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To investigate the binding properties of 3,4-dihydroxybenzaldehyde with 
human serum albumin, as well as the structural changes of human serum 
albumin under a simulated physiological pH value (a pH of 7.4) and a high 
3,4-dihydroxybenzaldehyde concentration, a series of techniques, i.e., 
fluorescence, synchronous fluorescence, ultraviolet-visible absorption, 
Fourier-transform infrared spectroscopy, and molecular docking 
simulation, were employed. Steady state fluorescence showed that 3,4-
dihydroxybenzaldehyde quenched the intrinsic fluorescence of human 
serum albumin via a static mechanism. The 3,4-dihydroxybenzaldehyde-
human serum albumin complex had a strong affinity (Kb = 105 M-1) at 
various temperatures. It was shown that 3,4-dihydroxybenzaldehyde was 
bound to the IB subdomain of human serum albumin primarily via 
hydrogen bonding and van der Waals forces at high 3,4-
dihydroxybenzaldehyde concentrations, based on the results of the 
thermodynamic and molecular docking. Furthermore, the fluorescence 
emission spectrum and Fourier-transform infrared spectroscopy results 
indicated that the binding distance between 3,4-dihydroxybenzaldehyde 
and human serum albumin was 4.42 nm. In addition, 3,4-
dihydroxybenzaldehyde induced conformational changes of human serum 
albumin. These findings provide reasonable evidence for further 
understanding the distribution of 3,4-dihydroxybenzaldehyde when it 
spreads into human blood serum, which may be helpful in food and 
medicine research. 
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INTRODUCTION 
 

Human serum albumin (HSA) is a carrier protein that plays an important role in the 

transport, deposition, distribution, and transformation of all types of different exogenous 

and endogenous substances, including enzymes, nutrients, metal ions, fatty acids, 

hormones, steroids, and surfactants (Cui et al. 2008; Yan et al. 2015). It has been reported 

that the high-affinity binding between HSA and a drug can reduce the free concentration 

of the drug, which may increase or decrease the advantage in the drug efficacy (Yue et al. 
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2018). However, low-affinity binding can result in poor distribution and a shorter lifetime 

of the drug (Sun et al. 2017). Therefore, establishing a balance between the bound form 

and the free fraction of the drug to gain suitable therapeutic doses is very important, 

because only in this way can a balanced amount be sent to target tissues. Simultaneously, 

a balance between the appropriate stay time and the clearance of the drug should be 

maintained so as to decrease its toxic side effects (Caruso et al. 2016; Nusrat et al. 2018). 

Upon examination, additional study of the binding properties of various drugs with HSA 

is imperative. 

 

 
 

Fig. 1. The chemical structure of 3,4-dihydroxybenzaldehyde 
 

As shown in Fig. 1, protocatechualdehyde (PCA), is an antioxidant that is present 

in Salvia miltiorrhiza (Bunge) (Li et al. 2016). It has been shown that PCA has many 

different health benefits, including anti-atherosclerosis, antioxidant properties, and anti-

inflammatory and anti-cancer effects (Duan et al. 2019; Li et al. 2020). Recently, the 

molecular interaction of small drug molecules with HSA has attracted much attention due 

to the fact that the binding properties of both may influence the pharmacokinetics and 

toxicity of small drug molecules in vivo (Almutairi et al. 2020). The binding mode of HSA 

and PCA at low concentrations was studied via the synchronous fluorescence method (Tian 

et al. 2011). The results showed that PCA was primarily bound to HSA through 

electrostatic and hydrophobic interactions at a relatively low concentration area, i.e., a PCA 

range of 0 mol/L to 27.97×10-7 mol/L. Several studies have explored the interaction 

between different proteins (such as soy protein isolate, casein, bovine serum albumin, β-

lactoglobulin) and other substances with different properties (such as structure and chain 

length). The studies mainly have focused on the binding abilities between proteins and 

other substances influenced by the properties of proteins and alcohols, and processing 

conditions (such as pH, heat treatment and oxidation treatment). Binding of proteins to 

other substances causes changes in amino acid residues, which lead to changes in protein 

conformation, resulting in fluorescence quenching (Guo et al. 2020; Wang et al. 2021). 

