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Following the initial work of Cox‘''’, a number of studies has
been carried out with the objective of predicting the in-plane
mechanical behaviour of paper in terms of the geometrical
structure of the fibre network and the mechanical properties of
the fibres. Recently Perkins(z) developed a self-consistent
model based on the straight segments of the fibres. As shown in

figure 1, a typical fibre consists of several straight segments
of lengths, 1

The sum of the segment
lengths equals the total
fibre length lT‘ The in-
plane fibre curl, C, is
defined in terms of the
end-to-end length lE and lT
viz

N (1
T1
T

It is assumed that the
Fig 1—Schematic of fibre having 3 distinct segments; fibres are sufficiently
numerous crossing fibres are in contact with it. flexible in bending that no

appreciable load can be
transmitted from one
straight segment to the
next. Therefore, from a
mechanics viewpoint, at
least for small strains,
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480 fibre geometry, and mechanical properties

the straight segments behave as independent elements.

In the event that a fibre has micro-compressions or other
damaged regions along its length, the locations of these regions
also determine the ends of the load bearing segments even though
the fibre is perfectly straight. The segment elements are
coupled to the network by means of the crossing fibres. The
strains of the sheet are presumed to be transmitted to the
segment elements by means of bending and shearing deformation of
the crossing fibres and shearing deformation of the fibre-to-
fibre bonds. Thus, the axial strain in the segment elements is
not uniform but varies from the segment ends where it is zero to
the middle where it has its maximum value. If the segment is
long enough and if the coupling of the crossing fibres is strong,
the axial strain in the middle of a segment will be the same as
the normal component of strain of the sheet for the direction of
the segment. On the other hand, if the segment is short and/or
the coupling is weak, the segment strain will be less than that
associated with the sheet.

The model is further illustrated by figure 2, which shows a
portion of a segment that is coupled by two crossing fibres to
the remainder of the network. The boundary between the element
and the network is depicted by a dashed line located a distance

e from the centre-line of the segment. The symbol e
represents the centre-to-centre distance between bonds along a
typical fibre. If e 1is small in comparison with the fibre
width We, as would be expected in moderately dense paper, the
coupling is primarily attributable to the shearing deformations
of the fibre-to-fibre bonds. In a very low density system such
as tissue paper, the bending and shearing deformation of the
crossing fibres may be substantial.

It is shown by Perkins(Z) that the fibre stress O and fibre
strain ep can be expressed as

op = EZ ep (2)

oot - S3H{a] @

er
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where E?‘ is the effective fibre axial modulus, £ represents the

distance from the segment centre, L is the half-segment length,
and a is a coupling coefficient.

boundary between elemenr and network

e/

(a)

== ;

(b)

Fig 2—Portion of an element of a fibre segment illustrating the bond length along a
fibre &, the centre-to-centre distance between bonds along a fibre £, the (dashed line)
boundary between the segment element and the remainder of the network, the fibre
width wf, and the thickness tf.

The strain

- 2 .2 .
eg = e, cos 0 + ey sin 0 + 2exy s3in® cose (4)
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represents the sheet strain in the direction corresponding to the
orientation of the segment relative to the machine direction (see

figure 3) and the sheet strains exr Cy» exy‘

Y(cross-machine direction)

e
(!

x (machine direction)

Fig 3—A segment of length Ag and orientation 6.

The effective axial fibre modulus E% is given by

(e/eb) (EfL+ E..)

a fT
E. = (5)
l+tanhB+ EfL+EfT e—eb
B EfL eb
2
1
I e S Eer
B = 2lce \E 1+ 3 (6)
fb fT fL

where EfL’ Epm, GB represent the elastic moduli in the axial and
transverse directions of the fibre and the shear modulus of the
bond material, respectively. The dimension t, represents the
effective thickness of the fibre-to-fibre bond. The effective
fibre modulus E? depends on the axial elastic modulus of the cell
wall material and also on the transverse cell wall elastic
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modulus. The latter influence is the result of a reinforcing
effect of the crossing fibres that are coupled to the segment
through the fibre-to-fibre-bond.

