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Regression models and a neural net approach were used to predict the 
cutting performance during milling of Scots pine (Pinus sylvestris L.) by 
shank cutter. The influence of rake angle, spindle speed, and milling 
depth on surface roughness of the workpiece, as well as the connection 
between the milling force and the surface roughness, were thoroughly 
considered. Four approaches were used to predict the workpiece’s 
surface roughness based on the experimental data: Back Propagation 
Neural Network (BPNN), Radial Basis Function Neural Network 
(RBFNN), Support Vector Machines (SVM), and multiple linear 
regression. The comparative analysis of the predictive models showed 
that Neural Network (NN) had preferable performance for prediction of 
machined surface roughness, with an R2 of 0.98. The SVM had certain 
fluctuations and the R2 of the multiple linear regression was just 0.87, 
indicating that they did not fit well for prediction machined surface 
roughness. In summary, the effective trend of milling parameters on the 
machined surface roughness of Scots pine was similar to multiple 
nonlinear regression, and the accurate prediction by BPNN model can 
provide technical support for the surface roughness of the Scots Pine and 
enhance shank cutter performance. 
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INTRODUCTION 
 

Scots pine is a type of softwood that grows in many places of the world. It usually 

has a light yellowish color and a broad texture pattern (Zhong et al. 2013). It also has low 

processing energy consumption, natural degradation, and suitability for recycling (Tu et al. 

2018). As a typical material with heterogeneity and anisotropy, Scots pine is distinctive 

relative to other wood species (Eyma et al. 2004). The properties and strength vary in 

different directions (Guo et al. 2021). In the field of wood cutting mode, milling is one of 

the most widely used cutting methods. The spindle speed of the milling cutter is generally 

above 3000 r/min and up to 24000 r/min (Zheng et al. 2008). High-speed milling enables 

wood processing with high productivity and smooth surface quality (Darmawan et al. 2001; 

Byrne et al. 2003; Guo et al. 2021).  

The selection of milling cutters mainly includes the technical parameters (Vančo et 

al. 2017), the structure (Keturakis and Bendikiene 2016), the direction of rotation (Chen et 

al. 2012), the cutting amount (Luo 2007), and the stable operation of the milling cutter 

(Sofuoğlu 2019). The shank cutter is a type of milling cutter that has a small diameter with 

high rotational speed to reach high productivity (Guo et al. 2014).  
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In wood manufacturing, the surface roughness significantly impacts the sealing 

performance (Liu et al. 2018), painting (Zhang et al. 2015), surface decoration quality 

(Sogutlu et al. 2017), adhesive usage (Rudawska et al. 2016), and paint consumption (Zhu 

et al. 2018), so it is an important index to evaluate the surface quality of wood products. 

Moreover, the surface roughness of wooden parts was found to directly affect the 

arrangement of the processing technology and the setting of the processing allowance. Guo 

et al. (2015) studied the wood floor/PVC machinability of composite material. These 

authors concluded that the roughness of the machined surface increased as the depth of 

milling increased. MalkoҫOğLu (2007) measured the surface roughness of Scots pine and 

indicated that the rake angle affected the surface roughness of the wood, and the effect of 

the feed speed on the surface roughness was negligible.  

As technology advances, the emergence of some mathematical models also 

provides reference and contrast for physical experimental analysis. In the existing analysis 

technology of the cutting performance of wood products, Tiryaki et al. (2014) used 

artificial neural networks to model the type of wood, the number of cuts, the feed speed, 

the depth of cut, and the early and fall wood. The conclusion was that the model of wood 

surface roughness was reliable and valuable. Dong et al. (2021) proposed a tool wear status 

monitoring method based on wavelet transform and genetic-BP neural network. 

Valarmathi et al. (2015) used response surface methodology to establish a mathematical 

model that predicted the influence of input control parameters on the cutting force 

generated during the medium density fiberboard (MDF) drilling. Yue et al. (2017) 

developed serials of 3D FEM models for the corner milling process based on DEFORM 

software. Tool curved trajectory was achieved by tool location with milling time, and the 

results provided a guide for optimizing cutting parameters in the cutting process. Analysis 

of variance was used to test the adequacy of the model. Although there have been some 

successes in predicting automation for analyzing wood cutting performance, the accuracy 

of predicting these parameters used to evaluate cutting performance needs to be improved 

and the prediction of surface roughness needs to be studied, which will serve as a reference 

for improving wood quality. 