However, the binding mode between small molecules and proteins is not static and is 

affected by many factors, e.g., environmental conditions and competitive effects (Ni et al. 

2011; Malhotra and Karanicolas 2017). Therefore, this stimulated the interest of the authors 

in terms of exploring the binding mode of HAS with a high-concentration PCA. 

In this work, fluorescence, synchronous fluorescence, ultraviolet-visible absorption 

(UV–vis), Fourier-transform infrared (FT-IR) spectroscopy, and molecular docking 

simulation were used to determine the binding interaction of PCA with HSA in order to 

elucidate the molecular mechanism of the binding process at a high concentration of PCA. 

The data for the quenching mechanism, binding constants and number of binding sites, 

thermodynamic parameters and binding interaction force, binding distance, binding site, 

and HSA microenvironmental and conformational changes were obtained. This work may 

provide a more detailed reference for studying the binding properties of PCA with HSA in 

vivo. 
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EXPERIMENTAL 
 

Materials 
The PCA (CAS Number: 139-85-5, with a purity greater or equal to 98%) was 

bought from Chengdu Must Bio-Technology Co., Ltd. (Chengdu, China). The HSA (CAS 

Number: 70024-90-7, with a purity greater or equal to 96%) was purchased through Sigma-

Aldrich (St. Louis, MO, USA). The PCA was dissolved into deionized water to prepare a 

3 mM stock solution. A storage solution of 10 uM HSA was prepared with a phosphate-

buffered saline (PBS, a pH of 7.4). The concentration of HSA was determined by 

measuring the absorbance value at a λmax of 280 nm using a molar extinction coefficient of 

35700 M-1 cm-1. All stock solutions were kept away from light at a temperature of 4 °C. 

 

Methods  
Fluorescence spectroscopy measurements 

The steady state fluorescence spectroscopy analysis concerning the interaction of 

PCA with HSA at a temperature of 298 K, 304 K, and 310 K was conducted using a Hitachi 

F-2500 type Fluorescence Spectrophotometer (Hitachi High-Technologies Co., Ltd., 

Tokyo, Japan) under the conditions of both excitation and an emission slit width of 5 nm, 

with an excitation wavelength of 280 nm. A fluorescence signal under the range of a 220 

to 500 nm emission wavelength was recorded for all measurements. The photomultiplier 

tube (PMT) voltage was set to 400 V, and the scanning speed was set to 1500 nm∙min-1. In 

this study, the fluorescence inner filtering effect was considered, and the intensity of the 

fluorescence was corrected by the correction formula shown in Eq. 1, 

𝐹𝑐𝑜𝑟 = 𝐹𝑜𝑏𝑠 × 𝑒(𝐴𝑒𝑥+𝐴𝑒𝑚)/2                                                                       (1) 

where Fcor (arbitrary units, a.u.) and Fobs (arbitrary units, a.u.) are the corrected and 

observed fluorescence intensity, respectively, and Aex (arbitrary units, a.u.) and Aem 

(arbitrary units, a.u.) are the absorbance of PCA at the excitation and emission 

wavelengths, respectively (Dong et al. 2013; Zhu et al. 2015).  

 

Ultraviolet-visible absorption (UV–vis) spectroscopy measurements 

The UV-vis absorption spectral data were acquired using a UV-2700 type 

spectrophotometer (Shimadzu Co., Kyoto, Japan) with quartz cuvettes with a 1 cm path 

length at a temperature of 298 K. The absorption signal was recorded in this experiment at 

a wavelength range of 190 nm to 500 nm. 

