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The effect of annual ring number and width on the longitudinal (P) and 
transverse (S) ultrasonic wave velocities in the radial direction of black 
pine, Scots pine, Turkish red pine, and cedar softwoods was evaluated in 
this study. Annual rings were evaluated using high-resolution images 
captured with a Lumix camera. The 2.25 MHz P and 1 MHz S wave 
frequencies were propagated through the radial direction of small clear 
samples. An increase in ring number caused different changes in the P 
and S wave velocities. Only Scots pine and cedar presented continuous 
decreases in P and S wave velocities with the increase in annual rings. On 
the contrary, VR of Red pine slightly decreased and surpassed the initial 
value when the ring numbers increased from 5 to 10 and 15, respectively. 
Furthermore, the greatest decrease (4%) in the velocities was observed 
for VRL of Red pine. According to one-way ANOVA results, significant 
relations were only observed for VR vs. ring number of Black pine and 
cedar. R2 values ranged from 0.0001 (Red pine VR) to 0.18 (Cedar VR) for 
ring number and 0.0002 (Cedar VR) to 0.44 (Scots pine VR) for ring width. 
Furthermore, ANOVA results for linear regression analysis showed that VR 
of Scots pine and VR, VRL, VRT of Red pine can be statistically significantly 
predicted by the ring widths. 
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INTRODUCTION 
 

Ultrasonic testing is an evaluation method that is relatively less laboratory-

dependent than other methods and that can be applied in various fields. Prominent 

properties of this type of testing include mobility and compatibility. However, 

interpretation of the ultrasonic signal is not easy, and an experienced user is needed for 

using the tools in manual mode. Also, the reproducibility of ultrasonic evaluation seems 

limited in manual mode. Therefore, operator-independent automated systems reduce the 

errors caused by misreading by the experienced or inexperienced user and improve the 

signal-to-noise ratio (Gros 1997). Interpretation of signals in wood science becomes more 

complicated due to the complex structure of wood material that presents different 

properties through the essential axis and planes. The anisotropic and inhomogeneous 

material structure of wood greatly attenuates ultrasound due to scattering from the 

inhomogeneity variations in the microstructure (Berndt and Johnson 1995). Therefore, an 

ultrasonic beam attenuates due to variation in composition, density, and porosity of the 

material (Gros 1997). Furthermore, these properties change due to environmental 

conditions and cause variations within the species that are much more complex than 
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anisotropy (Brancheriau et al. 2012). The cellular microstructure of wood and the 

nanostructure of the cell walls control the elastic properties. Furthermore, the properties of 

wood are maximized in the longitudinal (L) direction (Ansell 2015). The same is true for 

ultrasonic wave velocities (UWV) in wood, and according to Dackermann et al. (2014), 

radial and tangential wave velocities are generally about a third of the longitudinal wave. 

Similar behavior is true for shear or transverse wave velocities, and transverse wave 

velocities of wood are remarkably slower than the longitudinal waves. These significant 

differences occur because of the longitudinally aligned anatomical elements such as fibers 

and tracheid, and radially aligned wood rays in growth rings. However, such structural 

elements are not observable through the tangential direction. When the polar orthotropic 

nature of wood is taken into consideration, the propagation of ultrasonic waves encounters 

these variations. Furthermore, micro-fibril angle and the length of the anatomical elements 

have influences on variations. For example, a small cell wall layer is responsible for higher 

acoustic wave velocities (Bergander and Salmén 2000). More comprehensive data for the 

propagation and distribution properties of longitudinal and transverse ultrasound waves in 

wood and wood-based materials are provided by Bucur (2006).       

Changes in environmental factors may have essential effects on the anatomical 

properties of wood. One of the essential variations in wood structure is the annual rings 

(ARs) due to environmental factors in normal growth or engineered growth by sylvicultural 

practices. Tree-rings enclose the history of all experiences or developments that take place 

in the surrounding area within the tree stem. According to Carrer (2011), tree-rings are a 

valuable source of information due to the characteristics they have earned year by year. 

