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The tracheid and crystalline properties of earlywood and latewood within 
the stems of Korean-grown Dahurian and Japanese larches were studied 
to obtain valuable information for identifying these two species and 
determining their wood quality. The tracheid length and width were 
examined via optical microscopy, and the relative crystallinity and 
crystallite widths were examined using the X-ray diffraction method. The 
tracheid length and width were greater in the Dahurian larch compared to 
the Japanese larch. In both wood species, the tracheid length and width 
increased as the growth ring number increased but stabilized at a certain 
growth ring number. The relative crystallinity was higher in the Japanese 
larch wood compared to the Dahurian larch wood, while the crystallite 
width in both species was similar. Neither the relative crystallinity nor the 
crystallite width displayed a constant trend from pith to bark. The 
differences in the tracheid properties and the relative crystallinity of both 
species could be used to identify them and evaluate their wood quality for 
their effective utilization. 
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INTRODUCTION 
 

Dahurian larch (Larix gmelinii) and Japanese larch (Larix kaempferi) are 

distributed throughout the Korean peninsula, which forms part of the Eurasian region. In 

South Korea, Dahurian larch is only found in a small area in the Gangwon Province, Korea 

(Hwang and Park 2007). Contrastingly, Japanese larch is widely distributed in the 

mountains of South Korea and is commonly utilized for various wood products such as 

wood construction, packaging, plywood, and pulp in present days (Korea Forest Service 

2011). However, the two species are often referred to as 'larch' because the tree and wood 

characteristics are difficult to distinguish from each other (Hwang and Park 2007; Chong 

and Park 2008). Therefore, further study on the anatomical characteristics is important for 

wood identification and quality evaluation of both species. 

A number of studies have been conducted on the variation of various wood 

anatomical properties within stems in order to provide wood quality indices, e.g., tracheid 
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length (Herman et al. 1998; Gogoi et al. 2019), microfibril angle (Senft and Bendtsen 1985; 

Entwistle and Terrill 2000; Donaldson 2008), and ray properties (Rahman et al. 2005; Kim 

et al. 2009; Fonti et al. 2015; Kim et al. 2021).  

In particular, there have been many studies on the radial variation of the tracheid 

properties of coniferous species, for evaluating wood quality, e.g., studies on Pinus kesiya 

(Burley 1969), Pinus wallichiana (Seth 1981), Picea abies (Lindstrӧm 1997), Larix 

kaempferi (Zhu et al. 2000; Rlee and Kim 2005), Pinus sylvestris (Mӓkinen et al. 2015), 

Larix decidua, Picea abies, and Pinus sylvestris (Fabisiak et al. 2020). 

Several studies evaluating wood quality have also examined the radial variation of 

the crystalline properties of coniferous wood species. Wellwood et al. (1974) studied the 

radial variation in cellulose crystallinity in a 500-year-old Douglas fir. Kim and Lee (1998) 

reported the radial variation in the relative crystallinity and degree of crystallite orientation 

in Chamaecyparis obtusa. Andersson et al. (2003) studied radial variation in the 

crystallinity and crystallite size of Picea abies. Eun et al. (2008) also reported variations 

in the fine structure of wood cellulose within the stems of Pinus densiflora, Pinus 

koraiensis, and Pinus rigida. Ishikura (2017) compared the relative crystallinity between 

juvenile and mature wood in Abies sachalinensis.  

Recently, the authors reported the radial variation of the ray properties in Dahurian 

and Japanese larches as identification and quality indices (Kim et al. 2021). In both species, 

the uniseriate heights increased as the growth ring number increased, and the ray number 

and ray spacing decreased with age but were stable toward the bark, showing considerable 

differences in all ray properties between the two species.  

Thus far, there have been no comparative studies on the radial variation of the 

tracheid and crystalline properties of Dahurian and Japanese larches growing in Korea. 

Therefore, the authors aimed to investigate the tracheid and crystalline properties of 

Korean-grown Dahurian and Japanese larches to obtain valuable information for wood 

identification and wood quality indices to evaluate the wood properties.  

 

 

EXPERIMENTAL 
 

Materials  
Three Dahurian larch trees (Larix gmelinii var. olgensis (A. Henry) Ostenf. and 

Syrach), approximately 71 years old to 72 years old, and three Japanese larch trees (Larix 

kaempferi (Lamb.) Carriere), approximately 37 years old to 41 years old, were harvested 

from a plantation site in the research forest at Kangwon National University, South Korea 

(N 37°77’, E 127°81’). The diameter at breast height, the oven-dry density, and the 

heartwood rate of the sample trees were approximately 347±8 mm, 0.70±0.07 g/cm3, and 

83±3%, respectively, for the Dahurian larch, and 356±8 mm, 0.56±0.10  g/cm3, and 73±1%, 

respectively, for the Japanese larch. Detailed information on the sample trees was provided 

in a previous study (Kim et al. 2021). 