 

Synchronous fluorescence spectroscopy measurements 

At a temperature of 298 K, the synchronous fluorescence spectra experiment was 

performed within a wavelength range of 200 to 400 nm by setting the interval (Δλ = λem - 

λex) of the excitation wavelength (λex) with the emission wavelength (λem) at 15 nm and 60 

nm, respectively. 

 

Fourier transform infrared spectroscopy measurements 

The FT-IR spectra of HSA in the presence and absence of PCA were conducted 

using a Nicolet 5DX-Fourier transform infrared spectrophotometer (Thermo Electron 

Corporation, Madison, WI) at a wavenumber range of 4500 to 500 cm-1 over 100 scans at 

a temperature of 298 K. 
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Molecular docking analysis 

Molecular docking uses the 3D structures of two molecules, the ligand and the 

target, to predict the preferred orientation of the first with respect to the second when bound 

to each other to form a stable complex (Crampon et al. 2022). This is a computational 

method, which is usually applied to investigative the binding interaction of receptors with 

ligands (Dong et al. 2013). To visualize the binding site and interaction mode of PCA on 

HSA from the theoretical level, a molecular docking study was conducted by making use 

of the AutoDock Vina program package (version, Scripps Research, San Diego, CA). 

The structure of PCA was drawn using ChemBioDraw Ultra 17.0 (PerkinElmer, 

Waltham, MA), and was then transformed it into a three-dimensional structure. The 

MMFF94 force field was used to optimize it. The crystal structure of HSA (PDB ID: 4Z69) 

was downloaded from the RCSB Protein Data Bank (http://www.rcsb.org) (Zhang et al. 

2015). Before docking, all the water molecules of HSA were deleted, and Gasteiger charges 

and hydrogen atoms were added, respectively. A grid size of 50 Å, 50 Å, and 50 Å for the 

X, Y and Z axes was set and the grid center was set at -5.589, 10.425, and 4.433 to cover 

all possible binding sites. Docking results with the highest score were visualized via PyMol 

software (version, Schrödinger, Inc., New York, NY).  

 

 

RESULTS AND DISCUSSION 
 
Fluorescence Quenching Study 

With the excitation wavelength set to 280 nm, the fluorescence emission spectrum 

of HSA, in the presence of various concentrations of PCA at a temperature of 298 K, are 

shown in Fig. 2. The experimental results indicated that HSA had a strong fluorescence 

emission peak at 337 nm. As the concentration of PCA increased, the intensity of the 

fluorescence emission peak gradually decreased, suggesting that PCA could interact with 

HSA to quench the endogenous fluorescence of HSA (Nasruddin et al. 2016). Song et al. 

(2012) studied the interaction between phillygenin and HSA, also demonstrating that 

phillygenin could interact with HSA to quench the endogenous fluorescence of HSA. 

 

 
 

Fig. 2. Fluorescence spectra of HSA (10 µM) without and with PCA (a to m) at a temperature of 
298 K, 304 K and 310 K (Note: the concentrations of PCA ranged from 0 µM to 60 µM with a 
concentration gradient of 5 µM; and (n) represents the fluorescence spectra of 10 µM of PCA only)  
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Fluorescence quenching arises due to the molecular interaction between the 

quencher and the fluorophore. During the quenching process of the fluorophore by the 

quencher, there are two different quenching mechanisms. One is called a dynamic 

quenching mechanism, and the other is regarded as a static quenching mechanism. These 

two quenching mechanisms can be differentiated via their different dependence on 

temperature (Liu et al. 2019). For a dynamic quenching mechanism, as the temperature 

increases, the quenching constant increases, whereas a static quenching mechanism will 

lead to a new ground-state complex formation between the fluorophore and the quencher 