Many studies have evaluated tree-ring-related issues, and the fundamentals of the tree-ring 

research and evaluation are thoroughly presented by Schweingruber (1988) and Speer 

(2012). A hand lens with a scale is the simplest optical instrument for measuring the tree-

rings. However, advanced tools, hardware, and software are the leading development for 

the evaluation of tree-ring and it’s effects on the properties. For example, Jackson et al. 

(2009) evaluated the ring-growth patterns of many wood specimens by terahertz time-

domain reflectometry. Perlin et al. (2019) conducted an ultrasonic tomography 

investigation of timber slices through the tangential and radial directions regarding the 

growth ring direction. Mori et al. (2019) developed a non-destructive RW measurement 

technique and evaluated the effectiveness over the archaeologically excavated waterlogged 

wood. Adamopolous et al. (2009) determined the relationship between the ring-width 

(RW) and stem height for Pinus brutia using LINTAB and TSAP-Win. Trouillier et al. 

(2018) used optical scans and CooRecorder for RW measurements and CDendro for cross-

dating of white spruce. Shishkova and Panayotov (2013) used CooRecorder and CDendro 

to measure and cross-date the tree-widths of Pinus nigra, respectively.  

Knapic et al. (2007) investigated the relation between RW, the number of rings, 

density, and cambial age properties of oak wood. Kharrat et al. (2019) evaluated the RW, 

density, and modulus of elasticity (MOE) variations for black spruce and Jack pine woods 

using UWV measurement in terms of 5, 10, 15, and 20 annual ring numbers (ARNs) from 

the pith. They stated that the correlation between density and dynamic MOE is positive and 

statistically significant in rings. Dackermann et al. (2016) reported that AR acts as a barrier 

against waves and decreases the velocity of waves. Effects of inter and intra-tree (ring) 

variations were evaluated before. However, a comparison between the trees should be 

made over the same number of AR instead of similar size or diameter because results tend 

to be similar (Bendtsen 1978). From this point of view, figuring out the influence of AR 

on the ultrasonic wave by the same number instead of using the same sample size was 
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aimed in this study. Consequently, this study tried to determine the effect of ARN and 

annual ring width (ARW) on the longitudinal and transverse UWV in the radial direction 

of four different softwood species in terms of the same number of rings. 

 
 
EXPERIMENTAL 
 

Materials and Methods 
Black pine (Pinus nigra Arnold.), Scots pine (Pinus sylvestris L.), Turkish red pine 

(Pinus brutia Ten.), and cedar (Cedrus libani A. Rich.) woods were used in this study. 

Samples for each species were prepared with at least 5, 10, and 15 ARs. As seen in Figs. 1 

and 2, samples were prepared according to the ARN instead of a certain dimension through 

the radial direction. Therefore, the dimensions of the samples in radial direction were 

different not only within the species but also between the species. The tangential and 

longitudinal dimensions were the minimum of 20 millimeters due to the diameter of the 

transverse transducers. 

As can be seen in Fig. 1, predetermined cutting lines were marked on the laths by 

considering the start and finish points of AR. The laths were cut using a newly-sharped 

circular saw blade. Samples with improper or false rings and rings with compression wood 

were not tested. All the samples were prepared using only sapwood sections of the planks. 

Planks were prepared from the sections following the breast height of the logs. 

Furthermore, all the samples were cut from the same logs to prevent the probable variations 

dependent on the sampling. A total of 240 samples (20 for each ARN group) were tested. 

 
Fig. 1. Sample preparation steps 
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Annual ring width (ARW) measurement was performed by image analysis and 

digital caliper. High-resolution images of the cross-section of the samples were taken using 

a Lumix GX1 camera and G macro 30 mm F/2.8 lens (Panasonic, Matsushita Electronics, 

Osaka, Japan). CooRecorder and CDendro (Cybis Elektronik and Data AB, Saltsjöbaden, 

Sweden) software were used to identify and point the AR borders for growth ring 

measurements, as seen in Fig. 2.  

