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In this study, 65 kinds of wood samples were classified by using artificial 
neural networks based on the measured value of wood thermal physical 
parameters. First, the thermal conductivities and the thermal diffusion 
coefficients of the wood samples were measured. The transient 
temperature rise curve of wood samples during the test process was 
recorded, and the characteristic values of the transient temperature rise 
curve were extracted by logarithmic curve fitting. The emissivity spectrum 
representing the thermal physical properties of wood surface was 
measured, and the characteristic spectral data were selected according to 
the principal component analysis. An artificial neural network model was 
established based on the extracted feature values and characteristic 
spectral data to classify the wood species. The experimental results 
showed that the comprehensive correct classification rate of the proposed 
wood classification method was 99.85%. In addition, the proposed wood 
classification method was compared with a wood classification method 
based on laser induced breakdown spectrum and near infrared spectrum, 
which indicates the feasibility of wood classification based on the values 
of wood thermal physical properties. 
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INTRODUCTION 
 

Wood has a wide range of applications in human life. It can be processed into a 

variety of products because different kinds of wood have various physical and chemical 

properties. Therefore, wood identification has become a significant factor in the wood 

industry. It plays an important role in wood import-export trade business, scientific 

research, processing technology, archaeological work, precious wood identification, etc. In 

early classification work, wood species were differentiated by the macroscopic or 

microscopic characteristics. Most of these methods are time consuming, inconvenient, or 

inaccurate. 

With the development of digital image algorithms, visual image features can be 

used to identify wood species, and some digital image algorithms such as gray-level co-

occurrence matrices and edge detection for extracting wood surface features have been 

proposed (Tou et al. 2008; Ristiawanto et al. 2019). Zhao et al. (2014) converted some 

wood color images into V1V2I color-based images and identified wood species by 
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comparing the established model with the histogram curves of specimens. Liu et al. (2020) 

presented a split shuffle residual (SSR)-based convolutional neural network (CNN) that 

learns features automatically from wood images, allowing real-time classification of rubber 

wood boards. Another commonly used method for wood classification is the analysis of 

wood microstructure through digital image processing technology. Based on scanning 

electron microscopy, Kita et al. (2020) suggested a new method to measure the microfiber 

angles by using polarization microscope, and then a multivariate classifier was used to 

convert them into a two-dimensional correlated-map for wood classification.  

Because the near-infrared (NIR) spectrum of wood contains the information of 

wood chemical properties, NIR spectroscopy has been developed in wood classification. 

Park et al. (2017) investigated the interrelationship between wood chemical compositions 

and the NIR spectrum with traditional wet chemistry methods and infrared spectral 

analyses, providing a basis for wood classification. Santos et al. (2020) analyzed the NIR 

spectrum of wood samples belong to four different species; the effects of three different 

pretreatment methods on classification accuracy were compared. Feng et al. (2020) used 

support vector machine (SVM) and Markov distance to identify the mid-infrared spectra 

of 5 kinds of wood. The recognition rate of SVM was slightly higher than that of Markov 

distance, while the correct recognition rate of SVM with smoothing plus first derivative 

processing was 98%. By combining the NIR spectrum of wood with a variety of pattern 

recognition methods, Hao et al. (2019) compared the influence of different methods on the 

wood recognition accuracy. The soft independent modeling of class analogy (SIMCA) 

model after 5-point smoothing or wavelet derivative (WD) pretreatment of wood spectrum 

achieved the best recognition rate. Pozhidaev et al. (2019) considered single-reflection 

attenuated total reflection IR spectroscopy to classify 53 coniferous wood samples and 77 

deciduous wood samples. However, the peaks of different wood chemical compositions 

are weak and sometimes overlap in the near-infrared range, which reduces the correct 

recognition rate, thus restricting its application. 

Compared with other materials analysis techniques, wood specific emissivity 

spectroscopy has the unique advantages of fast speed, simple sample preparation, and low 

source interference. Specific emissivity spectroscopy has been widely used in materials, 

thermal radiation, and photovoltaic power generation (Budaev and Bogy 2011; Gibelli et 

al. 2017; Sako et al. 2021). In addition, the thermal conductivity coefficient and thermal 

diffusion coefficient of wood are the pivotal parameters for basic research, analysis, and 

engineering design in the field of wood application (Adili et al. 2016). The thermal physical 

parameters of wood include the information of internal physical properties of wood, while 

the emissivity spectrum of wood includes the information of surface physical properties of 

wood. However, there are few studies about the classification of wood species based on 

wood thermal physical parameters and emissivity spectroscopy. 