The quantity a in equation (3) describes the axial force
coupling between the network and the segment by virtue of the
crossing fibres and fibre-to-fibre bonds. It is convenient to
write

a = (7)
a
ff

where Af is the fibre cross-sectional area and

2
k -
£ (e - eb)3 12EfLIf 2tb (8)
e oo 1 t+r—ma| t 1
lZEfLIf GfAfe Abi

Here I represents the moment of inertia associated with the
fibre cross section, Gy represents the cell wall shear modulus, f
is a factor that depends upon the fibre cross-sectional shape (it
is 6/5 if the fibre has a rectangular shape), and Ay is the area
of the fibre-to-fibre bond.

In accordance with the self-consistent scheme, the strain
energy of a typical segment element is calculated as

- a 2
Wy = 05 E2 Ap 1 €2 9)
where
1 tanh(aL) 1
n,=1- 2 aL = 2 cosh?(aL) (10)

can be identified as a coupling efficiency. For strong coupling
and long length, n;, approaches unity. At the other extreme of
very short length or very weak coupling, it approaches zero.
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The total strain energy of the system can be written
TC
W= D, f¥15 We dOdlg 1)
o~o

where Do represents the number of segment elements per unit area
and fgls dedlS represents the probability of finding a segment
having a length in the interval 1, 1S + d1s and orientation
in the interval 90, © + d6. In general, it is expected that the
length and orientation effects are coupled (cf. Carroll(3)L

Suppose that féls can be expressed in the form

f815 = (fg(8,aq,a5,.00,2ap))(F14(15,bq,bn,000,D))) (12)

Thus, fe describes the fibre orientation distribution as a
function of © depending on the n parameters aq, a@pjeecenyap.
Likewise, the distribution of fibre lengths 1s depends on n
parameters b1, b2,u“, bn‘ In general, it is to be suspected
that the parameters a,;, aj,.., ap are functions of 14 while the
parameters by, by,....., b, are functions of 6, The evidence
presently available suggests that the coupling between the two
distributions is weak and therefore, as an approximation valid at
least for certain papers, it is acceptable to assume that the
length and orientation distributions are independent, For this
assumption, the parameters a4, @pyesey ap and by, boyeee., b, are
constants, and the strain energy per unit sheet area can be
written in the form

ll—”—é o zie? (13)
W = pr “plsEfest do 3
(o)

where Wy represents the basis weight,p? represents the apparent
fibre density and

kplS = r‘L f‘]hs dls (1)4)
(o]
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The length parameter«pls and the apparent fibre modulus E?
may depend upon the orientation direction © as a result of the
stresses that may be imposed on the fibres during the drying of
the sheet during manufacture. In order to take this phenomenon
into account analytically, we can assume that the apparent fibre
modulus E? depends upon the shrinkage and restraint conditions
present during drying in the following way:

EZ = ER,(1 + Heyp) (15)

where E?O, a constant, represents the apparent fibre modulus in
the absence of drying restraint, H is a constant that predicts
the magnitude of stiffening due to drying restraint and

exp = (axM + exD) cose + (ayM + eyD) sin%e (16)

Here axM and ayM represent the sheet shrinkage strains during
unrestrained drying in the x and y directions, eyp and eyD
represent the sheet strain that is applied or allowed during

shrinkage. Thus, for unrestrained shrinkage conditions

= -a_M

eyp = —axM and eyd v

It is evident that eND is related to the magnitude of
restraint that a fibre of orientation 6 would be subjected to
during the drying of the sheet. 1In the following, it is further
assumed that eyp is positive, i.e., that the fibres are loaded in
tension as a result of any drying restraint.