 

Specimen Preparation 
Wood discs were obtained from the stems of both species at breast height. In the 

Dahurian larch, the specimens were prepared from every fifth growth ring from pith to bark 

until the 50th growth ring was reached from four different directions of the discs, and 

specimens were then prepared from every tenth growth ring from the 50th growth ring. The 
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Japanese larch specimens were prepared from every fifth growth ring from pith to bark 

until the 35th growth ring. 

 

Measurement of Tracheid Properties 
Matchstick-sized specimens, approximately 1 mm wide and 20 mm to 30 mm in 

length, were prepared. The specimens were macerated in a heating bath (Thermo bath, 

ALB128, Korea Science, Korea), according to the Franklin method (Franklin 1945), 

neutralized using distilled water, acetic acid, and sodium hydroxide, and used to make 

permanent slides. The tracheid characteristics were observed using an optical microscope 

(Nikon Eclipse E600, Tokyo, Japan) and analyzed using an image analysis program (IMT 

I-solution lite, Version 9.1, Vancouver, Canada). 

The lengths of the 50 tracheids in the earlywood and latewood from every fifth 

growth ring from four different directions were measured, and the mean values were 

recorded. The width of all the tracheids within a growth ring was observed in the earlywood 

and latewood for the radial section in every fifth growth ring from four different directions. 

 

Measurement of Crystalline Properties 
Specimens of approximately 1 mm thickness (R), 15 mm width (T), and 15 mm 

length (L) were prepared for each growth ring. The specimens were analyzed using an X-

ray diffractometer (DMAX2100V, Cu kα, Rigaku, Japan) under operating conditions of 40 

kV and 30 mA. The relative crystallinity (CR) and crystallite width (Lhkl) were measured 

using Segal’s method (Segal et al. 1959) and Scherrer’s method (Scherrer 1918), as shown 

in Eq. 1 and 2, respectively, 

CR (%) =  
(𝐼200−𝐼am)

𝐼200
× 100                        (1) 

where I200 and Iam are the diffraction intensities of the crystalline region at 2θ = 22.8° and 

the amorphous region at 2θ = 18°, respectively, and 

Lhkl = 
𝐾λ

𝛽𝑐𝑜𝑠𝜃
               (2) 

where L, K, and λ are the crystallite width, Scherrer constant (0.9), and X-ray wavelength 

(λ=0.1542 nm), respectively (β and θ denote the half-width in radians and the Bragg angle, 

respectively). 

 

Statistical Analysis 
Significant differences in the tracheid and crystalline properties between the wood 

of the Dahurian and Japanese larches were analyzed using analysis of variance. 

Correlations among the tracheid properties were analyzed using linear regression analysis 

and the Pearson coefficient (r) with multivariate analysis (SPSS, version 24, IBM 

Corporation, Armonk, NY). 

 

 

RESULTS AND DISCUSSION 
 

Tracheid Properties 
The tracheid lengths and widths of both wood species are summarized in Table 1. 

Dahurian larch had a longer tracheid length compared to Japanese larch, and there were 
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significant differences in the tracheid length between both species (earlywood: p-value less 

than 0.05; latewood: p-value less than 0.05). The average lengths of the earlywood 

tracheids in the Dahurian and Japanese larch wood were 2,837± 347 μm and 2,645± 346 

μm, respectively. The latewood tracheid lengths in the Dahurian and Japanese larch wood 

were 2,967±350 μm and 2,735±375 μm, respectively. The tracheid length in the earlywood 

and latewood of both species was classified as short (IAWA Committee 2004). There was 

no significant difference in the tracheid length between the earlywood and latewood in 

either species, with p-values of 0.252 and 0.197 for the Dahurian and Japanese larch wood, 

respectively. Eom (2015) explained that the average tracheid lengths of the Dahurian and 

Japanese larch wood were 2.95±0.72 and 2.58±0.71 mm, respectively, and that Dahurian 

larch wood had a longer tracheid length compared to Japanese larch wood. Han et al. 

(2017) also reported an average tracheid length of 2.76±0.66 mm in Dahurian larch wood 

and 2.82±0.47 mm in Japanese larch wood. Rlee and Kim (2005) reported that the average 

tracheid length on the north side of the stem of Japanese larch wood was 2.59 (1.68 to 3.04 

mm) for earlywood and 3.28 mm (2.14 to 3.98 mm) for latewood; the south side of the 

stem showed a similar trend, being 2.44 mm (1.59 to 2.92 mm) for earlywood and 3.30 

(2.11 to 3.96 mm) for latewood. Fonti et al. (2015) concluded that the tracheid length of 

Dahurian larch trees grown in Siberia ranged between 2273 to 2643 µm. Koizumi et al. 