In this study, the emissivity spectra, thermal conductivity, and thermal diffusivity 

of 65 species of wood were measured to create a dataset of wood thermal physical 

properties. The established dataset is a benchmark to evaluate the performance of the 

proposed method and also provides a reference for future research. 

A novel classification method for wood species identification was proposed. The 

method considered the differences of thermal properties (thermal conductivity, thermal 

diffusion coefficient) and specific emissivity of different wood species under the same 

experimental conditions. Such an approach has never been applied to wood classification. 

Principal component analysis (PCA) and logarithmic curve feature extraction were used to 

extract wood characteristic spectral data and thermal physical parameter data, respectively. 
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An artificial neural network model was established to identify wood species using the 

extracted data as inputs. 

 
 
EXPERIMENTAL 
 

Sample Preparation 
Samples were taken from 65 kinds of wood belonging to 4 families. Each kind of 

wood was composed of 5 pieces of samples, for a total of 325 pieces of wood. One piece 

of each wood sample was randomly selected as the main sample, and the other four pieces 

were used as the sub-samples. Therefore, the total number of the main samples was 65, and 

the total number of sub-samples was 260. The production of an experimental sample is 

shown in Fig. 1. As shown in Fig. 2, the experimental sample used to measure the specific 

emissivity spectrum was disc-shaped with a diameter and thickness of 18 mm and 2 mm, 

respectively. As shown in Fig. 3, the experimental samples used for measuring thermal 

conductivity and thermal diffusion coefficient were two uniform rectangular samples 

whose sizes were 50 mm × 50 mm × 20 mm.  

 

 
 
Fig. 1. Production of the experimental samples 

 

    
Fig. 2. Specimen for measuring the emissivity   
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Fig. 3. Specimen for measuring thermal conductivity 
 

The wood samples were stored in an air-conditioned room kept at 26 ℃ and 55% 

humidity. All wood samples were oven-dried before testing to avoid the influence of 

moisture content on the measured values. 
 

Experimental Principle and Method 
In this paper, the thermal conductivity and the thermal diffusion coefficient of wood 

samples were measured by Hot Disk thermal constant analyzer TPS2200 (Hot Disk, 

Sweden Ltd, Gothenburg, Sweden). The experimental device was composed of the voltage 

stabilizer, the computer, Hot Disk host, and the probe bracket (Fig. 4). The measurement 

principle of Hot Disk was the transient plane heat source method (Trofimov et al. 2020). 

The core element of Hot Disk measurement was a temperature dependent probe with a 

continuous double helix structure. The outer layer of the probe was a double-layer Kapton 

protective layer, as shown in Fig. 5(a). 

 

 
 

Fig. 4. Experimental facilities used in this study 

 

It is necessary to take the specific heat volume of the samples as a known input 

when measuring the thermal conductivity and thermal diffusion coefficient of wood 

samples. Therefore, the volume specific heat of the samples should be measured first. The 

volume specific heat of the samples was measured by the Specific Heat Capacity Module 

of the Hot Disk thermal constant analyzer. The core component of the volume specific heat 

measurement of wood samples was a gold vessel probe with the diameter of 20 mm and 

the height of 5 mm. To avoid heat exchange between the gold vessel probe and the external 

environment during the experiment, two sponge blocks were used to wrap the probe, as 

shown in Fig. 5(b). 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Cao et al. (2022). Wood thermal physical parameters,” BioResources 17(1), 1187-1204.  1191 

After the measurement of the sample volume specific heat, the thermal conductivity 

and thermal diffusion coefficient of the samples were measured. The anisotropic module 

of the Hot Disk thermal constant analyzer was used in the experiment. The specific 

experimental process for measuring the thermal conductivity and thermal diffusion 

coefficient is as follows. As shown in Fig. 5(c), the probe was placed between the two fixed 

rectangular wood samples, and parameters such as the volume specific heat of the sample 

were input into the anisotropic module as known conditions.  