With the help of relation (15), the integration in (13) can
be easily carried out, provided the length factor wls is
independent of 6. In fact @ls does depend on © because the
coupling parameter a that appears in n;, depends on E?.
Fortunately, however, the influence of variation in E? through a
in @, 4 has an insignificant effect on the predictions of the
elastic moduli of the sheet and there is no serious error
committed in assuming that le is independent of ©.
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The stress-strain relations for the sheet can be obtained
from the strain energy function W after carrying out the
integration through the relations

oW oW 1 oW
T =—, T, = — » T = - (17
x de y de xy 2 de
X y Xy

where Tx’ Ty, and Txy represent the force per unit edge length of
the paper sheet. In order to express conveniently the resulting
elastic moduli it is desirable to express the orientation
distribution fg(8) in terms of the expansion of its Fourier
series (Cox(1)). When the x-direction is one of the axes of
elastic symmetry, e.g. the machine direction, and 6 = 0°
corresponds to this direction,

fg(e) =-% (1 + a; cos20 + a, cosl® + .. + a, cos2né +.,) (18)

After using (18) and (15) in (13) and subsequently using

(17), the Young's moduli E¥, E¥, the shear modulus, G§y, and the

y’

Poisson ratios ny, Vyx corresponding to plane stress loading of
the sheet are found to be:
1 Wg a e
E = ——a ¢ E BT +<e>)(6 +ha +a )+ L(8+7a +ka +a ﬂ {1 vV
x 16p 1s fO 1 2 2 1 2 3° Xy yx
f
1 Wg a e
B s-—ag £ [(1+<e>)(6-ba +2a)-D(8-Ta +la a1y v ]
y 16p 1s f0 1 2 2 1 2 3 Xy yx
2 ) (
(1 +<e>)(2-a)+=(a -a) 19)
2 Ly 1 3
ny= Py
(1+<e>)(6—‘4a +a)-—é(8—7a +bha -2)
1 2 2 1 2 3
e
(1 +<e>)(2-2a)+D(a -2a)
B 2 i 1 3
gy = =
(1 + <e>)(6 + La +a).+—A(T+7a +ha +a)
1 2 2 1 2 3
1 Wy a e
¢ =——= ¢ E [(1 + <e>)(2 -a ) + LA (a2 -a ﬂ
xy 160 1s f0 2 2 1 3°

f
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where

<e>

% H {(axM + exD) + (ayM + eyD)]
(20)

(V)
1]

%—H ((axM + exD) - (ayM + eyD)]

It will be noted from an inspection of relations (19) that
the elastic constants depend only on the first three parameters
aq, ap, az that occur in the Fourier series expansion for fe.
It will be noted further that if the influence of drying
restraint is not incorporated or if the sheet is dried under
conditions of no restraint, then the elastic moduli depend only
on the parameters a, and ass For this condition, relations (19)
are essentially the same as those given by Cox(1) when 6 = 0°
corresponds to a direction of elastic symmetry in the sheet, The
number of coefficients of the Fourier series expansion for fg
that are necessary for predicting the elastic properties,
therefore, depends on the functional relation between the
apparent fibre modulus E? and orientation, which in turn depends
on the procedures and conditions of drying. If any other
phenomena are incorporated that influence the angular dependence
of the factors entering the calculation for the strain energy
stored in the sheet, then the number of Fourier coefficients
appearing in the elastic constants will also be changed.

It is theoretically possible to describe any fibre
orientation distribution in terms of the parameters ajg, ap,
a3yeee of the Fourier series expansion., There is a real
advantage, however, in using a function with only one parameter,
since this choice will reduce the expressions for the elastic
moduli to forms that depend on one parameter in so far as
orientation anisotropy is concerned. The reduction to one
parameter can be accomplished very simply by truncating the
Fourier series and retaining the single parameter aq. This
procedure was employed by Corte and Kallmes(u) and by Perkins(zx
It will be noted, however, that the reduction to a single
parameter can have some significant effects, For example, for
the case of a freely dried paper, the shear modulus should
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decrease with increased anisotropy. This reduction effect will
be predicted only if the coefficient a, is retained in the
expansion, Eo0.(18). But if only one parameter of the Fourier
series expansion is used, the shear modulus is predicted to be
independent of the degree of anisotropy of the paper.

An alternative approach is to employ a distribution function
that has only one shape parameter. Forgacs and Strelis(5)
employed a distribution with the behaviour of an ellipse, called
the elliptical distribution. Mardai(s) describes a number of
single parameter functions that can be used to describe angular
data. Among these, the von Mises distribution seems to have the
most promise for describing the fibre orientation distribution in
paper. The properties and behaviour of the elliptical and von
Mises distributions are treated in detail below.