(Li et al. 2017). In order to obtain the quenching mechanism of HSA by PCA, the 

fluorescence titration experiment data was analyzed using the Stern-Volmer equation, as 

shown in Eq. 2, 

𝐹0

𝐹
= 1 + 𝐾𝑆𝑉[𝑄] = 1 + 𝐾𝑞𝜏0[𝑄]                                                              (2) 

where F0  (arbitrary units, a.u.) and F (arbitrary units, a.u.) denote the fluorescence 

intensities of HSA without and with PCA, respectively, [Q] (mol/L) represents the 

concentration of PCA, Ksv (L · mol−1) represents the Stern-Volmer quenching constant, Kq 

(L· mol−1·s−1) is the fluorescence quenching rate constant, and τ0 (s) is the average lifetime 

of HSA in the absence of PCA, which is approximately equal to 5.78 × 10-9 s (Zhang and 

Ma 2013; Morales-Toyo et al. 2019).  

 

 
 

Fig. 3. (A) Stern-Volmer plots of HSA quenched by PCA at a temperature of 298 K, 304 K, and 310 
K; and (B) the double logarithmic plots of log[(F0-F)/F] against log[Q] of the fluorescence quenching 
of HSA by PCA at three different temperatures 
 

The values of Ksv at three different temperatures were computed by utilizing the 

plots of F0/F against the concentration of PCA [Q], as shown in Fig. 3A. In addition, the 

values of Kq were calculated utilizing Eq. 2. The related results showed that Ksv decreased 

as the temperature increased and that all values of Kq were higher than the maximum scatter 

collision quenching constant (2.0×1010 M-1 s-1), as presented in Table 1. This indicated that 

the quenching mechanism of HSA by PCA was static (Rahman et al. 2018). This 

mechanism could potentially cause the formation of a new ground-state complex of PCA-

HSA (Madrakian et al. 2014). 

 

A B 
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Table 1. Stern-Volmer Quenching Constants of HSA by PCA and Binding 
Parameters at Three Different Temperatures 

Temperature 
(K) 

KSV×104 
(M-1) 

Kq×1012  
(M-1 s-1) 

R2 
Kb×105 

(M-1) 
n R2 

298 5.27 ± 0.06 9.12 ± 0.09 0.9945 4.96 ± 0.13 1.26 ± 0.03 0.9953 
304 
310 

4.22 ± 0.08 
3.53 ± 0.09 

7.30 ± 0.11 
6.11 ± 0.14 

0.9975 
0.9957 

2.66 ± 0.11 
1.22 ± 0.12 

1.21 ± 0.02 
1.12 ± 0.04 

0.9908 
0.9821 

 

The number of binding sites and binding constants  

In the static quenching process of HSA by PCA, the number of binding sites (n, the 

molar ratio of binding between HSA and PCA) and the binding constants (Kb) of PCA on 

HSA can be calculated via the modified Stern-Volmer equation, as shown in Eq. 3, 

log
𝐹0−𝐹

𝐹
= log𝐾𝑏 + 𝑛 log[𝑄]                                                    (3) 

where F0 and F denote the fluorescence intensities of HSA without and with PCA, 

respectively, and [Q] represents the concentration of PCA (Ali et al. 2017).  

As presented in Fig. 3B, the plots of log[(F0-F)/F] against log[Q] could be used to 

obtain the values of n and log Kb. It was deduced from Table 1 that the binding of PCA on 

HSA had only a binding site with higher affinity (a magnitude of 105 M-1) (Rezende et al. 

2020). These results suggested that PCA may be slowly metabolized from the body to 

provide lasting therapeutic effects (Cao et al. 2018). In addition, the binding constant of 

PCA with HSA decreased as the temperature increased. This was consistent with Ksv’s 

dependence on temperature, which suggested that the quenching mechanism was static 

(Liang et al. 2020). 