An Olympus Epoch 650 flaw detector (Olympus, Waltham, MA, USA) was used 

to measure the time of flight values in micro-second. Relatively high frequencies such as 

1 Megahertz (MHz) can be used for the small (around 100 mm) specimens (Krause et al. 

2015). Bucur and Kazemi-Najafi (2011) reported that 2.25 MHz transducer frequency 

provides greater energy and penetration into the material. Furthermore, Gonçalves et al. 

(2011, 2014), Hering et al. (2012), Vázquez et al. (2015), Niemz et al. (2017), Bachtiar et 

al. (2017), and Luis Gómez-Royuela et al. (2021) are some of the recent studies performed 

elastic characterization of wood using these central frequencies. Therefore, the effect of 

AR on UWV in the radial direction has been evaluated using longitudinal (2.25 MHz) and 

transverse (1 MHz) waves. Longitudinal wave velocity in the radial direction (VR), and 

transverse or shear wave velocities in the Radial direction and Longitudinal (VRL) or 

Tangential (VRT) polarizations were calculated using the transmitting time of ultrasound 

waves and dimensions of the samples through the radial direction.  

 

 
 

Fig. 2. CooRecorder ring border pointing and RW for red pine (A), radial sections, and AR of the 
samples (B), and CDendro Plot details for cedar wood (C) 

 

Defect-free samples were conditioned at 65% relative humidity and 20 ± 1 °C 

temperature. Densities were determined according to TS 2472 (2005) standard by stereo-

metric method (dimension and weigh measurement using a digital caliper and precision 

scale, respectively).   

One-way Analysis of Variance (ANOVA) was performed to interpret the effect of 
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ARNs on velocities. Duncan’s multiple range (DMR) test was conducted to figure out the 

differences between the mean values of ARN groups. The confidence interval was 95%. 

The coefficients of determination (R2) by linear regression analysis were calculated to 

evaluate how differences in UWV can be expressed by ARW and ARN.  

 

 
RESULTS AND DISCUSSION 
 

The average values of ARW, density and UWV are presented in Table 1. The 

widths of the annual tree-ring strictly depend on the growth conditions. Temperature and 

precipitation are the responsible factors for the variations in tree-ring width (Dogan and 

Kose 2019). In general, widths are positively correlated with the amount of summer 

precipitation (Haneca et al. 2009), and it’s expected that location and environmental factors 

may make great variations in the ring properties. As can be seen in the table, variations for 

the ARW ranged from 7.7 to 17.6%. Reported variations for ARW were 20.4% (Mederski 

et al. 2013), 42.3% (Fabisiak and Fabisiak 2021), 15.3% (total chronology from 1958-

2016) (Özel et al. 2021), and 60.5% (Büyüksari et al. 2017) for Scots pine, 40.8% (total 

chronology from 1970 to 2011) (Kantarci et al. 2013), 17.8 to 35.2% (Doğan and Köse 

2015) for black pine, 39.2% (Adamopoulos et al. 2009) for red pine (Pinus brutia Ten.), 

and 60.9% (Öktem and Sözen 1992) for Cedrus libani. When compared to the reported 

data, it’s thought that relatively fewer variations for ARW were obtained due to sample 

preparations because samples were cut from the outer section of the matching planks, as 

mentioned in the experimental. 

Variations in the ARW are to be expected due to climate changes. As noted by Köse 

et al. (2012), year-by-year alterations in environmental factors cause discrepancies in tree-

ring widths, and in the literature, great varieties of ARW were reported for tested species. 

