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ABSTRACT

Following a brief review of past practices, an equation
for the relationship between measured viscosity and volume
solids is derived . The derivation of the equation is based on
the concept of shear induced anisotropy, which is also pre-
sented . Using data developed on polystyrene and titanium di-
oxide dispersions, the equation is shown to be valid over a
wide solids range . The equation allows the calculation of the
degree of packing of the dispersed particles through the use
of the relative shear volume . The equation and the shear
induced anisotropy concept are then applied to the known
properties of paper coatings . This discussion gives further
insight into the hydrodynamics of blade coating and the nature
of pseudoplastic and dilatant systems .

INTRODUCTION

Through the years, literally hundreds of equations have
been developed to attempt to relate the viscosity of disper-
sions to solids level . Most of these equations have been based
on the classic relationship proposed by Einstein . The basic
approach of these equations is to attempt to predict the
measured viscosity (N) of the dispersion as a combination of
the continuous phase viscosity (No) and some function of the
volume solids (0) . Simple rearrangement of Einstein's equation
readily demonstrates this fact .
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Einstein

	

N/No = 1 + 2 .5

	

(1)

N = No + 2 .5 No

	

(2)

Further confirmation of this concept comes from the fact that
the initial slope of the plot of the relative viscosity (Nr or
NlNo) against 0 in Einstein's interpretation was called the
intrinsic viscosity of the dispersed phase, and it was in his
doctoral dissertation on Brownian motion that he developed the
equation and established the value of 2 .5 for low solids
levels . In these equations, the measured viscosity is viewed
as being the sum of the viscosity of the continuous phase and
an incremental increase in viscosity due to the addition of
the solids or dispersed phase . The concept of the dispersed
phase having a viscosity of its own, and thereby contributing
to the total viscosity, continues to be the basis for equa-
tions still being developed . A comparitive analysis of these
equations shows them to retain the basic Einstein form, but to
have been expanded to account for crowding factors, maximum
solids volume, hydrodynamic interaction, etc .

Robinson (1)

	

NINo = 1 + 2-5~/(l - RSV}

	

(3)
where RSV = Relative Sediment Volume

Mooney (1)

	

In (N/No} = 2 .50/(1 - SO)

	

(4)
where S - a crowding factor

Fedors (2)

	

N/No = (1 + 1 .25/{1 - 0/~m)}

	

(5)
where ~m = the maximum solids level

Although many of these equations have demonstrated ade-
quate statistical correlation to the measured values in
limited experiments, none have emerged as being a truly uni
versal equation, applicable for all situations or over all
solids ranges . It is the contention of this paper that the
failure of these equations is due to the inherent assumption
that the pigment can be treated as if it has a viscosity of
its own which can be added to the viscosity of the continuous
phase . Furthermore, all these equations are attempts to satis-
fy known data with emperical relationships rather than to
develop a rigorous solution based on fundamental properties of
the system . -
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STATEMENT OF THE NEW THEORY

A different approach to the situation can be obtained by
shifting our point of view . When one considers the basic
Newtonian simple shear model on which all of the preceeding.
measurements and calculations are based, a fundamental problem
can be observed . The simple shear model is based on the
assumption of a uniform shear gradient throughout the liquid
as shown in Figure 1 . As the gap between the moving planes is

filled with dispersed phase, this model becomes quite diffi-
cult to accept . Accordingly, it has been proposed (3) that
a dispersion of a two phase system the dispersed phase is
simply taking up space and therefore not directly contributing
to the measured viscosity . The argument of this theory is that
the actual measured shear force is solely due to the shear
developed in the continuous phase . However, since the par-
ticles in the dispersion are occupying space in the measured
gap, the shear rate on the continuous phase is increased and
is not accurately calculated by using the measured gap in the
instrument . In the original article presenting this theory, it
was suggested that the shear plane develops in the center of
the zone under shear, with the particles being forced towards
the outer surfaces (4) . This assumption was based on data
presented at the 1980 Rheology Conference by researchers from
the Los Alamos National Laboratory (5) . More recent data by

Fig 1-Definition of viscosity, simple shear model .
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Tomita and Van De Ven (6) indicate that monodisperse hard
spheres orient themselves into parallel layers, both at rest
and under shear . This model would lead to the formation of
several shear planes between more concentrated pigment layers .
The actual location of the shear plane, or shear planes, is of
no consequence to the proposed theory . It does not matter
where the shear plane is or if in fact there are several
planes . What is important to the theory is that the dispersion
behaves as if it is separated into layers and that the shear
rate is different in the different layers . The simple expres-
sion of the theory would be that a fifty percent volume
dispersion would be one where the gap is reduced by fifty
percent . Of course it is obvious that the ratio would not be
that simple or direct, but if the theory has validity, some
relationship should be determinable . By any of the above
interpretations, the reduced gap would increase the shear rate
on the continuous phase and increase the resulting shear force
proportionately .