It is evident from the foregoing that fibre orientation
distribution is generally of great importance relative to the
elastic (and other mechanical) properties of the paper sheet.
Its influence has been studied extensively“"5’7'1ux It also
appears evident that the choice of distribution function used to
represent fibre orientation has some serious implications
relative to our ability to predict the elastic constants for
sheets of different fibre alignment configurations. On the other
hand, the distribution of lengths of the fibres may or may not be
very significant in different cases. We now consider
improvements in the acquisition and interpretation of
experimental data for these length and orientation distributions.

Methods fcor Fibre Orientation Determination

The initial work done in this field was by Danielsen and
Steenberg(15), who developed a sort of rotatable protractor for
directly measuring the orientations of dyed fibres that are added
to the furnish when the sheet is made. The dyed fibres,
amounting to less than 1%, are typical of the pulp stock used and
are measured as a representative sample of the whole.
Subsequently, other workers modified the Danielsen-Steenberg
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method and introduced several indirect methods, including x-ray
diffraction, light scattering, zero-span tensile, and optical
diffraction analysis. In the methods of Forgacs and Strelis(S)
and Corte and Kallmes , counts are made of the numbers of dyed
fibres falling on straight reference lines. These counts
provide indirect data that are converted to orientation
distribution functions via mathematical treatment of the data.

It became apparent to us that there are unresolved problems
related to the indirect methods and that none of the manual
methods would permit us to collect and analyse a meaningful
number of data within a reasonable time frame. Also, serious
questions arose concerning the accuracy of indirect methods such
as the line crossing techniques employed by Corte and Kallmes(ux
Fortunately, measuring devices developed within the past few
years have enabled us to accelerate and automate the collection
of data. In our case, this is accomplished through the use of a
graphic digitiser, which is basically a device for rapid and
accurate reading of co-ordinates.

First Principles

Determination of the orientation of fibres by any direct
method required some preliminary decisions as to what types of
information are needed, e.g.,

1. What is m ured?

Given that fibres in a sheet of paper or paper-board are of
finite (short) length, and usually contain bent, curled, or
broken sections, one has to make a decision as to what
constitutes a “fibre’ for purposes of determining fibre
orientation. The same statement can be made regarding
determination of fibre length, and it should be emphasised that
there is no basis a priori for assuming that fibre length and
orientation are independent of each other. These parameters may,
in fact, be highly correlated in some cases.
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With reference to figures U
and 5, one may observe seve-
ral possiblities for defining
the fibre in terms of orien-
tation. Each possibility has
different implications for £ : F
length categorisation.
Figure 4 shows a sheet in {
which a small fraction (ca.
0.25%) of black dyed fibres

show contrast against the

remaining 99.75%, which are " \ -
bleached. The paper samples \\ \\
are impregnated with silicone N\ = O 9

0il (with or without the S
assistance of vacuum) to
enhance visibility of the
dyed fibres by making the
rest of the sheet almost

transparent. (The refractive Fig 4—Photograph of oil-impregnated sheet.
Black-dyed fibres at various depths in the

indices of the oil and the sheet stand out. (Photo by A. Eusufzai)

fibres are nearly equal.)
The orientation of the fibre
labeled "F", for example, may
be described in any one of
the following ways:

With respect to a fixed axis (e.g., the machine direction)
the orientation of a straight line joining the ends of the
fibre, Fig. 5a.

With respect to a fixed axis, the orientation of the "best
fit" of all the segments of a fibre together. Essentially a
regression line is drawn that best fits a set of points taken
to lie at the midpoint of each segment of the fibre, Fig. 5b.
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With respect to a fixed axis, the orientation of each

segment of the fibres taken individually, Fig. 5c.