For example, variations of approximately 0.25 to 1.8 mm (Kemalpaşa  Mountain) and from 

1 to 6 mm (Karabelen Mountain) were observed for Pinus brutia Ten through 1942 to 1998 

period (Tolunay 2003). Therefore, great variations in ARW are possible not only due to 

the growth conditions and region but also by the periods. Therefore, ARWs can be in 

accordance with the literature or not due to lots of affecting factors. However, as can be 

seen in Table 1, ARW averages of Scotch pine wood ranged from 1.26 to 1.37 mm, which 

are in accordance with 1.34 mm reported by Büyüksarı et al. (2017) and in the range of 

0.79 to 2.6 mm and 0.37 to 3.91 mm reported by Dündar (2005) and Sensuła et al. (2017), 

respectively. Similar harmonies are valid for black pine such as 0.11 to 4.82 mm (from 

1744 to 2011 – Hodul Mountain) (Kantarci et al. 2013), and cedar woods such as 2.45 to 

4.11 mm (Akkemik 2003).          

According to results shown in Table 1, all longitudinal and transverse wave 

velocities were decreased when ARNs were increased from five to ten. However, VR of red 

pine, VRL of black pine, and VRT of red pine were increased when ARN was increased from 

10 to 15. However, almost all increased values were below the average of the initial values 

except VR of red pine. The VR of red pine slightly surpassed (0.1%) the initial value, but it 

was just 2 m/s and can be regarded as negligible. Also, VRT of red pine and cedar for 10 

and 15 rings were almost equal. Therefore, constant but various decreases in all velocities 

by the increase in ARN were observed only for Scots pine and cedar.  

The maximum decrease (-4.0%) in the velocity was seen in the transverse ultrasonic 

wave of red pine. The changes in longitudinal wave velocities with the increase in ARN 

ranged from -3.7% (black pine, 15 rings) to +0.1% (red pine, 15 rings). Decreases in VRL 
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ranged from -4% (red pine, 15 rings) to -0.8 (red pine, 10 rings). Decreases in VRT ranged 

from -3.7% (black pine, 15 rings) to -0.5 (Scots pine, 10 rings). The tendencies of VRL and 

VRT for red pine and Scots pine were nearly the same. Moreover, velocities decreased more 

specifically following the ten AR, except VRL for black pine.  

 

Table 1.  Average ARW, Density, UWV Values of the Species 

Species ARN 
Sample 

Size 
 ARW 

(mm) 
Density 
(kg/m3) 

VR 
(m/s) 

VRL 
(m/s) 

VRT 
(m/s) 

Scots 
pine 

5 20 Avg 1.37 512 1625 1068 691 

Std.D. 0.20 22.01 88.96 86.08 50.21 

CoV (%) 14.77 4.30 5.47 8.06 7.26 

10 20 Avg 1.29 517 1605 (-1.3)* 1060 (-0.8) 688 (-0.5) 

Std.D. 0.10 23.83 88.94 98.65 43.37 

CoV (%) 7.74 4.61 5.54 9.31 6.30 

15 20 Avg 1.26 516 1589 (-2.2) 1047 (-2.0) 673 (-2.6) 

Std.D. 0.18 30.36 80.42 77.32 53.20 

CoV (%) 13.93 5.88 5.06 7.38 7.90 

Red 
pine 

5 20 Avg 1.20 551 1967 1215 723 

Std.D.  0.16 11.70 62.01 95.03 40.55 

CoV (%) 13.61 2.12 3.15 7.82 5.61 

10 20 Avg 1.13 544 1953 (-0.7) 1205 (-0.8) 717 (-0.9) 

Std.D. 0.17 10.16 81.44 89.82 52.82 

CoV (%) 15.26 1.87 4.17 7.45 7.37 

15 20 Avg 1.17 542 1969 (+0.1) 1166 (-4.0) 717 (-0.8) 

Std.D. 0.21 12.91 117.11 100.93 40.03 

CoV (%) 17.60 2.38 5.95 8.65 5.58 

Black 
pine 

5 20 Avg 1.49 560 1863 1224 640 

Std.D. 0.40 11.65 94.94 72.32 44.19 

CoV (%) 16.02 2.08 5.10 5.91 6.90 

10 20 Avg 1.53 547 1816 (-2.6) 1179 (-3.7) 623 (-2.7) 

Std.D. 0.22 22.52 77.47 84.51 33.47 

CoV (%) 14.45 4.11 4.27 7.17 5.38 

15 20 Avg 1.56 543 1794 (-3.7) 1200 (-1.9) 617 (-3.7) 

