenuation should increase as
the fibre flexibility, given by 1/EI, increases.

Mr. A. de Ruvo, STFI, Sweden

The damping you refer to is the mechanical damping of the
material under study, and is at least partly associated with
plasticisation. Could you envisage performing your measurements
on a mechanical pulp at elevated temperatures around 80 - 90°C
which we believe to be the glass transition temperature of
lignin? Could such an experiment be a good way of observing the
glass transition?

Dr. C.C. Habeger

The theory, and I think the experimental results, shows that
the absorption is quite sensitive to relaxation phenomena in the
fibre. If there was a relaxation peak in the lignin absorption
curve at the appropriate temperature and frequency, then the
attenuation ought to be dependent upon the amount of lignin
present.

Mr. A. de Ruvo
Then it might also be possible to check the influence of the
chemical environment, for example the effect of pH.