All the tested samples used in the experiment were tested in turn. Specifically, for 

65 kinds of main samples, the samples were replaced after each experiment, with an 

interval of 5 min, which is enough to restore the probe temperature to the initial temperature 

and conduct two rounds of tests. The time interval between the second test of the same 

sample and the last test was at least 65 * 5 = 325 min, which is sufficient for the sample 

temperature to recover to the initial temperature. Similar to the main sample, the sub-

sample was tested for 4 rounds. In addition, the initial environmental conditions for each 

test were the same. It is emphasized that the thermal diffusivity coefficients used in this 

paper are calculated by the Hot Disk method. 

 

 

        
 

Fig. 5. (a) The metal probe used in the experiment; (b) The gold vessel probe used in the 
experiment; (c) Schematic diagram of sample placement 

 

The experimental apparatus for measuring emissivity spectrum of wood samples 

included Bruker Fourier infrared spectrometer (Karlsruhe, Germany), temperature control 

unit, and heat exchanger BLK300 (Fig. 4). During the experiment, the wood sample was 

placed in the transmitting adapter A540 (Fig. 7). The emissivity spectrum was measured 

by Fourier infrared spectrometer and then displayed on the computer. The temperature 

control unit was applied for heating the sample to the specified temperature, and the heat 

exchanger BLK300 was used to keep the wood sample temperature stable. 

The measurement of emissivity spectrum for wood samples was based on the basic 

principle of radiation heat transfer. At the beginning of the experiment, it is necessary to 

heat the wood sample to 400 K (120 ℃) and keep it at a stable level. According to the 

Planck law, the blackbody radiation force reaches the maximum value in the range of 6000 

nm to 10000 nm at the temperature of 400 K. Therefore, to obtain the stable specific 

emissivity spectrum of wood samples, the experimental wavelength range was set as 4200 

to 50000 nm, and the sampling interval was set as 20.13 nm−1. The specific experimental 

process of measuring the emissivity spectrum of the sample was as follows. As shown in 

Fig. 7, the sample was placed in the sample clip, fixed on the emission adapter A540, heated 

to the set temperature, and left for 10 min. The background single-channel spectral was 

measured to provide a benchmark for computation. Finally, the emissivity spectra of the 

(a)        (b)     (c) 
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wood samples were obtained by measuring the single channel spectra of the wood samples. 

Each spectrum was consisted by 2,281 discrete points with the resolution of 4 cm−1 and the 

scanning speed of 5 kHz.  

The wavelength range of near-infrared spectrum is 750 to 2500 nm, mid-infrared 

spectrum is 2500 to 25,000 nm, and the wavelength range above 25,000 nm is far-infrared 

spectrum. Therefore, the emissivity spectrum measured at 4200 to 50,000 nm in this paper 

belongs to the middle-far infrared range. The commonly used method of wood 

identification by near infrared spectroscopy is based on the chemical composition 

differences of different tree species. In this study, tree species were classified based on the 

thermal physical characteristics of wood, using mid-far infrared wavelengths, which are 

also the concentrated region of emissivity spectrum. 

In this paper, the emissivity spectra of 65 species of wood were measured. For 5 

samples (one set of main samples and four sets of sub-samples) of each wood, 10 specific 

emissivity spectra were obtained, totaling 650 emissivity spectra. During model training, 

520 groups of feature extraction data of subsamples were taken as the training set, and 130 

groups of feature extraction data of main samples were taken as the verification set. Figure 

6 shows 10 specific emissivity spectra of experiments on Pterocarpus macrocarpus. The 

enlarged part in Fig. 6 is the part of the spectrum that is less disturbed by noise. The abscissa 

is the wave number (cm-1), and the ordinate represents the emissivity (%).  