Std.D. 0.18 18.77 42.80 95.07 34.57 

CoV (%) 11.57 3.46 2.39 7.92 5.60 

Cedar 5 20 Avg 3.21 498 1861 1210 1076 

Std.D. 0.28 21.25 38.79 52.00 81.36 

CoV (%) 8.85 4.27 2.08 4.30 7.56 

10 20 Avg 3.23 501 1825 (-2.0) 1190 (-1.6) 1053 (-2.1) 

Std.D. 0.36 16.05 51.52 68.12 92.99 

CoV (%) 11.03 3.20 2.82 5.73 8.83 

15 20 Avg 2.93 500 1808 (-2.9) 1180 (-2.5) 1052 (-2.2) 

Std.D. 0.45 13.96 49.72 87.21 92.66 

CoV (%) 15.35 2.79 2.75 7.39 8.81 

Note: Avg (Average), Std.D. (Standard deviation), CoV (Coefficient of Variation). *Values in 
parenthesis are the % differences to five ARs values 

 

The reported VR, VRL, and VRT values for the evaluated species are presented in 

Table 2. Some of the velocities were in harmony, while others were not. However, as 

reported by Yılmaz Aydın and Küçükköse (2020), ultrasound propagation is a reliable non-

destructive test method for the characterization of wood stiffness.    

      

  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Aydın (2022). “Ultrasonic waves in wood annual rings,” BioResources 17(1), 1745-1763.  1751 

Table 2. UWV in the Radial Direction 

Species 
UWV  (m/s) 

VR VRL VRT 

Scots pine 1713 (Akar 2017) 1105 (Akar 2017) , 
1863a (Martinez et al. 

2010) 

590 (Akar 2017) , 
1520b (Martinez et al. 2010) 

Red pine 2261 (Güntekin et al. 
2015a; b) 

1408 (Aydın and Ciritcioglu 
2018) 

666 (Aydın and Ciritcioglu 
2018) 

Black Pine 1973 (Güntekin and 
Yılmaz Aydin 2016), 

2128 (Aydın and Yılmaz 
Aydın 2020) 

1280 (Aydın and Yılmaz 
Aydın 2018), 1370 (Aydın 
and Yılmaz Aydın 2020) 

423 (Aydın and Yılmaz Aydın 
2018), 547 (Güntekin and 

Yılmaz Aydin 2016), 
743 (Aydın and Yılmaz Aydın 

2020) 

Cedar 2261 (Güntekin et al. 
2015a; b) 

- 1449c (Hasegawa et al. 2016), 
1680d (Hasegawa et al. 2016) 

a,b Transversal ultrasonic velocity in radial and tangential directions obtained by Sylvatest Duo 
22kHz, respectively, c,d Japanese cedar values for non-contact and contact type measurements, 
respectively. 

 

The ANOVA results for ARN are presented in Table 3, and changes in the means 

of UWV due to an increase in ARN were statistically significant only for VR of black pine 

and cedar woods. According to Duncan's multiple range test classifications (Table 4), there 

were no statistically significant differences between the means of UWV and ARN except 

VR for cedar and black pine species. Furthermore, the mean values of VR for 10 and 15 

rings were statistically the same. 

Generally, a high R2 value indicates better prediction of the variable. The values 

closer to 1 reveal that the association is greater, but do not express the statistical 

significance. However, according to the results of regression analysis seen through Figs. 3 

to 6, a maximum of 44% of the data could be predicted by the ARW.  

 

 

 
 

Fig. 3. The relationship between UWV and ARN or ARW for Scots pine 
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Table 3. ANOVA Results for ARN 

One-way ANOVA for ARN 

Velocities 
Scots Pine Red Pine Black Pine Cedar 

F Sig. F Sig. F Sig. F Sig. 