(2003) reported that the tracheid length for the 20th growth ring of Siberian-grown Larix 

sibirica was 3.1±0.16 mm. As mentioned above, there are some differences in the tracheid 

lengths denoted in previous studies. These differences could be caused by differences in 

growing conditions, e.g., soil, temperature, and precipitation.  

  

Table 1. Tracheid Properties of Both Larch Woods 

Wood 
Type 

Tracheid Length (µm) Tracheid Width (µm) 

Earlywood Latewood p-value Average Earlywood Latewood 

Dahurian 
larch 

2,837 ± 347 
(1,891 to 

3,308) 

2,967 ± 350 
(2,388 to 

4,005) 
0.252 

2,931 ± 401 
(1891 to 4005) 

52.5 ± 13.7 
(20.3 to 80.2) 

25.8 ± 7.6 
(21.3 to 29.5) 

Japanese 
larch 

2,645 ± 346 
(1,820 to 

3,076) 

2,735 ± 375 
(2,153 to 

3,598) 
0.197 

2,684 ± 365 
(1,820 to 

3,598) 

50.7 ± 12.4 
(22.4 to 86.1) 

22.3 ± 5.9 
(18.6 to 24.9) 

p-value 0.044* 0.027* - 0.030* 0.833 0.007** 

Note: Numbers in parentheses indicate the ranges for each property; * denotes statistically 
significant at a p-value less than 0.05; and ** denotes statistically significant at a p-value less 
than 0.01 

 

Figure 1 shows the radial variation in the tracheid length in both the earlywood and 

latewood for the two species. The tracheid length increased as the growth ring number 

increased in both species but tended to remain constant after a certain growth ring number. 

As such, it was suggested that the boundary between juvenile and mature wood, according 

to the tracheid length of the earlywood and latewood, was the 25th growth ring for Dahurian 

larch and the 20th growth ring for Japanese larch. In coniferous species, the tracheid length 

is short in the pith region, increases as the growth rings increase, and displays a constant 

pattern from a certain growth ring (Seth 1981; Yoshizawa et al. 1987; Kim and Mishiro 

1998; Zhu et al. 2000; Saren et al. 2001; Fabisiak et al. 2020). The width of the earlywood 

tracheid in the radial direction for the Dahurian and Japanese larches was 52.5±13.7 μm 

and 50.7±12.4 μm, respectively. The latewood tracheid width was 25.8±7.6 μm for the 
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Dahurian larch and 22.3± 5.9 μm for the Japanese larch. Dahurian larch exhibited a 

significantly larger latewood tracheid width compared to the Japanese larch, while there 

was no significant difference between the earlywood tracheid widths of both species. 

 

 
 

Fig. 1. Radial variation of the tracheid length in the earlywood and latewood of Dahurian (Lg) and 
Japanese (Lk) larch wood 

 

The tracheid width in this study was similar to the width denoted in some previous 

studies. Rlee and Kim (2005) reported that the tracheid width of Japanese larch was 54.2 

μm (47.2 to 60.4 μm) in earlywood and 36.2 μm (33.4 to 39.4 μm) in latewood. Chong and 

Park (2008) found that the tracheid width in the radial direction of Japanese larch was 44 

μm in earlywood and 26 μm in latewood. Fonti et al. (2015) reported that the tangential 

tracheid width of Dahurian larch was 28 to 30.4 μm. 

 

 
Fig. 2. Radial variation of the tracheid width in the earlywood and latewood of Dahurian (Lg) and 
Japanese (Lk) larch wood 
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Figure 2 shows the radial variation of the tracheid width in the earlywood and 

latewood for both Dahurian and Japanese larch wood. The tracheid width was narrow in 

the pith region of both species but increased as the growth rings increased. However, it 

tended to remain constant toward the bark from approximately the 20th growth ring. The 

tracheid width near the pith increased drastically in earlywood and gradually in latewood. 

With regards to the radial variation of the tracheid width, the results of this study support 

many previous studies, in that the tracheid length and diameter increased as the cambial 

age increased and then stabilized from a certain growth ring (Panshin and Zeeuw 1980; 

Lindstrӧm 1997; Sarén et al. 2001). 

Figures 3 and 4 show the relationship between the length and width of the tracheids 

in the earlywood and latewood, respectively. In both species, the tracheid width in the 

earlywood and latewood tended to increase as the length of the tracheid increased. There 

was a significant positive correlation between the tracheid length and width in both the 

earlywood (r = 0.455, p-value less than or equal to 0.05) and latewood (r = 0.596, p-value 

less than or equal to 0.01). Similarly, Bannan (1965) reported that the length to width ratio 

of the tracheids increased as the mean tracheid length increased in conifer species.  