 
 

Fig. 6. Schematic diagram of specific emissivity spectrum for Pterocarpus macrocarpus 
 

 
 

Fig. 7. The transmitting adapter A540 
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Data Processing And Model Training 
Feature extraction 

In the test of thermal physical property parameters, 5 samples of each wood were 

evaluated, and each group of experiments required an interval of 60 min, which required a 

long time to complete the experiment. In addition, the calculation formula of D is not clear, 

and the value of D cannot be calculated accurately. Therefore, the transient temperature 

rise curve collected during the experiment was used to replace the thermal physical 

parameters of the experimental samples for model training. However, the number of data 

obtained for each curve was so numerous that it was necessary to extract the feature values 

from these data. As shown in Fig. 8, which was the temperature rise curve of the measured 

wood sample, if all the temperature data were taken as the model input, it would be hard to 

obtain an effective model. Therefore, a mathematic curve was used to fit the transient 

temperature rise curve in this study, as shown in Eq. 1, 

T = a ln(t) + b               (1) 

where ∆T represents the temperature increment, t represents time, a and b are undetermined 

parameters, i.e., the characteristic value of the transient temperature rise curve. All the 

experimental results were fitted, and the fitting degrees of these curves are all above 0.98, 

demonstrating the validity of the fitting formula. Some of the fitting results are shown in 

Fig. 9. The detailed extracted feature values of Pterocarpus macrocarpus are shown in 

Table 1. 

 
Table 1. Detailed Extracted Feature Values of Pterocarpus macrocarpus 

 Emissivity Spectral Characteristics  Thermal Physical Characteristics 

1 
0.7193045 -0.4731353 -0.0604565 0.0547555 -0.0494429 

0.7116342 -0.4957342 -0.0393647 0.0657513 -0.0552398 

2 
0.7110340 -0.5029993 -0.0245182 0.0591802 -0.0477010 

0.7113333 -0.4734103 -0.0254569 0.0524822 -0.0539498 

3 
0.7135605 -0.4260158 -0.0242757 0.0590561 -0.0544432 

0.7140434 -0.4141391 -0.0255731 0.0565322 -0.0568444 

4 
0.7132047 -0.3447801 -0.0194827 0.0566388 -0.0503004 

0.7136665 -0.3291264 -0.0214502 0.0560758 -0.0578149 

5 
0.7131303 -0.2854434 -0.0350699 0.0599563 -0.0530138 

0.7130286 -0.2681826 -0.0270840 0.0577767 -0.0539641 
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Fig. 8. Temperature rise schematic diagram of the experimental sample 
 

 
 

Fig. 9. Part of the fitting results of the temperature rise curves 
 

Principal component analysis (PCA) is a widely used data dimensionality reduction 

method. The main idea of PCA is to map n-dimensional features to k-dimensional 

orthogonal features. First, it is necessary to select a part of the spectral spectrum that is less 

disturbed by noise in the emissivity spectrum obtained from the experiment. In this paper, 

the emissivity spectrum with the wavelength range of 3000 to 10500 nm was selected as 

the characteristic spectrum of experimental wood samples, with a total of 651 sample 

points. PCA processing was carried out for all the characteristic spectra, and the top three 

features that with principal component scores were taken as the input values of the model. 

The PCA results of characteristic spectrum are shown in Fig. 10. 
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Fig. 10. PCA results of the characteristic spectrum 
 

Classification modeling 

Back propagation neural network (BPNN) is an effective neural network model, 

which is mainly characterized by forward transmission of signals and backward 

propagation of errors. By constantly adjusting the weight value of the network, the output 

of the network could be as close as possible to the expected value, so as to realize the 

training of model. The two characteristic parameters of transient temperature rise curve 

and three characteristics of emissivity spectrum for wood experimental samples depicted 

in the previous section were taken as input layer parameters of BPNN, and the number of 

wood categories was taken as output layer parameters. As shown in Table 2, the tansig 

function and the logsig function were used in the hidden layers and the input layer, 

respectively. The transfer function of the purelin and the trainlm were used as the output 

layer activation function and the BP neural network training function, respectively. The 

maximum number of training was set to 1000, while the training error goal was 10−9 and 

the learning rate was 0.1. The remaining training parameters were kept to the default 

values. In this paper, MATLAB R2021a was used for model training. 