In this paper, multiple milling parameters were used to explore the machined 

surface quality of Scots pine by shank cutter with a single tooth. The effects of rake angle, 

spindle speed, and milling depth on the surface roughness of the workpiece, as well as the 

connection between the milling force and the surface roughness, were thoroughly analyzed. 

Based on the experimental data, four different computational approaches were utilized to 

predict the workpiece’s surface roughness. The performances of the four approaches were 

compared and examined in order to provide a reliable prediction model for Scots pine 

straight-tooth milling. 

 

 

EXPERIMENTAL 
 
Materials 

The milling experiments were carried out on a computerized numerical control 

(CNC) processing center (MGK01, Nanxing Machinery Co., Ltd., Guangzhou, China) with 

an 18 mm diameter shank cutter. The shank cutter (Fig. 1) in the milling process with a 

single tooth which was made of cemented carbide. The angle geometries and mechanical 

properties are shown in Table 1. The tool rake angles of 2°, 6°, and 10° were selected in 

the experiments because the smaller rake angle provided stable milling force and made the 
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tool more durable. The workpiece was made from Scots pine. The size was 120×80×12 

(length×width×thickness) mm, and the feed speed during machining was fixed at 5 m/min.  

 

 
 

Fig. 1. Cutting diagram 

 

Table 1. Rake Angles and Mechanical Properties of Shank Cutter Tooth 

Blades Rake Angle (°) Mechanical Properties 

Cemented 
carbide 

2° 6° 10° 

Bending 
strength 
(GPa) 

Thermal 
conductivity 
(W/(m·K)) 

Hardness 
(HRA) 

Density 
(g/cm3) 

1.48 75.36 88 14.7 

 

Experimental Design 
The milling force Fx is parallel to feed rate U, and Fy is perpendicular to the 

direction of feed rate U. The milling forces were measured by Kistler dynamometer 

(9257B, Kistler Group, Winterthur, Switzerland) equipped with a sensor and a charge 

amplifier. In the straight tooth milling process, the workpiece would be fixed by the fixture 

in actual production. The Fz component of force was weak and was assumed not have an 

influence on milling performance, and it was not considered. The software of Dynoware 

(Kistler 5070A amplifier, 3.2.0.0, Kistler Group, Winterthur, Switzerland) was used to 

measure the milling force in the process. Each milling parameters will be performed eight 

times, and the measured Fx and Fy values were selected from last five times out of eight 

times and calculated as the absolute maximum of each time. The milling parameters 

selected in the experiment are shown in Table 2. 

 

Table 2. Factor Levels Assignment 

Factor Unit Notation Factor Levels 

   Level 1 Level 2 Level 3 

Rack angle ° γ 2 6 10 

Spindle 
speed 

r/min n 6000 8000 10000 

Milling depth mm h 0.5 1 1.5 
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The horizontal tracking surface roughness of the machined workpiece was 

measured by a precision surface roughness profiler (SURFCOM NEX, Zeiss, Oberkochen, 

Germany) with a probe head. The surface roughness under each group of milling 

parameters was measured five times. The data for Ra were the averages calculated after 

removing the maximum and minimum values five times. 

In the experiment, 27 groups of data under 3 milling parameters were conducted.  

Rake angle, spindle speed, and milling depth were the independent variables. The milling 

force in two directions and the surface roughness were the dependent variables. The surface 

roughness was a significant signal for evaluating the surface quality of Scots pine, and the 

resultant milling force function was as stated in Eq. 1. 
 

𝐹𝑐 = (𝐹𝑥
2 + 𝐹𝑦

2)
1/2

        (1) 

  

 

RESULTS AND DISCUSSION 
 
Effect of Rake Angle on Surface Roughness 
 In the milling process, the tool rake angle had a significant influence on the 

machined surface roughness. Individual value graphs of surface roughness vs. rake angle 

are shown in Fig. 2. The workpiece surface roughness decreased when the rake angle was 

raised. The reason for this was that the shank cutter's extrusion and friction on the chip's 

front face were reduced, resulting in less chip plastic deformation. As a result, the stiffness 

damage on the machined surface decreased, and the surface quality increased. 