Based on these assumptions, several other equations and
calculations can be derived from the measured values . The
mathematical statement of the preceeding argument is as fol
lows . The measured viscosity is the ratio of the measured
shear force (F/A) to the assumed instrumental shear rate
(dv/dx) .

Measured viscosity

	

N = (F/A)/(dv/dx) = (Fdx)/(Adv) (6)

If, as proposed, the dispersed phase is only taking up space
creating a reduced effective gap (dxe), and the viscosity of
the continuous phase is what is actually being measured, it
can be expressed by the following :

Continuous phase viscosity
No-- (F/A)/(dv/dxe) = (Fdxe)/(Adv)

	

(7)

It follows from this approach that we should be able to
calculate either the effective gap (dxe) or the continuous
phase viscosity, if the other is known, since dividing equa-
tion (7) by (6) gives the following relationship ;

No/N -- dxe/dx

	

(8)

However, the ratio dxe/dx is also the expression of the
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percent of the original gap available for shear, and 1-dxe/dx
would be an expression of the volume occupied by the dispersed
phase, or the percent reduction of the gap . This value should
be directly related to the' volume solids . The nature of this
relationship would intuitively be dependent on the shape, size
and degree of dispersion of the dispersed phase . Hence, the
insertion of the simple relationship using the relative sedi-
ment volume (RSV) shown in Equation 9 . However, by referring
back to Equation 8 we can see that the ratio of gaps can be
replaced by the ratio of viscosities giving us a new viscos-
ity/solids equation (Equation 10) rigorously derived rather
than emperically developed .

1 - dxe/dx

	

RSVI

	

(9)

No/N = 1 - RSVA

	

(10)

VERIFICATION OF THE NEW EQUATION

Utilizing data developed with dispersions of polystyrene
spheres (4 and 7), an attempt to satisfy Equation 10 demon-
strates in Figure 2 the non-linearity of the relationship .
This lack of linearity has generally been viewed as a major
flaw, but perhaps should be accepted as a demonstration of the
true nature of the system . The problem with the non linearity
of this curve can be better understood if one refers back to
the basic Einstein equation and its graphical presentation . It
should be recalled that plots of N/No (the inverse of the
ratio plotted here) is also non-linear, but that the initial
linear portion of that plot has been interpreted as the
intrinsic viscosity of the pigment in dispersion . It is this
conceptualization of the dispersed phase acting as if it had a
viscosity of its own, which is being avoided by the new
approach . There is really no reason to assume that either the
intrinsic viscosity or the RSV should be constant at all
solids levels or shear rates . The tendency for dispersed
particles to couple, cluster or even behave as though they
were attached in chains has been long recognized . The paper by
Grahm and Steele (5) aptly demonstrated this coupling tendency
and its relationship to shear rate .

It seems appropriate at this time to further clarify the
concept of shear induced anisotropy . It is readily recognized
that pigment dispersions such as those being considered here



Fig 2-Relationship between measured viscosity and volume solids .
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are two phase systems consisting of a dispersed and continuous
phase . As such they are already anisotropic . However, there is
a sort of isotropy in these systems on a macro scale, in that
the dispersion should be uniformly non-isotropic throughout .
What is proposed in the most rigorous interpretation of the
theory is that the dispersion will separate into two new
layers, one composed of pure continuous phase and the other
composed of a dispersion at a higher solids level than the
original . What is claimed in the present theory is that the
imposition of shear will cause a redistribution of the dis-
persed phase, creating shear planes of reduced solids between
layers of higher solids which experience little or no shear .
In the original paper (4) it was proposed that a single shear
layer will be created in the center of the total zone under
shear . Although this approach makes it easier to develop the
mathematical model, this simplistic model is not likely to
develop . It is more likely that the system will respond to
shear in a manner such that the shear rate will cause some
coupling, increasing the effective solids level of the two
phase part . This action will have the effect of reducing the
solids level in the shear layer, generally referred to here as
the continuous phase . A similar situation has been demon-
strated by Tomita and Van De Ven (6) when they demonstrated
that rigid sphere dispersions separated into layers, and that
the density of the pigment layers increased as the shear rate
increased . With this interpretation in mind, it is proposed
that as the overall solids level is increased, the shear rate
in the shear zone will increase, increasing the tendency
toward coupling . If this theory were to apply, we would expect
to see the RSV decrease at higher solids levels, even at
constant theoretical shear rates . In order to evaluate this
concept, it i s necessary to use a dynamic measurement of the
RSV rather than the static method utilizing pressure filtra-
tion or centrifuging . Such a method has been proposed (4) and
is called the Relative Shear Volume (RS'V) to differentiate it
from the relative sediment volume (RSV) .