VR 0.947 0.394 0.173 0.842 4.446 0.016 6.716 0.002 

VRL 0.304 0.739 1.455 0.242 1.430 0.248 0.926 0.402 

VRT 0.804 0.452 0.137 0.872 2.085 0.134 0.449 0.640 

 

 

Table 4. Duncan Homogeneity Groups of Ultrasonic Velocities According to ARN 
 

Species N 
VR VRL VRT 

ARN 1* ARN 1* ARN 1* 

Scots pine 
  
  
  

20 15 1588.75 15 1047.25 15 673.25 

20 10 1604.67 10 1059.76 10 688.19 

20 5 1625.27 5 1068.36 5 691.41 

  Sig. .202 Sig. .469 Sig. .264 

  

  
Red pine 
  
  
  

N ARN 1* ARN 1* ARN 1* 

20 10 1953.25 15 1166.45 10 716.50 

20 5 1966.50 10 1205.45 15 717.45 

20 15 1968.65 5 1215.00 5 723.35 

  Sig. .614 Sig. .134 Sig. .653 

  

Black pine 

N ARN 1* 2* ARN 1* ARN 1* 

20 15 1794.35   10 1179.10 15 616.85 

20 10 1815.65   15 1200.40 10 622.70 

20 5   1863.35 5 1224.25 5 640.25 

  Sig. .373 1.000 Sig. .116 Sig. .068 

  

  
Cedar 
  
  
  

N ARN 1* 2* ARN 1* ARN 1* 

20 15 1807.75   15 1179.75 15 1052.25 

20 10 1824.60   10 1189.75 10 1052.55 

20 5   1861.05 5 1209.60 5 1075.55 

  Sig. .262 1.000 Sig. .213 Sig. .442 

N: sample size, *Subset for alpha = 0.05 
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Fig. 4. The relationship between UWV and ARN or ARW for Red pine 

 

 
 

Fig. 5. The relationship between UWV and ARN or ARW for Black pine 

 

 
 

Fig. 6. The relationship between UWV and ARN or ARW for Cedar 
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According to ANOVA results of linear regression (Table 5), only VR of Scots pine, 

and VR, VRL, and VRT of Red pine could be significantly (P<0.05) predicted by ARW. 

However, as highlighted before, not even half of the dependent variable can be predicted 

by ARW. Therefore, in general, models did not statistically significantly predict the 

dependent variables.  

    

Table 5. ANOVA Results for ARW 

Linear Regression ANOVA for ARW 

Velocities 

Scots Pine Red Pine Black Pine Cedar 

F Sig. F Sig. F Sig. F Sig. 

VR 48.450 0.000 32.211 0.000 0.031 0.861 0.010 0.922 

VRL 0.427 0.516 21.232 0.000 0.713 0.402 1.300 0.259 

VRT 1.962 0.166 35.585 0.000 0.159 0.691 1.624 0.208 

 

It is unclear that the decrease tendency and severity in velocities (Table 1) are 

related to ARN, because only Scots pine and cedar woods presented consistent decreases 

with the increase in ARN. However, these decreases in these two species were not the 

highest among all. When the whole results were taken into consideration, the ARN and 

ARW are not the variables that can be associated to make a general expression for the 

variation of the longitudinal and transverse UWV in the radial direction of softwoods. 

Measuring ARW using image analysis illustrates the amount of the latewood (LW) 

and earlywood (EW) that can be detected by the high-resolution images for high readability 

(Norell 2009). Capturing images by a digital camera is a fast method of illustration (Norell 

2011), and, according to Maes et al. (2017), image analysis programs enable users to detect 

the ring boundaries manually or automatically. In this study, rings of the softwoods were 

characterized by high-resolution images and evaluated by computer software over the 

manually determined ring boundaries.  

The differences between VTR and VRT are around 10 to 15% for the softwoods with 

pronounced AR structure (Bucur 1988). However, in this study, only VRL and VRT were 

measured, and such a comparison was not possible.  

Yeh et al. (2007) evaluated the effects of detection types on the longitudinal UWV 

of Japanese cedar and Chinese fir with 9.3±4.3 and 8.8±3.7 mm ARW, respectively. 