 
Fig. 2. Effects of rake angle on the surface roughness of workpiece 

 

Effect of Spindle Speed on Surface Roughness 
 The effects of workpiece surface roughness with different spindle speeds are shown 

in Fig. 3. The rake angles of 2°, 6°, and 10° are indicated in the three columns from left to 

right. The results revealed that when the spindle speed increased, the surface roughness of 

the machined workpiece was reduced. The reason was that when the spindle speed 

increased, the average milling amount reduced. The impulsive load was lowered, which 

had an additional impact on the blade load and vibration. More crucially, within a given 

range (6000 to 10000 r/min), the spindle speed was the key factor of three (rake angle, 

spindle speed and milling depth) related to variations in surface roughness. As a result, 
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increasing the spindle speed enhanced the quality of the machined surface dramatically. 

However, with the same machining allowance, it would increase the number of milling 

rotations, causing the wear of milling edges to accelerate. 

 

 
 

 
 
 

 
 
Fig. 3. Effects of spindle speed on the surface roughness of workpiece: (a) γ = 2°, (b) γ = 6°, and 
(c) γ = 10° 
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Effect of Milling Depth on Surface Roughness 
 The milling depth also had an influence on the surface roughness of the workpiece 

while milling with a shank cutter. The machined surface roughness increased with the 

average milling depth when the tool angle was constant, as illustrated in Fig. 4. The primary 

reason was that the quantity of milling per tooth increased, as did the length and thickness 

of the chips. 

 It should be noted that when the spindle speed was set to 10000 r/min, the roughness 

changes with increasing milling depth were not obvious. This was mostly due to the high 

temperature in the milling zone at this speed (Umut and Erhan 2018), which exacerbated 

the workpiece's softening impact. As a result, if high-speed milling was used and the 

workpiece's surface quality met the criteria, the production efficiency could be enhanced 

by increasing the milling depth. However, it could not be increased arbitrarily, which 

would result in decreased tool life. 

 

 
 

 
Fig. 4. Effects of milling depth on the surface roughness of workpiece: (a) γ = 2°, (b) γ = 6°, and (c) 
γ = 10° 
 

Relationship between Milling Force and Surface Roughness 
 According to the above analysis, it was concluded that the fluctuation range of the 

spindle speed had a greater effect on the workpiece surface roughness than the other two 

parameters. Figure 5 displays the changing trend between the resultant milling force Fc and 

surface roughness Ra under the conditions that when γ = 2°, 6°, 10° and h = 0.5 mm, 1 mm 

and 1.5 mm. It was concluded that the resultant milling force had a good correlation with 

the surface roughness. They both decreased when the spindle speed was increased. As a 
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result, the workpiece's surface quality improved. It was mainly because the rake face of the 

shank cutter made it simpler to separate the chips from the milling surface of the workpiece 

as the spindle speed increased. The surface groove markings were trimmed back and the 

friction between the rake face and the workpiece was minimized.  
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Fig. 5. Relationship between the resultant milling force and surface roughness: (a) γ = 2°, h = 0.5 
mm, (b) γ = 2°, h=1 mm, (c) γ = 2°, h = 1.5 mm, (d) γ = 2°, h = 0.5 mm, (e) γ = 6°, h = 1 mm, (f) γ = 
10°, h = 1.5 mm, (g) γ = 2°, h = 0.5 mm, (h) γ = 6°, h = 1 mm, and (i) γ = 10°, h = 1.5 mm 
 

 

PREDICTION AND VALIDATION OF COMPUTATIONS 
 
Data Pre-processing 
 Due to the complexity and random nature in the milling process of Scots pine with 

shank cutter, methods of achieving suitable surface roughness should be involved in the 

prediction. Regression models have been extensively applied in the field of wood 

processing because of their ability to extract features from complicated factors and detect 

patterns.  