 

 

 

 
 

 

Fig. 3. Relationships between the length and width in earlywood tracheids of Dahurian larch 
(above) and Japanese larch wood (below) 
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Fig. 4. Relationships between the length and width in the latewood tracheids of Dahurian larch 
(Lg) and Japanese larch wood (Lk) 

 
Crystalline properties  

The relative crystallinity and crystallite width of Dahurian and Japanese larch wood 

are listed in Table 2.  

 

Table 2. Crystalline Properties of Both Larch Woods 

Relative 
Crystallinity 

(%) 

 Dahurian Larch Japanese Larch p-value 

Earlywood 61.6 ± 6.1 (52.1 to 71.4) 69.8 ± 5.7 (54.5 to 81.2) 0.004** 

Latewood 64.1 ± 7.4 (48.7 to 73.8) 76.3 ± 4.3 (67.9 to 82.4) 0.000** 

p-value 0.347 0.009** - 

Average 62.8 ± 6.8 (52.1 to 73.8) 73.1 ± 6.0 (54.5 to 82.4) 0.000** 

Crystallite 
Width (nm) 

Earlywood 2.90 ± 0.09 (2.67 to 3.0) 2.84 ± 0.03 (2.79 to 2.89) 0.077 

Latewood 2.88 ± 0.05 (2.80 to 2.97) 2.87 ± 0.08 (2.73 to 3.00) 0.789 

p-value 0.576 0.411 - 

Average 2.89 ± 0.09 (2.67 to 3.00) 2.86 ± 0.05 (2.73 to 3.00) 0.156 

Note: Numbers in parentheses indicate the ranges for each property; * denotes statistically 
significant at a p-value less than 0.05; ** denotes statistically significant at a p-value < 0.01. 
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 The relative crystallinities of Dahurian and Japanese larch wood were 61.6± 6.1% 

and 69.8± 5.7% in earlywood, respectively, and 64.1± 6.1% and 76.3%± 4.3 in latewood, 

respectively. Japanese larch wood exhibited a significantly higher relative crystallinity 

compared to Dahurian larch wood, and the latewood in the Japanese larch showed a 

significantly higher relative crystallinity compared to the earlywood (p-value less than 

0.01). In addition, there was no significant difference in the relative crystallinities of the 

earlywood and latewood of Dahurian larch wood. 

The crystallite width in the earlywood of the Dahurian and Japanese larches was 

2.90± 0.09 nm and 2.84± 0.03 nm, respectively, and the crystallite width in the latewood 

was 2.88± 0.05 nm and 2.87± 0.08 nm, respectively. There was no significant difference 

in the crystallite width between the two species or between the earlywood and the latewood. 

Figures 5 and 6 show the radial variation in the relative crystallinity and crystallite 

width for both wood species; neither the relative crystallinity nor the crystallite width 

showed a constant trend as the number of growth rings increased.  

The properties related to the crystalline and amorphous regions of cellulose play a 

very important role in the properties of wood. In particular, the relative crystallinity is 

proposed as a quality index to distinguish between juvenile and mature woods (Wellwood 

et al. 1974; Kim and Lee 1998; Andersson et al. 2003; Yeh et al. 2006; Eun et al. 2008; 

Esteban et al. 2015; Ishikura 2017; Purusatama and Kim 2018).  

In this study, the authors found that there was a difference in the relative 

crystallinity between both species, but no variation in the radial direction was observed. 

Additionally, there was little difference in the crystallite width between the two species 

and no variability in the radial direction.  

 
 

 
Fig. 5. Radial variation of the relative crystallinity in the earlywood and latewood of Dahurian (Lg) 
and Japanese (Lk) larch wood  
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Fig. 6. Radial variation of the crystallite width in the earlywood and latewood of Dahurian (Lg) and 
Japanese (Lk) larch wood 

 

From this study, it is evident that the relative crystallinity could be used as a species 

identification index for differentiation between Dahurian and Japanese larch wood, but it 

is also clear that the crystalline characteristics cannot be used as a quality index for 

determining the boundary of juvenile and mature wood. 

 

 

CONCLUSIONS 
 

1. The tracheid length and width in both the earlywood and latewood of Dahurian larch 

were higher than the tracheid length and width of Japanese larch, and they tended to 

increase toward the bark until stabilization. 

2. There was a significant positive correlation between the tracheid length and tracheid 

width in the earlywood and latewood of both species. 

3. The relative crystallinity in the earlywood and latewood of Japanese larch was higher 

than the relative crystallinity in Dahurian larch, and there was no difference in the 

crystallite width between the two species. There was no radial variation in the 

crystalline properties of either species. 

4. In conclusion, the tracheid properties and relative crystallinity can be used as indices 

for wood quality evaluation and wood identification in both species.  
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