However, they did not investigate the relationship between the ARW and UWV that might 

provide a comparison opportunity with this study.                

Lots of wood quality characteristics are tightly related to the ARW (Blass and 

Sandhaas 2017), and density is one of the most important determinants of wood 

characteristics. For example, density and mechanical features are oppositely proportional 

to the ARW for coniferous (Bektas et al. 2003). Furthermore, studies generally investigated 

the relationship between density and ARW. According to Baar et al. (2012), velocity and 

density are dependent variables for the acoustic properties of wood. Density is the second 

main variable that influences the ultrasound velocity (Calegari et al. 2011). Furthermore, 

density is one of the essential factors that influences the UWV in solids (Tomppo 2013). 

However, there is no consensus on the effect of density on the UWV in wood. For example,  

positive (Baar et al. 2012; de Oliveira and Sales 2006; Yılmaz Aydın and Aydın 2018a,b,c), 

neutral (Ilic 2003; Mishiro 1996; Peng et al. 2016), and negative (Bucur and Chivers 1991; 

Hasegawa et al. 2011) influences were reported. As can be seen in Table 1, variations in 
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the densities were not extremely high and ranged from 1.87 to 5.88. Furthermore, means 

were in harmony with the reported values.    

Density differences between the denser LW and less dense EW due to structural 

properties such as thick or thin-walled cells are one of the responsible factors for property 

changes, respectively (Zisi 2015). According to Feeney et al. (1998), density alterations 

within the AR are composed of denser LW, and velocity variation within the wood species 

occurs due to less dense EW. Furthermore, EW share in softwoods is typically five times 

higher than LW, and this causes significant changes in the stiffness of wood (Zisi 2015). 

Also, length of tracheid varies in EW and LW  (Schubert 2007). In addition, repetitive or 

cyclic formation of the EW and LW structures in a ring from pith to bark compose a 

periodic structure that produces bands that allow or block the waves (McIntyre and 

Woodhouse 1986). This phenomenon was also mentioned by Bucur et al. (1994) and 

(Feeney et al. 1998). Moreover, wave propagation through radial and tangential directions 

is complicated due to stop bands caused by inhomogeneity (Bucur 2003; Tippner et al. 

2013). Sonic band gaps may be raised due to inhomogeneity caused by a periodic array of 

annual rings as little as five (James et al. 1995), and a strong potential scattering source 

within the material along the radial direction is provided by a sharp impedance step 

between EW and LW (Feeney et al. 1998). Band filtering alteration due to interaction of 

microstructure and wavelength  (Bucur 2006) is another important issue for the ultrasonic 

wave propagation in solid wood. Furthermore, although higher frequencies provide 

acceptable results, measurements significantly vary from sample to sample with variations 

in ring spacing and other physical properties of wood (McIntyre and Woodhouse 1986). 

As mentioned in the experimental section, interaction between the frequency of the 

longitudinal wave and ARW in terms of the pass and stop bands was not evaluated. Indeed, 

using wide-range frequencies may provide valuable data for comparisons. However, 

neither density variations within and between the rings nor propagation of different 

frequencies were the main motivations of this study, and the issue needs to be addressed in 

a future study. 

High-attenuation materials such as wood (Tiitta et al. 2020) make measurements 

and evaluation complicated due to their complex orthotropic nature. According to 

Saadatnia et al. (2015), successful evaluation of wood properties becomes more difficult 

when the age and diameter of a tree increase because of increased inhomogeneity by adding 

annual growth rings. This development produces mature wood that has longer elements, 

thicker walls, as well as higher density (Saadatnia et al. 2015).  

According to Hasegawa et al. (2011) wave velocity in softwood increases from pith 

to bark, and fiber orientation, wall thickness, and microfibril angle are the three essential 

factors that influence the acoustic properties of wood. However, annual ring curvature 

(ARC) is just as influential as when waves propagate through the tangential direction. 

Various studies dealt with the effect of ARC or inclination on ultrasonic wave propagation. 