 The data pre-processing was necessary for prediction of regression models and for 

neural net computations. The machining variables (including the rake angle, spindle speed, 

and milling depth) were measured in different units and dimensions, which influenced the 

data analysis findings. As a result, the normalization procedure should be carried out 

between the variables in order to increase the stability and performance of regression 

models (Liu et al. 2020). Equation 2 depicts the normalizing procedure, 

min

max min

x x
y

x x

−
=

−
                                                                                 (2) 

where 𝑥 is the input value of the sample, and 𝑥min and 𝑥max are the sample’s minimum 

and maximum values, respectively. 

 
Modeling of Surface Roughness Based on Milling Parameters 
 Nonlinear and linear regression models were included in the computational 

approaches. Nonlinear computational approaches with properties of optimum and global 

approximation, such as back propagation neural network (BPNN), radial basis function 

neural network (RBFNN), and support vector machines (SVM), have been frequently used 

to predict milling processes. Multiple and univariate linear regression were used in the 

linear regression models. Three types of computational approaches (NN, SVM, and 

multiple linear regression) were employed to predict surface roughness during the milling 

of Scots Pine with a shank cutter in this paper. In addition, the accuracy of nonlinear and 

linear regression was also compared. 
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BPNN Modeling 
The BPNN is a multilayer feed-forward network that uses the error back 

propagation method to cope with nonlinear and complicated systems (Zhang et al. 2018). 

The BPNN adopts the Sigmoid function for the global approximation of nonlinear mapping 

(Cui and Xiang 2018). The structure of BPNN in this paper is shown in Fig. 6, and the 

Sigmoid function can be formulated as Eq. 3, 

1
( )

1 z
f z

e−
=

+
                                                                                                    (3) 

where 𝑓(𝑧) represents an activation function for the output of the hidden layer, and 𝑧 is 

sum of the multiplication of the input value and the weights. 

 

Forward propagation 

The forward propagation of the signal means that the input samples are transmitted 

from the input layer, processed one by one by each hidden layer, and then transmitted to 

the output layer (Wang and Chen 2005). The transfer function of the hidden layer is 𝑓1(∙), 

and the transfer function of the output layer is 𝑓2(∙); then the output of the hidden and 

output layer is given as Eqs. 4 and 5 (Ma et al. 2016).  

n

k 1 ki i

i=0

z  = ( v x )f  k=1,2, …, q                                                                  (4) 

j 2

0

y ( )
=

= 
q

jk k

k

f w z  j=1, 2, …, m                                                             (5) 

where 𝑣𝑘𝑖 is the weight between the input and the hidden layer, 𝑥𝑖 is the weight between 

the hidden and output layer, 𝑧𝑘 is the output of the hidden layer node, and 𝑦𝑗 is the output 

of the output layer. 

 

 
Fig. 6. Topological structure of three-layer BPNN 

 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Gu and Cao (2022). “Milling performance of pine,” BioResources 17(2), 2003-2019.  2012 

Back propagation 

  The back propagation of errors means that the output is transmitted back to the 

input layer through the hidden layer. The error is allocated to all neural units in each layer, 

allowing the weights of each layer’s neural units to be adjusted to reduce the error along 

the gradient (Zhao et al. 2008).  

 

 

RBFNN Modeling 
 In common with BPNN, the RBFNN is also a typical nonlinear multilayer 

feedforward NN. The distinction is that RBFNN adopts radial basis functions (such as 

Gaussian function) for the local nonlinear mapping approximation (Sun et al. 2019). 

Therefore, the RBFNN has the characteristics of fast learning speed and strong adaptability. 

The construction of RBFNN in this paper was comparable to that of BPNN, as showed in 

Fig. 6.  

 In RBFNN, the output of the hidden and output layer is given in Eqs. 6 and 7. 

2

2
( ) exp( ), 1,2, ,

2

j

j

j

x c
b x j p

−
= − =


 

1

( ), 1,2, ,
m

i ij j

j

y w b x i m
=

= =                                                               

where 𝑐𝑗 is the center value of Gaussian function, 𝑥 is the input value of the sample, 𝜎𝑗 

represents extension constant or width, and 𝑤𝑖𝑗  is the weight from hidden layer to the 

output layer. 

 The graph of the RBFNN function is radially symmetric and decaying on both 

sides. When the specified center is relatively near to the input data, the mapping on the 

input works. On the other hand, if the center is far away from the input data, the output of 

result tends to zero, making it a local approximation (Guillén et al. 2009). 