 

Thermodynamic parameters and interaction forces 

The binding interaction of a biomacromolecule with a small ligand can be driven 

via weak forces, e.g., hydrophobic interaction, van der Waals force, electrostatic force, and 

hydrogen bonding (Khalili and Dehghan 2019). For the binding process of PCA with HSA, 

the interaction enthalpy change could be treated as a constant when the changes of 

temperature were not too large (Zhang et al. 2015). The values of the enthalpy change (ΔH), 

entropy change (ΔS), and Gibbs free energy change (ΔG) could be computed using Eqs. 4 

and 5, 

ln 𝐾𝑏 = −
∆𝐻

𝑅𝑇
+

∆𝑆

𝑅
                                                                 (4) 

∆𝐺 = −𝑅𝑇 ln𝐾𝑛                                                                   (5) 

where R is the gas constant, which is equal to 8.3145 J mol-1 K-1, T represents the 

experimental temperature, and Kb is the binding constant (Feroz et al. 2015; Ali et al. 

2018). 

The values of the thermodynamic parameters were obtained from the slope and the 

intercept of the Van't Hoff plot (as shown in Fig. 4) and calculated by Eqs. 4 and 5. As 

shown in Table 2, the values of ΔG were negative, which suggested that the binding 

interaction between PCA and HSA was a spontaneous reaction (Tantimongcolwat et al. 

2019). In addition, the values of both ΔH and ΔS were negative. According to the summary 

of Ross and Subramanian concerning thermodynamic law, the primary binding interaction 

forces of a small ligand with a biomacromolecule can be judged. When ΔH is less than 0 
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and ΔS is less than 0, this suggests that the hydrogen bonding and the van der Waals force 

are dominant. When ΔH is greater than 0 and ΔS is greater than 0, it indicates the 

hydrophobic interaction is leading. A ΔH value of approximately 0 and ΔS greater than 0 

implies that the electrostatic interaction is dominant. Therefore, it could be concluded that 

the binding interaction process of PCA with HSA was primarily driven by hydrogen 

bonding and van der Waals forces, and the result was different from the driving forces of 

electrostatic and hydrophobic interaction at a low concentration of PCA (Dorraji et al. 2014; 

Wang et al. 2018). 

 

 
 

Fig. 4. Van't Hoff plot of HSA quenched by PCA at three different temperatures 
 

Table 2. Thermodynamic Parameters for the Interaction of PCA with HSA at 
Three Different Temperatures 

Temperature (K) ∆H (kJ mol-1) ∆G(kJ mol-1) ∆S (J mol-1 K-1) 

298 -89.53 ± 1.32 -32.56 ± 1.43 -191.18 ± 1.21 

304 - -31.41 ± 1.61 - 

310 - -30.26 ± 1.25 - 

 

Binding distance and non-radiative energy transfer 

The possibility of non-radiative energy transfer between HSA and PCA may occur 

because PCA could quench the intrinsic fluorescence of HSA when the binding interaction 

of PCA with HSA occurs (Alsaif et al. 2020). Therefore, the fluorescence spectra of HSA 

and the same concentration of the UV-vis absorption spectra of PCA at a wavelength range 

of 300 to 500 nm at a temperature of 298 K overlapped, which could be used to obtain the 

energy transfer efficiency (E) between HSA and PCA by using Eq. 6, 

𝐸 = 1 −
𝐹

𝐹0
=

𝑅0
6

𝑅0
6+𝑟0

6                                                                  (6)      

where F and F0 denote the fluorescence intensities of HSA with and without PCA, 

respectively, r is the binding distance between PCA and HAS, and R0 is the critical distance 

at which 50% of the energy gets transferred, which can be computed according to Eq. 7, 

𝑅0
6 = 8.79 × 10−25 ∙ 𝑘2 ∙ 𝑁−4 ∙ Φ ∙ 𝐽(𝜆)                               (7) 

where k2 is the spatial orientation factor of the dipole, which is equal to 2/3rds, and N is the 

average refractive index of medium (1.336 for HSA), Φ is the fluorescence quantum yield 
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of HSA (Φ = 0.118), and J(λ) is the spectra overlap integral between the fluorescence 

emission spectra of HSA and the absorbance spectra of PCA at a 1 to 1 molar ratio, which 

can be computed according to Eq. 8, 

𝐽(𝜆) =
Σ𝐹(𝐽(𝜆))𝜀(𝐽(𝜆))𝜆4∆𝜆

Σ𝐹(𝜆)∆𝜆
                                                      (8) 

where ε(λ) denotes the molar absorption coefficient of 3,4-dihydroxybenzaldehyde when 

the wavelength is λ, and F(λ) represents the fluorescence intensity of HSA when the 

wavelength is λ (Sinisi et al. 2015; Wang et al. 2018; Patil et al. 2019).  