A plot of RSIV as a function of volume solids in Figure
3, using the same data source as before (4 and 7), shows the
predicted decrease at hip-her solids levels, but not at lower
solids . What is shown at lower solids is that the degree of
scatter or uncertainty in calculating RSIV increases . Either
interpretation is equally valid . The accuracy of the viscosity
measurements on which the calculations are based decreases at
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Fig 3--Relationship between relative shear volume and volume solids .

lower solids levels as does the degree of shear induced
association between the particles . Furthermore, at lower
solids levels and shear rates the effect of other sources of
association between the particles would be expected to be rela-
tively more important .
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In his thesis project, Homes (8) evaluated the effect of
degree of dispersion on the properties of titanium dioxide
dispersions . As the dispersing agent is added, it is expected
that the particles should flocculate less and therefore pack
more tightly . The interpretation of this in terms of the RS'V
is that it would be expected to decrease as the dispersant
level increases . Utilizing some of the data developed by
Holmes (8) displayed in Figure 4, we can see that the expected

Fig 4- Relationship between relative shear volume and dispersant level .

relationships between degree of dispersion and RS'V develop .
At higher levels of flocculation, the pigment system occupies
more space and reduces the gap available for shear . The
extension of this interpretation of the data can be shown to
affect the way we interpret rheograms . When a pseudoplastic
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curve is developed for a coating system, it could either be
due to the presence of a truly pseudoplastic continuous phase,
or it could be due to changes in the dispersed phase . If the
dispersed phase is flocculated or otherwise demonstrates some
degree of association between the particles at rest which is
reduced at increased shear rates, a pseudoplastic curve would
develop even with a Newtonian continuous phase . Accordingly,
we should not expect the relationship between solids and
relative viscosity (or its reciprocal) to be linear . In fact
the data which has been developed and shown in earlier equa-
tions has not been linear . Using the data developed by
Triantafillopoulos (7), we see in Figure 5 that a reasonably

Fig 5-Semi-log relationship between viscosity function and volume solids .

good fit can be obtained if we plot the natural log of
(1-No/N) as the dependent variable and volume solids as the
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independent . However, the fit is not as good as would be
desired . A better fit is demonstrated in Figure_ where the
viscosity ratio is plotted as a function of l-e The data
shown here yields a slope of about -2 .2 and an intercept of
1 .0, giving the following equation .

NoIN = -1 .2 + 2 .2e-t	(11)

This equation adequately satisfies the requirement that the
ratio of NoIN go to one when ~ goes to zero, but fails to help
with the accurate determination of the maximum solids level .
Many of the earlier equations utilized the maximum or limiting
solids level (that solids level at which the dispersion be-
haves as a solid) . This value is obtained by extrapolating
viscosity solids plots to infinite viscosity . In Figure 6 it
can be seen that the intersection with the abcissa would yield
a limiting solids value of about 60% . This value is in
relatively good agreement with other values previously deter-
mined .

As with the calculation of RS'V, we should not expect the
limiting solids to be a constant term independent of solids
level, degree of dispersion or shear rate . The preceeding
discussion of the relationships between RS'V and dispersion,
solids level and shear rate apply to the maximum solids level .
Furthermore, we have seen a dramatic demonstration of the
shear rate relationship in the shear blocking form of dilatant
flow . In this form of flow, the material may seem to be
perfectly Newtonian up until the point where shear blocking
occurs and the material behaves like a solid . This system is
therefore both at and below the limiting solids level at the
same time, depending on the shear rate used to measure the
system . It would therefore appear that if one wanted to
measure this property, the best approach would be to make
several measurements at high solids levels and attempt to
extrapolate to find the intercept or determine the slope . If
enough points can be obtained to determine a slope, the
maximum solids (0m) could be determined with the following
equation .

em = ln (slope/[l-slope])

	

(12)

Calculating Om at different points on a curve may yield
different values, however, this need not be viewed as a



Fig 6-Demonstration of the new viscosity/ solids equation .
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problem . The maximum solids level is simply another indicator
of the degree of packing of the dispersed phase of the system
and must be expected to change just as the RSIV will as a
function of shear rate, solids level and quality of dispersion .