SVM Modeling 
 Compared with NN, the SVM does not have hidden layer and neurons. The SVM 

conducts classification by creating an N-dimensional hyperplane that divides the input into 

two groups as efficiently as possible (Cho et al. 2005). The SVM adopts a kernel function 

to perform nonlinear mapping to high-dimensional space (Li et al. 2013), so it is well-

suited to problems that are fundamentally nonlinear, such as classification, regression, and 

density function estimation. 

 Given the mapping to high-dimensional space, the model corresponding to dividing 

the hyperplane in this feature space is expressed in Eq. 8, 

( ) ( )Tf x x b=   +                                                                                   

where 𝑤𝑇 and 𝑏 are the weight vector and bias term, respectively, and 𝛷(𝑥) is the mapping 

from the input space to the feature space. 

 In the dual problem of SVM learning, both the objective function and the classified 

decision function only include the inner product of the instances; hence, the kernel function 

is used instead and stated in Eq. 9. 

( , ) ( ) ( )K x z x z=                                                                                   

(6) 

(7) 

(8) 

(9) 
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In Eq. 9, 𝑥  and 𝑧 are input value of the sample, whereas 𝜙(𝑥) and 𝜙(𝑧) represent the 

mapping from the input space to the feature space.  

 Finally, the nonlinear SVM are solved which can be formulated as Eq. 10, 

* *

1

( ) ( ( , ) )
N

i i i

i

f x sign y K x x b
=

=  +                                                                                      

where 𝛼𝑖
∗ (0 < 𝛼𝑖

∗ < 𝐶, 𝐶 represents penalty parameter) is one component of the Lagrange 

multiplier vector, 𝑦𝑖 (𝑦𝑖𝜖{−1, +1}) is the type of mark, 𝑏∗ is bias term vector. 

 

Multiple Linear Regression Modeling 
 To comprehensively consider the unknown function model about the impacts of 

milling parameters on surface roughness, it is necessary to perform multiple linear 

regression analysis on it. 

 The model of multiple linear regression can be formulated as Eq. 11 (Wang et al. 

2006), 

0 1 1 2 2 i iY b b x b x b x= + + + +                

where 𝑌 is the observation of the dependent variables,  𝑥𝑖 represents the 𝑖th input value of 

the sample, and 𝑏0 and 𝑏𝑖 represent regression coefficients. 

 
Comparison of Different Predictive Methods  
 In the process of prediction, the proposed NN had 3 input variables (rake angle, 

spindle speed, milling depth) and 1 output variable (surface roughness), as shown in Fig. 

6. In addition, the number of neurons and iterations in the hidden layer that were chosen 

had varying degrees of impact on the training outcomes. 22 of 27 datasets were randomly 

selected for training to be conducted by Matlab 2017a. 

 For the BPNN computations, the parameters were set through training as follows: 

the number of neurons and iterations were 7 and 6000, respectively. The learning rate was 

0.01. For the RBFNN computations, the spread parameter of prediction was set to 30. For 

the multiple linear regression model, the regression coefficients of 𝑏0, 𝑏1, 𝑏2, 𝑏3 obtained 

after fitting was 0.8489, -0.2324, -0.5650 and 0.0791 under the condition that input 

variables were the normalized values. 

 The predictive results of the surface roughness by the four computational 

approaches (BPNN, RBFNN, SVM, and multiple linear regression) and the 5 training 

datasets are showed in Fig. 7. The predicted values were demonstrated to have a good 

correlation with the experimental values. Furthermore, to quantify the predictive accuracy 

between 4 models, the mean absolute percentage (MAP) was employed as Eq. 12, 

1
100%

j j

j
j

t y
MAP

n y

−
=          

where 𝑛 is the number of training samples, and 𝑡𝑗 and 𝑦𝑗 indicate the 𝑖th predictive output 

and experimental output.  