 

Table 2. Parameters of the BP Neural Network  

 Structure Parameters 

1 the hidden layer transfer function the tansig function 

2 the input layer neurons the logsig function 

3 the maximum training times 1000 

4 the maximum training error 10-9 

5 the learning rate 0.1 

 

 
RESULTS AND DISCUSSION 
 

The effectiveness of the proposed wood classification model based on wood 

thermal physical characteristics was validated by comparing different featured inputs and 

different modeling methods. The wood classification model established in this study was 

compared with the wood classification model based on laser induced breakdown spectrum 

(Cui et al. 2019) and that based on near infrared spectrum (Yang et al. 2019). 
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Comparison of Different Input Types 
The thermal physical constants for 65 kinds of wood samples were measured by 

Hot Disk thermal constant analyzer and Bruker Fourier infrared spectrometer. For each 

wood sample, 10 transient temperature rise curves and 10 emissivity spectrums were 

collected. After the feature extraction process, 50 characteristic values than could reflect 

the internal and surface thermal physical information of the experimental wood were 

obtained. For each of 65 wood species, 5 groups of samples were selected for the 

experiment, with one group of samples as the main sample and the other 4 groups as sub-

samples, totaling 325 groups of samples. For each group of main samples, two thermal 

physical property experiments and emissivity spectral test experiments were conducted, 

and a total of 130 groups of experimental data were generated from the main samples. Two 

samples were randomly selected from each sub-sample group for 4 thermal physical 

property experiments, and the remaining two samples were used for emissivity spectrum 

measurement. The same 4 repeated experiments were conducted to generate a total of 520 

groups of experimental data. A total of 650 sets of experimental data were collected for the 

main sample and sub-samples. During model training, 520 groups of feature extraction data 

of sub-samples were used as training sets, and 130 groups of feature extraction data of main 

samples were used as verification sets. 

After the data division and model training process, a classification model was 

established with wood thermal physical property characteristics as input variables. As 

shown in Fig. 11, the CCR of the validation set was 100%. A ten-fold cross validation was 

performed on the experimental data. This means that the experimental data were divided 

into 10 pieces on average, among which 9 pieces were randomly selected as training data 

and the remaining 1 piece was used as validation data. Each piece of data was deemed as 

validation data for once, so there were 10 times of model training were conducted in the 

cross validation process. The results of cross validation were shown in Fig. 12 (M1). 

Among the 10 results, the maximum value of the correct classification rate (CCR) was 

100%, while the minimum CCR is 99.23% and the average CCR was 99.85%. 

 
 

Fig. 11. Validation results of the wood classification model 
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To verify the superiority of the M1 method, the thermal property characteristics and 

emissivity spectral characteristics of wood were separately used as input variables for cross 

validation, and then the results were compared with the M1 method. M1 represents the 

classification model based on wood thermal physical properties and emissivity spectral 

characteristics. M2 represents the classification model based on the thermal properties of 

wood alone. M3 represents the classification model trained with emissivity spectral 

characteristics alone.  

The results of cross validation are shown in Fig. 12 and Table 3. Among the 10 

times cross validation results of M2, the maximum CCR was 99.23%, while the minimum 

value was 70% and the average value was 95.15%. In the cross validation experiments of 

M3, the maximum CCR is 99.23%, while the minimum value and the average value were 

73.85%and 95.54%, respectively. By comparison, the accuracy of classification was 

significantly improved by the combination of the two characteristics. 

 

 
 

Fig. 12. Comparison of ten-fold cross validation results of M1, M2 and M3 
 

Table 3. Detailed Errors of Cross-Validation of M1, M2, and M3 

 M1 M2 M3 

Maximum accuracy (%) 100 99.23 99.23 

Minimum accuracy (%) 99.23 70 73.85 

Average accuracy (%) 99.77 95.15 95.54 

 

To verify the advantages of the logarithmic curve fitting feature extraction method, 

the experimental wood thermal physical parameters (radial/chord wise thermal 

conductivity, radial/chord wise thermal diffusivity) and emissivity spectral features were 

used as input variables for the training of cross validation model (M4). The ten-fold cross 

validation results of M1 were compared with that of M4, as shown in Fig. 13. The detailed 

CCRs of the two models are listed in Table 4. 
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Fig. 13. Comparison of ten-fold cross validation results of M1 and M4 
 

The comparison results show that the CCRs of M1 were higher than that of M4. 