APPLICATION OF THE NEW THEORY TO COATING SYSTEMS

It has long been recognized that the viscosity of the
coating is important in its handling and application, especial-
ly at the high shear rates experienced in blade coating . If
the coating does in fact experience shear induced anisotropy,
it could help in the understanding of some of the observed
phenomena . As the coating approaches the blade, there has
always been the possibility that some of the coating or at
least some of the continuous phase will penetrate into the
web, a process generally referred to as dehydration . Dehydra-
tion is alleged to cause an increase in the solids level of
the coating under the blade, which would lead eventually to
the immobilization of this coating . Due to the roughness of
the web, there will be some coating passing under the blade
which will be trapped in the valleys between the fibers which
could also be considered to be immobilized . In applying the
present theory to blade coating, it follows that the high
shear rates will cause the coating to develop a shear plane at
the surface of the blade and increase the volume of immobi-
lized coating at the web surface . An approximation of the
proposed system is presented in Figure 7 where an attempt has
been made to represent the relative roughness of the web, size
of the blade and demonstrate the development of a shear plane
at the blade surface .

The sets of parallel lines in the two models represent
the relative velocities at the respective levels of the sys-
tem . The isotropic model assumes that the uniform velocity
gradient of Figure I will apply and that the velocity of the
coating will increase steadily from the blade surface up until
it reaches the velocity of the web . Since there is no single
surface for the web, the model drawn would have to be modified
to account for the reduced gap due to every high point on the
web . It seems obvious that the model would end up being much
shorter win the direction perpendicular to the web, having been
reduced to meet the highest points of the web surface . This
interpretation also is similar to the argument that there will
be coating trapped in the valleys of the sheet, traveling at
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Fig 7-The application of isotropic and anisotropic models to the blade coater tip
conditions .

web speed . Even above this surface the coating will still be
at a high enough solids level to cast doubt on the feasability
of the isotropic model . Accordingly, the anisotropic model
shows the additional shear immobilized coating above the web
surface and the shear layer at the blade surface .

Many authors have attempted to describe the behavior of a
coating under the blade in terms of hydrodynamics, including a
paper by Guzzy and Higgins who presented a series of figures
depicting the expected flow under the tip (9) . A reproduction
of their figures is shown in Figure 8 . This drawing is typical
of the ones used to develop the hydrodynamic model . As can be
seen, it disregards the presence of the dispersed phase and
considers the coating to behave as an isotropic fluid .

Figure 8 shows the reverse flow ahead of the nip, or
actual beveled portion of the blade, and a gradual transition
to a modified uniform velocity profile at the exit . Also shown
in this figure is the condensing of the coating layer as the
lower velocity material from under the tip accelerates to
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WEB

Fig 8-Hydraulic flow profiles for a blade water tip

catch up with the material at the web surface . The condensing
phenomena would have to be observed if there truly was a large
amount of reduced velocity coating coming under the tip . This
theory also requires the exaggerated bevel shown in this
drawing to allow it wo work . If there were a nearly parallel
passage, there would need to be coating at the web surface
traveling faster than the web to supply low velocity coating
at the blade surface . The anisotropic model of Figure 7 shows
a thin layer of nearly pure continuous phase at the blade
surface which could easily be supplied by dewatering of the
coating layer . This theory is not incompatible with the appli-
cation of hydrodynamics, to the contrary it is most com-
patible . The development of a shear plane comprised of pri-
marily continuous phase would be ideal for invoking hydrody-
namic theories . The system which is proposed is shown in
Figure 9 to be a thin wedge of continuous phase at the blade
surface where the hydrodynamic wedge would be free to develop
and contribute to coat weight control .

Figure 9 also shows the condition proposed to develop
before the blade . As the coating layer approaches, it is all
traveling at the same speed as the web . Depending on the coat
weight applied, most of this layer needs to be diverted and
caused to flow down the blade . This transition could lead to
the development of turbulence due to the change in direction
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Fig 9-Proposed flow and shear diagram for a beveled blade water tip .

as well as the sudden drop in velocity . The coating continuing
on enters the increasing shear rate zone culminating in the
high shear rate under the blade tip . Figure 9 shows not only
the devopment of a shear induced immobilized layer at the web
but also at the blade surface . Hydrodynamic theories would
also support the formation of the immobilized zone on the heel
of the blade as an obstruction in a flowing stream . The shear
planes would be free to develop in the zone between these two
immobilized layers, consolidating into a single layer at the
blade surface .