 

(11)   

(12) 

(10) 
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Fig. 7. The predictive results of surface roughness by the models 

 

Table 3. Evaluation Criteria for Predictive Results of Models 

Regression Model MAP MSE R2 

BPNN 1.02% 0.0114 0.98 

RBFNN 1.60% 0.0143 0.98 

SVM 3.39% 0.0167 0.95 

LINEAR 3.48% 0.0231 0.87 

 

 Table 3 shows that the MAP of the 5 groups was kept to less than 4%, and the 

BPNN model was relatively minimal. Additionally, SVM and multiple linear regression 

errors were more than twice as large as NN's. The experimental surface roughness of No.1 

was 2.86 µm, and the SVM and multiple linear regression prediction values were 2.69 µm 

and 2.68 µm, respectively, as shown in Fig. 7. The data discrepancy between experimental 

and predicted surface roughness of SVM, multiple linear regression is similarly 

considerable in the No. 3 group. As a result, the inaccuracy of prediction was caused by 

the two groups. Based on the relative errors, the construction of the NN was more accurate 

and effective for the fitting analysis of the surface roughness model than other two models. 

 Furthermore, in analysis of peformance among 4 models, the mean square error 

(MSE) and goodness of fit (R2) were used as evaluation criteria. The MSE reflected the 

degree of difference between the predictive value and exprimental value and could be 

expressed as Eq. 13, 

2

1 1

1
ˆ= ( )

mp = =

−
P m

pj pj

p j

MSE y y  

where 𝑚 is the number of output nodes, 𝑝 is the number of training samples, and  𝑦̂𝑝𝑗 and 

 𝑦𝑝𝑗 are the predictive output and experimental output, respectively. 

 The R2 described how well it fit a set of observations. The maximum value of R2 

was 1. The closer the value of R2 was to 1, the better the fit of the regression to the tested 

(13) 
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values. On the contrary, the smaller the value of R2, the worse the fit of the regression to 

the tested values. For multiple nonlinear regression and multiple linear regression, the R2 

was expressed as Eqs. 14 and 15 (Gharagheizi 2007), respectively. 

* 2

2 1

2

1

( )

R 1

k

i i

i

k

i

i

y y

y

=

=

−

= −



   

* 2

2 1

2

1

( )

R 1

( )

k

i i

i

k

i i

i

y y

y y

=

=

−

= −

−




 

In these equations, 𝑦𝑖  and 𝑦𝑖
∗  are the experimental and predictive output, and 𝑦̅𝑖  is the 

average of experimental output. 

 According to the results of MSE and R2 in Table 4, it should be noted that the 

performance result of NN was perfect among the four computational approaches, with the 

R2 of 0.98. In particular, the fitting process of BPNN was the most stable, with the MSE of 

0.0114. There were certain fluctuations during the fitting process of SVM. The R2 of the 

multiple linear regression was just 0.87, indicating that it did not fit well. In summary, the 

effective trend of milling parameters on the surface roughness of Scots pine during the 

milling process was similar to multiple nonlinear regression, and NN was an effective 

method for prediction.  

 

 

CONCLUSIONS 
  

In this paper, multiple milling settings for straight tooth milling of Scots pine were 

specified. The study's limitations were that only the rake angle, spindle speed, and milling 

depth were used to assess the workpiece's surface quality. Other tool parameters' effects on 

the workpiece were not taken into account. After theoretical analysis, four types of 

computational approach were employed to predict surface roughness by considering the 

above parameters, with the following conclusions: 

1. The theoretical analysis based on the main effects revealed that all the milling 

parameters had the main influence on the surface roughness of Scots pine. The 

workpiece surface roughness rose as the rake angle and milling depth increased, but 

they decreased as spindle speed increased. 

2. Good concurrence was found between the milling force and surface roughness. They 

both increased with the increase of the milling depth but were negatively correlated 

with the spindle speed and tool rake angle.  

3. The surface roughness results from the models (BPNN, RBFNN, SVM and multiple 

linear regression) illustrated that the predictive accuracy of the BPNN was relatively 

minimal, with the MAP of 1.02%.  

(14) 

(15) 
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4. NN had the best performance of the four computational approaches, with an R2 of 0.98. 

In particular, the fitting process of BPNN was the most stable, with a MSE of 0.0114. 

By using the model of SVM, the R2 and MSE were not very good, compared with NN 

model. The surface roughness prediction model of straight tooth milling Scots pine was 

not suitable for linear regression analysis, which R2 was just 0.87. 
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