 

 
 

Fig. 5. The overlaps of fluorescence spectra of HAS (A); and the UV-vis absorption spectra of PCA 
(B) (Note: the molar ratio of HSA and PCA was 1 to 1 and the concentration of HSA was 10 µM) 
 

The overlaps of the absorbance spectrum of free PCA with the fluorescence 

emission spectrum of free HSA are presented in Fig. 5. The values of E, R0, r, and J(λ) 

were calculated by using Eq. 6 through 8, and the related results are shown in Table 3. It 

could be seen that r was less than 8 nm as well as the fact that 0.5R0 was less than r, which 

was less than 1.5R0, which suggested that the energy transfer between HSA and PCA may 

happen with a high probability (More et al. 2011). 

 

Table 3. Förster Resonance Energy Transfer Parameters between HSA and 
PCA 

J×10-14 (cm3 M-1) E R0 (nm) R (nm) 

8.25 0.19 3.47 4.42 

 

Ultraviolet-visible absorption (UV–vis) absorption spectroscopy study 

Ultraviolet-visible absorption spectroscopy is an effective method that can be used 

to confirm the structural changes of a protein and verify the complex formation when the 

binding interaction of a protein and drug occurs (Siddiqi et al. 2018). The aromatic amino 

acid residues, including tryptophan, tyrosine, and phenylalanine, are responsible for an 

obvious absorbance peak at approximately 280 nm, which is due to the π→π* transition of 

the phenyl rings in these residues (Kazemi et al. 2016). As shown in Fig. 6A, the 

absorbance peak intensity of HSA at approximately 280 nm was enhanced at increased 

concentrations of PCA, which suggested that a new complex of PCA-HSA was formed 

with a molar ratio of 1:1, which was mainly driven by hydrogen bonding and van der Waals 
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forces. This was further shown by the results of the difference in the UV-vis absorption 

spectrum (Fig. 6B) (Mote et al. 2011; Wang et al. 2020). Furthermore, these results 

indicated that the fluorescence quenching mechanism of HSA by PCA was static (Morales-

Toyo et al. 2019).  

 

 
 

Fig. 6. (A) UV-vis absorption spectra of HSA (10 uM) without and with PCA (a through m) at a 
temperature of 298 K (Note: the concentrations of PCA were from 0 µM to 60 µM with a 
concentration gradient of 5 µM and (n) represents the UV-vis absorption spectra of 5 µM PCA only); 
and (B) the difference in the UV-vis absorption spectra of HSA (10 µM) with PCA (10 µM) at a 
temperatures of 298 K.  
 

Synchronous fluorescence spectroscopy study 

Synchronous fluorescence spectroscopy can be utilized for detecting the changes 

in the microenvironment around the tryptophan and tyrosine residues on HAS (Al-Shabib 

et al. 2017). In this experiment, the values of the interval (Δλ) of excitation wavelength 

with emission wavelength were set to 15 and 60 nm, respectively (Chi et al. 2018). The 

synchronous fluorescence spectra of HSA with different concentrations of PCA were 

measured (Fig. 7).  