The averages CCR for M1 and M4 were 99.85% and 80.54%, respectively. In addition, the 

fluctuation of the CCRs of model based on M4 was higher than that of M1. The CCRs for 

M1 were from 96.92% to 100% and those of M4 were from 46.15% to 80.54%, 

respectively. 

 
Table 4. Comparison of Ten-fold Cross Validation Results between M1 and M4 

Input Variable Type 
Correct Classification Rate (%) 

Max Min Average 

M1 100 96.92 99.85 

M4 96.92 46.15 80.54 

 

In order to verify the fact that the identification accuracy of the data extracted with 

emissivity spectral features was higher than that using single data, the M3 method was 

compared with the wood identification model using the characteristic values with the 

highest score of the data extracted with emissivity spectral features as the input variable 

(M5). The cross-validation results of M3 and M5 were compared, as shown in Fig. 14. The 

detailed CCRs of the two models are listed in Table 5. 
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Fig. 14. Comparison of ten-fold cross validation results of M3 and M5 
 

The comparison results show that the CCRs of M3 were higher than that of M5. 

The averages CCR for M1 and M4 were 99.85% and 80.54%, respectively. In addition, the 

fluctuation of the CCRs of model based on M4 was higher than that of M1. The CCRs for 

M1are from 96.92% to 100% and that of M4 are from 46.15% to 80.54%, respectively. 

Since the emissivity spectrum can characterize the thermal physical properties of wood 

surface, adding this factor was equivalent to increasing the characterization parameters of 

wood samples, rather than merely adding a principal factor whose effect cannot be replaced 

by conventional principal factors. 

 

Table 5. Comparison of Ten-fold Cross Validation Results between M3 and M5 

Input Variable Type 
Correct Classification Rate (%) 

Max Min Average 

M3 99.23 73.85 95.54 

M5 79.23 18.46 64.77 

 

Comparison of Different Models 
In this section, the proposed wood classification model based on thermal physical 

parameters (TP) was compared with a wood classification model based on laser induced 

breakdown spectrum (LIBS) (Cui et al. 2019) and a wood classification model based on 

near infrared spectrum (NIR) (Yang et al. 2019). Xu et al. (2019) used laser induced 

breakdown spectroscopy combined with artificial neural network to classify 4 kinds of 

wood samples. Yang et al. (2019) used near infrared spectroscopy combined with LeNet3 

to classify 5 kinds of softwood samples. 

The average CCR of the classification model based on laser induced break-down 

spectrum (Cui et al. 2019) and the classification model based on near infrared spectrum 

(Yang et al. 2019) were 99.17% and 95.19% for 10-fold cross validation, respectively. The 

average CCR of the proposed classification model based on wood thermal physical 

property and emissivity spectral characteristics was 99.85%. The CCR of cross validation 

for the above three methods is shown in Table 6. The classification model proposed in this 

study is superior to the other mentioned two models. In addition, the method in Cui et al. 

(2019) and Yang et al. (2019) only studied the classification model for up to 5 kinds of 
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wood, while 65 kinds of common wood were classified in this study. The classification 

model was more complex than that of the other two classification models, which also 

reflected the superiority of the proposed wood classification model. 

 

Table 6. Correct Classification Rate of Ten-fold Cross Validation for Different 
Methods 

Method Species 
Correct classification rate (%) 

Max Min Average 

LIBS (Cui et al. 2019) 4 99.17 96.67 98.08 

NIR (Yang et al. 2019) 5 100 89.71 95.19 

TP (present study) 65 100 96.92 99.85 

 

 
CONCLUSIONS 
 

1. A novel method for wood classification was put forward. The method was established 

based on the thermal physical information and spectral characteristics of specific 

emissivity of different wood species.  

2. The anisotropic (axial and chord wise) thermal conductivity and thermal diffusivity, 

which represent the internal thermal physical properties of wood, were measured. The 

established dataset could be used not only as a benchmark to evaluate the performance 

of the proposed method, but also provided a reference for the future research. 

3. The feature extraction data are used as the input data of BPNN, so as to establish a 

classification model of wood species. In order to verify the effectiveness of the 

proposed method, 65 kinds of common wood were tested in this work. The 

experimental results showed that the average correct classification rate of the proposed 

wood classification method was 99.85%, which indicates the feasibility of wood 

classification model based on wood thermal physical properties.  