(a)

|
—r— "TF\%

i

Best Fit of Center Points

End -to-End Orientation

Segment Orientation

Fig 5—Diagrammatic representation of dyed fibre F in Figure 1. (a) Black circles = end
points, dashed lines = end-to-end distance, ¢; = orientation of fibre in sheet. (b) For
computational purposes, fibre is divided into 5 segments. Black circles = segment mid-
points, dashed line = regression line of midpoints, ¢, = orientation of fibre in sheet by
best fit of centrelines. (c) Orientation ¢3j determined for each segment.

With respect to a fixed axis, the orientations of segments
according to length category. In such cases, criteria have to
be set as to how many segment length categories are needed.
For example, a preliminary study can be made to determine the
most probable (statistically) segment length encountered in
a given type of sheet material. One can establish the length

categories according to some system based on most probable
length (mpl). For example:
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Segment group 1: 0 <1 S-lmpl
Segment group 2: 1mpl <1XK Zlmpl
Segment group 3: 21mp1 <1 5_3lmp1
Segment group 4: 31mpl <1

The four modes of description itemised above are listed in
increasing order of precision results obtained, assuming an
adequate sample size is taken., However, the difficulty of
measurement also increases in the same order,

2. What sector si is needed?

The frequency with which fibres or fibre segments are found
with alignments falling in a given range (radians or degrees) is
usually the immediate objective of the experiment or proof, Pre-
selection of an angular interval that enables a comprehensive,
accurate picture of fibre orientation distribution is essential,
A very commonly selected interval is 5 degrees.,

3. How are representative samples to be obtained?

If possible, the incorporation of a small percentage (0,10 -
0.25%) of dyed fibres into the sheet is desirable, For many
purposes, a chlorazol black E dye is excellent, These dyed fibres
stand out among the other fibres, as shown in figure 4, The use
of dyed fibres makes it possible to cross-check accurately
against other methods of determination.

If it is not possible to incorporate any type of individually
identifiable fibre into the sheets to be tested, one of the
indirect methods will have to be used. However, it is important
that when any indirect method is considered for use on a
particular material, an independent verification is made that the
indirect method will yield results in agreement with a direct
method.
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4. How will the data be compiled?
(a) Angular distribution frequency

Usually fibre orientation data have to be compared or fitted
to a generally bimodal (symmetrical with respect to the machine
direction) mathematical function of some form to be useful. As
noted earlier, distribution functions that have been used or
suggested for use with fibre networks include the cosine(u)
elliptical(S) and von Mises(éx

The goodness with which any of these functions will fit a
set of experimental data for fibre orientation depends on the
degree of anisotropy of the sheet, the scatter in the
experimental data, and the shape parameter(s) for the function.
Some explanation of these functions and parameters will
illustrate this point.

Elliptical

The elliptical distribution function has the form:
£(0) = —Ttg-(v( cos®e + 2 sine )) (21)

The degree of ellipticity of this function is controlled by
the shape parameter,(, which is equal to the ratio of the major
and minor semi-axes. Selection or determination of an
appropriate value for [ enables one to fit a curve to the
probability density of finding a fibre within a given (say 5
degree) sector of orientation. The determination of [ is
usually accomplished by use of a least square error method when
the elliptical function is fitted to the observed data.
Allowable values of g are never less than unity. The symbol O
refers to the angle of orientation. It varies from -90° to +90°
when the machine direction is taken to be 0°. Plotted in
Cartesian form, the elliptical function will generate a smooth,
rounded-peak curve. When plotted in polar coordinates, the
function generates an ellipse, of course.
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‘e Cosin

As noted previously, there is a useful distribution function
consisting of a series expansion of cosine terms of the form:

f(e) = % (1 + a; cos20 + a, cosle +..+ a, cos2n@) (22)

n
In this expression there is a series of shape parameters ay
that modify the basic curve form, With apropriate values for ay,
the function may be fitted to the experimental probability
distributions (i.e,, data points) sector by sector, In the work
of Corte and Kallmes'"/, the series expansion was truncated to:

f£(8) = -JTf (1 + a; cos20), 0 < a; <1 (23)

for ease of mathematical manipulation, The form of eq. (23) is
designated as “single cosine term” in this paper., Plotted in
polar co-ordinates, the form is bimodal cardioid, As will be
observed, we have used this form and, additionally, a "two cosine
term” form, i.e.,