 

 
 

Fig. 7. Synchronous fluorescence spectra of HSA (10 µM) without and with PCA (a through m) at 
a temperature of 298 K: (A) Δλ = 15 nm; and (B) Δλ = 60 nm (Note: the concentrations of PCA were 
from 0 to 60 µM with a concentration gradient of 5 µM) 
 

A B 

A B 
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It could be observed that at two different Δλ, the synchronous fluorescence intensity 

of HSA was markedly reduced as the concentration of PCA increased. Moreover, the 

maximum wavelength of the emission peak of tryptophan appeared in the red shift and no 

considerable shift change was found in the maximum wavelength of the emission peak of 

tyrosine. This suggests that the polarity of the microenvironment around tryptophan 

increased, whereas the polarity of the microenvironment around tyrosine hardly changed 

(Dong et al. 2019). 

 

Fourier-transform infrared (FT-IR) spectroscopy study 

Fourier-transform infrared spectroscopy is a sound method that can be used to 

explore the changes in the secondary structure of a protein. The IR spectra of a protein can 

exhibit some special amide bands, known as amide I and amide II, which denote different 

vibrations of the peptide moiety (Yang et al. 2011). Among these amide bands, the amide 

I band in the region 1600 to 1700 cm-1 is primarily due to C=O stretching, whereas the 

amide II band (approximately 1548 cm-1) is primarily due to C-N stretching and N-H 

bending. As shown in Fig. 8, it was observed that the wavenumber of the amide I band 

shifted from 1643 to 1639 cm-1. In addition, the wavenumber of the amide II band shifted 

from 1542 to 1541 cm-1. These results suggested that PCA changed the secondary structure 

of HSA, thereby causing its conformational changes (Khalili and Dehghan 2019). 

 

 
 

Fig. 8. FT-IR spectra of HSA without and with PCA at a temperature of 298 K: (A) the FT-IR spectra 
of 10 µM HSA only; and (B) the FT-IR spectra of HSA (10 µM) in the presence of PCA (10 µM) 
 

Molecular docking results 

The binding free energy (-6.0 kJ mol-1) with the highest score was used as the 

optimal result. The energy difference between the molecular docking and the 

thermodynamic analysis may be because the docking analysis was conducted under 

simulation of a vacuum environment, thus neglecting the desolvation energy. Furthermore, 

the X-ray structure of HSA may be different from X-ray structure in the aqueous system 

(Wang et al. 2014). It could be seen that PCA was located in subdomain IB (Fig. 9A). As 

shown in Fig. 9B, PCA can form hydrogen bonding interactions with Tyr-161, Leu-185, 

and Ser-193. In addition, hydrophobic interaction occurred between PCA and Ile-142, Phe-

149, Leu-154, Phe-157, Tyr-161, and Leu-185 (Fig. 10). The combined results of the 

thermodynamic parameters and molecular docking analysis implied that the interaction 

forces of PCA with HSA included hydrogen bonding, van der Waals forces, and 

hydrophobic interaction. 
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Fig. 9. Docking results between the HSA and PCA with the highest score. The PCA was located 
in subdomain IB and interacted with some amino acid residues via hydrogen bonding 
 

 
 

Fig. 10. PCA interacted with some amino acid residues of HSA via hydrogen bonding and 
hydrophobic interaction 
 

 

CONCLUSIONS 
 

1. In this work, multiple spectroscopic analysis, including fluorescence, synchronous 

fluorescence, UV-vis, FT-IR spectroscopy, and the molecular docking method, were 

utilized to study the binding interaction of protocatechualdehyde (PCA) with human 

serum albumin (HSA) in vitro. The results suggested that PCA quenched the intrinsic 

fluorescence of HSA via a static mechanism.  

2. The binding affinity between PCA and HSA was strong. The binding of both was 

driven primarily by hydrogen bonding and the Van der Waals force at a high 

concentration of PCA. The binding distance was 4.42 nm and the binding site for PCA 

on the HSA molecule was located in subdomain IB.  

3. In addition, PCA induced microenvironmental and secondary structural changes of 

HSA. This work may provide reference for studying the binding properties of PCA 

with HSA in vivo. 

 

 

A  B 
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