For example, Jordan et al. (1998) highlighted the influences of ARC and repetition of the 

AR on the wave propagation in tangential and radial directions, respectively. As can be 

seen in Fig. 1 and Table 1, samples used in this study were prepared from outer parts of the 

sapwood sections of laths to minimize the effect of ARC on UWV and also to obtain lesser 

variations, respectively. 

Bucur (2006) reported that VLL and VTT in LW of spruce were 13.14% and 38.23% 

higher than EW, respectively. Furthermore, both values were lower than solid wood (a 

complete annual ring), but the VTT of LW (-2.2%) was closer to that of solid wood. The 

author reported that VLL of spruce and curly maple were reduced with the increase in ARW. 
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However, ARW and ARC have no influence on the VRT of spruce since the direction of 

propagation is radial. On the contrary, the effect of the AR on the VTR of spruce is evident. 

For this study, the maximum decrease in UWV was 4%, and according to ANOVA results 

(except longitudinal wave velocity VR) results agree with this expression. 

Kránitz et al. (2014) correlated the ARW of aged Norway spruce to dynamic elastic 

moduli and shear moduli using 2.25 MHz longitudinal and 1 MHz transverse ultrasonic 

waves. Contrary to the results of this study, the authors reported that ARW significantly 

affected the data of the samples, and changes in the velocity were associated with changes 

in cell wall structure due to aging. 

The complex structure of wood anatomy plays an essential role in the propagation 

of ultrasonic waves through the axes. Ray and tracheid are two main tissues that form the 

structure of conifers, and rays extend along the radial direction of the wood. Besides, resin 

ducts (not present in some conifer species) elongate through radial and longitudinal 

directions. Therefore, radial and tangential diameters of cell and lumens, radial and 

tangential thickness of double walls, and cross-sectional areas of lumen, wall, and cell 

(Cuny et al. 2014) properties can be assumed as the essential responsible factors that 

influence the UWV in the radial direction of the wood. Furthermore, rays and resin ducts 

may influence the refraction, reflection, diffraction, scattering, and attenuation for the 

propagation of the ultrasonic wave in wood. Also, many evergreen gymnosperms present 

anatomical characteristics within the ARs that separate the EW (relatively large diameters 

tracheids) from the neighboring LW (dense, small-diameter tracheids) tissues (Szejner et 

al. 2016). These cyclic alterations in sequenced ARs may also influence wave propagation. 

 
 
CONCLUSIONS 
 

1. There is a decreasing tendency in the ultrasonic wave (UWV) velocities with the 

increase in annual ring number (ARN). However, this tendency is not stable within and 

between the species. For example, only UWV of Scots pine and cedar were gradually 

decreased with the increase in ARN. Furthermore, the longitudinal wave velocity of 

red pine was decreased, and it scarcely any surpassed the initial value with the increase 

in ARN. Duncan's test results showed that an increase in ARN did not cause statistically 

significant differences between the average values of velocities except cedar and black 

pine woods. However, these differences were not observed when ARN increased from 

10 to 15.  

2. Except for VR of Scots pine, and VR, VRL, and VRT of Red pine, the regression models 

explained that there were no statistically significant relations between independent and 

dependent variables due to negligible percent of the variance in the response variable 

can be explained by the explanatory variables. Therefore, a general assessment of the 

barrier effect of ARW against the UWV may be inaccurate. 

3. When opposite outcomes of the ARW and ARN effects on the UWV (particularly for 

VR,) for species are taken into consideration, no meaningful expression can be made, 

and it’s thought that these diffractions might have occurred casually. The reasons for 

these behaviors in the longitudinal wave propagation should be determined by further 

investigations.  
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4. The current study was limited to evaluating the effects of the same number of annual 

rings using contact-type transducers propagating certain frequencies through small 

clear samples in the direct propagation method. However, different propagation 

methods such as air-coupled, pulse-echo, etc., frequencies such as kHz, transducers, 

and tools, and larger sample sizes through the radial direction and more annual rings 

can be used to provide valuable data for comparison.    
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