4. In addition, the proposed wood classification method was compared with a wood 

classification method based on laser induced breakdown spectrum and near infrared 

spectrum, which indicated the feasibility of wood classification based on the values of 

wood thermal physical properties. Future work will focus on improving the calculation 

speed of wood classification model, so as to satisfy the requirements of real-time 

classification work. 
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APPENDIX 
 
Table S1. Latin Names and Densities of Species 
 

  Latin Name  Mean of Density Standard Deviation 

1 Pterocarpus macrocarpus 1.165  0.039  

2 Pterocarpus pedatus 1.103  0.043  

3 Pterocarpus erinaceus 0.929  0.020  

4 Dalbergia latifolia  0.920  0.030  

5 Dalbergia frutescens var. 
tomentosa 

1.303  0.054  

6 Pterocarpus indicus 0.448  0.050  

7 Dalbergia melanoxylon 1.212  0.047  

8 Dalbergia cochinchinensis  1.207  0.028  

9 Dalbergia bariensis 1.109  0.036  

10 Dalbergia oliveri 1.029  0.017  

11 Dalbergia retusa 1.112  0.026  

12 Millettia stuhlmannii 0.704  0.026  

13 Dalbergia louvelii 0.891  0.045  

14 Dalbergia cultrata 0.982  0.028  

15 Baphia nitida 1.285  0.043  

16 Swartzia madagascariensis 1.083  0.028  

17 Pterocarpus tinctorius 0.993  0.028  

18 Myroxylon balsarmum 0.940  0.040  

19 Pterocarpus soyauxii 0.730  0.020  

20 Dipteryx sp. 0.987  0.024  

21 Vatairea sp. 0.867  0.038  

22 Pericopsis elata 0.660  0.018  

23 Pterocarpus angolensis 0.595  0.010  

24 Platymiscium sp. 1.062  0.035  

25 Andira sp. 0.766  0.025  

26 Diplotropis sp. 0.814  0.033  

27 Machaerium sp. 1.036  0.037  

28 Swartzia leiocalycina 1.268  0.042  

29 Baphia kirkii 1.104  0.030  

30 Dalbergia cearensis 0.764  0.041  

31 Dalbergia tucurensis 0.706  0.037  

32 Cylicodiscus gabunensis 0.838  0.043  

33 Marmaroxylon racemosum 0.934  0.048  

34 Xylia sp. 0.989  0.052  

35 Samanea saman 0.650  0.038  

36 Anadenanthera macrocarpa 0.964  0.036  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Cao et al. (2022). Wood thermal physical parameters,” BioResources 17(1), 1187-1204.  1204 

37 Acacia sp. 1.035  0.032  

38 Pinus sp. 0.478  0.045  

39 Pinus sylvestris 0.532  0.030  

40 Pinus sp. 0.654  0.024  

41 Pseudotsuga sp. 0.452  0.033  

42 Tsuga sp. 0.386  0.037  

43 Pinus radiata 0.427  0.034  

44 Cassia siamea 1.041  0.038  

45 Colophospermum mopane 1.298  0.047  

46 Guibourtia tessmannii 0.805  0.022  

47 Microberlinia sp. 0.909  0.032  

48 Paraberlinia bifoliolata 0.676  0.040  

49 Intsia sp. 0.902  0.032  

50 Peltogyne sp. 1.168  0.044  

51 Caesalpinia paraguariensis 1.108  0.010  

52 Erythrophleum fordii 0.989  0.037  

53 Daniellia sp. 0.525  0.025  

54 Guibourtia conjuata 1.084  0.042  

55 Berlinia sp. 0.673  0.032  

56 Koompassia sp. 0.623  0.040  

57 Sindora  sp. 0.623  0.046  

58 Dicorynia sp. 0.721  0.025  

59 Martiodendron sp. 0.881  0.028  

60 Vouacapoua americana 0.942  0.025  

61 Hymenaea sp. 0.795  0.037  

62 Afzelia sp. 0.889  0.033  

63 Guibourtia coleosperma 0.962  0.023  

64 Erythrophleum sp. 0.736  0.012  

65 Cynometra sp. 0.957  0.020  

 