f(e) = % (1 + a; cos26 +-a, coske) (24)

for purposes of analysing our experimental data, In polar co-
ordinates, the curve is cusped differently from the single cosine
term, - In Cartesian co-ordinates, egs, (23) and (24) generate
symmetrical curwves with rounded peaks, The determination of the
shape parameters a, in egs. (22) to (24) can also be made using
the least square error method, In egs. (22) and (24), these
shape parameters are subject to limits in allowable values that
ensure that no negative probabilities are generated. In eq.
(23), the limits are:

0<La; L1



fibre geometry, and mechanical properties 495

+++ Yon Mises

Another powerful function suited to the handling of the fibre
orientation distribution data i$ known as the von Mises
distribution; more specifically, the function used here is a
multimodal distribution of the von Mises type (see ref}6)h
Here, the probability density function is given by:

£(0) = eKcosz(e-po) (25)

1
EIO(K
where IO(K) is a modified Bessel function of the first kind and
order zero, i.e, 28]

1 2n
2 (K/2) (26)

R
n.

n=20

Two parameters are present in eq.(25), The parameter Uy
which for our purposes may fall in the range -90° to +90°,
establishes the mean direction, while K is a shape (density)
parameter, The determination of parameters K and Ho is discussed
by Mardia(6), Allowable values of K must always be non-negative,

Since an increase in the anisotfopy of the test material will
result in a set of experimental points with a relatively high,
narrow peak, while a more random sheet will show less variation
between the MD and the other directions, it can be inferred that
the value of the density parameter K will be larger for the
distribution curve that approximates the points generated from
the more orientated material, As for the other parameter, Hor
it can often be assumed that the greatest probability of finding
a fibre orientated in a sector will correspond to the sector
around the machine direction, for example, the interval -2(50 to
+2,5°, If this is a valid assumption, then p, = 0. If the
fibres are more orientated in the cross machine direction, then
data plotted in the same way will approximate to a curve whose
peak lies at 90° and Mo = 90°, In such cases, O will be taken
for the interval 0° to 180°, For sheets formed under conditions
wherein the greatest fibre alignment is neither MD nor CD, Ho
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will have to be determined according to the method described by
Mardia(6).

It should not be too readily assumed that p, = 0° or 90°,
Some paper machines, in fact, operate in a manner such that the
greatest fibre alignment is not coincident with either MD or
CD(S). One of the advantages in fitting eq. (25) (for the von
Mises distribution) to the experimental data is that the
determination of B, can serve as an indication if the sample
edges are, in fact, aligned with the MD and CD directions in the
cases where that is the intention, The elliptical and cosine
functions can be similarly modified by replacing 6 with (e-po) in
eqgs. (21) to (24), The determination of By can at times provide
insights that make it possible to correct faulty experimental or
analytical procedures.

Once the true axes of orientation have been determined, the
appropriate distribution function(s) (elliptical, cosine or von
Mises) can be used as analytical tools to develop structure-
property relationships with respect to the natural directions of
symmetry, One important example is the precise determination and
prediction of anisotropic elastic constants, Given the true
orientation axes, the term M, is set equal to zero from that
point on, Accordingly, the Fourier expansion forms for the above
mentioned distributions are very helpful., A Fourier expansion
for the von Mises distribution has been given by Mardia(sh

o9
_ 1 Kcos26 _ 1 I_(K)
(o) = ﬁﬁiz?ae = E[j + 2 TETK}COS 2nﬂ (27)
n =1

where I, (K) is a modified Bessel function of the first kind and
order n, For the elliptical distribution, the Fourier series can
be written as

0
C 1 1 }_' C-1n
f(e) = =( ) ==L +2/ ) cos2n (28)
T cos?e + gzcosze 2 [ n=1 L+l %

A comparison of eqs, (22), (27) and (28) shows that the n-
term cosine function has n degrees of freedom, whereas the von
Mises and elliptical functions each have a single degree only,
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A polar diagram of the von Mises type distribution (eq. (27))
shows that it is bimodal when plotted in that manner, It is
highly useful for curve-fitting a symmetrical plot of
probability density versus orientation angle, as evidenced by the
experimental results that follow,