CONCLUSIONS

Through the use of the shear induced anisotropy theory, a
new equation for the relationship between viscosity of disper-
sions and solids level has been developed . The theory is shown
to be imperfectly applied in that it is not 'likely that the
coating system will separate into purely continuous and dis-
persed phases, but the use of the theory need not be avoided
for that reason . The use of the theory does give a rigorously
developed equation for the solids/viscosity relationship,
which appears to be applicable over all solids ranges . Further-
more, the derivation of the equation assigns physical para-
meters to the constants, which are shown to not be constant,
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In

	

this

	

paper,

	

Einstein' s

	

classical

	

analysis

	

of
viscosity of suspensions is used as a starting point for
attempts to deal with the viscosity of concentrated
suspensions .

Einstein's equation is derived for creeping flow as a
limiting case when the distance between suspended spherical
particles

	

is

	

infinite,

	

using

	

Stoke' s

	

equation .

	

The
literature does not lack of earlier unsuccessful attempts
to modify this equation in a more or less theoretical way
to adapt it to concentrated suspensions (1) .

A far more reasonable model for concentrated
suspensions would be to start from the fact - that the
distance between the particles is small . The alternative
limiting case to the one used by Einstein is then to assume
that the fluid film separating the particles is small in
relation to the diameter of the particles .

Fr anke l and Acr ivos (2) have shown

	

that

	

this

	

case

	

can
also

	

be

	

treated

	

using

	

Stoke' s approach in Brenner' s form .
The same result

	

can

	

be

	

obtained

	

starting

	

from

	

Reynold' s
lubr ication

	

theory .

	

This

	

approach

	

clearly

	

demonstrates
that the rapid rise of viscosity at high concentration is
accounted for by hydrodynamic interactions of neighbouring
particles, the very factor which Einstein chose to exclude .

This solution, which is rigid only for spheres of one
size, i s fairly sensitive to the geometry of the particle
configurations . For non-spherical particles collisions,
aggregations, electrokinetic and inertial effects will
modify the viscous behaviour .

Transcription of Discussion



It is my hope that paper technologists will leave
Einstein at rest when dealing with high solids content
particle suspensions .
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Atalla

	

I would like to preface my remarks by saying that
I have not read your paper carefully .

	

However,

	

it

	

is

	

clear
that there are two paths to dealing with the complex
rheology of coating systems .

	

You have chosen to account
for all of the complexity by attempting an adjustment for
the value of the viscosity whereas we all know that with
the pigment and some of the binders we have coatings
requiring much more complex description of their flow
characteristics .

	

Thus while in no way wishing to diminish
the value of your approach I would not wish to

	

see us
ignore the other approach of say Guzzy and Higgins which
attempts to deal with the properties of the fluid system as
variable ones in the course of responding to the local
conditions of flow .

Prof J. Kline I am not attempting to refute the
hydrodynamic theories that have been proposed and that do
work very well on blade applications but what I am
suggesting is that in the zone being sheared the thickness
of the film is much thinner than Guzzy' s work would suggest .

Atalla What you are suggesting here is that whenever
there is surface roughness there is a discontinuity but I
do not think it is a discontinuity in the liquid. I think
there is a shear plane between the particles which lie
beneath the roughness peaks and the particles which are
moving with the coating and that there is transfer of
momentum across that plane and we both know that the
transfer of momentum is continuous from the liquid deeply
penetrating into the sheet to the blade itself -
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If

	

it

	

were

	

only

	

a liquid I would agree with you,
but it is not only a liquid, it is a 60% solids dispersion
which cannot behave as a liquid .

Atalla

	

I

	

think

	

that is all the more reason why one would
suggest that there is transfer of momentum across that
plane .

Kline

	

If you mean transfer of force, then yes I agree .
But if you mean actual flow then I have a problem in
agreeing with you .

Kartovaara

	

In your Figure 3 you have plotted relative
shear volume against volume

	

solids

	

for

	

these

	

polystyrene
particles which must have a very narrow size distribution .
Have you ever plotted this relationship for real coating
pigments?

Kline

	

Actually Figure 3 is a plot for a range of
different pigment particle sizes . We have looked at
coatings and other pigments .

	

They do not all fall on the
same curve of course . There will be a different packing
structure for different pigments .

Kartovaara

	

Do you have information on calcium carbonate
or clay? What kind of differences do you have on these
plots?

Kline

	

I do not have specific data at present .