For other possible distribution functions, refer to

(6)

Mardia .
(b) Length distribution

As each fibre is examined, data are accumulated that enable
computation of the lengths of the fibre elements, since the end
point co-ordinates are being digitised. Inherently it is
possible to calculate fibre end-to-end length, fibre segment
length, and total length based on summing of segment lengths,
Fibre curl (cf, eq. (1)) can also be calculated from the
accumulated data.

Typically, the type of length distribution data that are
generated is in the form of a skewed curve when lengths are
plotted versus frequency of occurrence, Such a curve can, in
most cases, be readily fitted to an Erlang distribution
(15) using the least squares method.

The Erlang probability density function is

function

- (x/b)°" exp(-x/b)
f£lx) = B((c-1)1)

where b = scale parameter, always greater than zero
¢ = shape parameter, an integer greater than zero
be = mean value of x.

The range of the function is determined by

0 < x £ +00
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Graphic digitisi stem

Fig 6—Operation of graphic digitiser.

As mentioned earlier, the experimental data for fibre length
and orientation is acquired by use of a graphic digitiser. The
digitiser at ESPRI (figure 6), which is interfaced to the
Syracuse University computer via a device coupler and remote
terminal (figure 7), consists of a tablet, cursor with cross
hair and control unit. An electronic grid in the tablet resolves
any position on its unique x-y co-ordinates that can be
identified by the use of the movable cursor., Resolution is 0.01
inch, Upon pressing one of the buttons on the cursor, two five-
digit co-ordinates are output, along with a single hexadecimal
‘signal’ digit., The latter identifies which of the 16 buttons on
the cursor was pressed, giving a method of classifying data pairs
into categories for later processing.
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Fig 7—Schematic of graphic digitising system, including device coupler, terminal and
computer.

If an enlarged print or other image of a sample sheet
containing dyed fibres is displayed or projected on the tablet,
certain points of interest can be identified by determining their
co-ordinates, More importantly, the relationships among these
co-ordinates can be established. For example, distances between
fibre end points can be translated into lengths., For greater
accuracy, several points along a fibre (logically those where the
azimuth changes) can describe its length more accurately. Also
angles between segments can be identified, as can angles between
fibres and a predefined reference line (such as the machine
direction), As multiple measurements are made, totals, means,
and distributions become the parameters of interest,

Many digitiser installations include dedicated mini-computers
built into the system, In our case it was decided to use the
more extensive facilities available on a time-sharing basis,
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specifically those of the Syracuse University computer centre,
Access is gained through a typewriter-size terminal which accepts
a standard telephone receiver, The connection with the computer
is then made through telephone lines.

Applications of the Digitising Method in Experiments

A series of experimental cylindrical sheets was prepared at
the Swedish Forest Products Research Laboratory (STFI) using a
‘Formette Dynamique’ device, Samples measuring 279 mm x 216 mm
were cut from these,

Sample specifications

Pulp: Bleached softwood kraft.

Basis weights: 10, 30, and 80 g/m2.

Anisotropy: Series 1-5 were prepared for each basis weight, the
designation 1 being given to the least orientated and 5 to the
most highly orientated specimens. The degree of orientation was
controlled by varying the ratio of jet speed to wire speed.
Percentage of dyed fibres: n, 0.25

Procedure

From each sample, sub-samples 32 mm x 19 mm were removed,
impregnated with silicone o0il, and inserted in the film holder of
a standard 35-mm photographic enlarger. The illuminating lamp of
the enlarger projected the image of the dyed fibres directly onto
the digitiser tablet (see figure 6). However, it should be
emphasised that, although a film holder is used, no film is
involved. What is projected onto the digitiser tablet is the
image of all the dyed fibres in the sheet itself, since the oil
impregnant renders them visible regardless of the depth at which
they are located within the sheet. A flowchart of the subsequent
digitising and computing operations is given in figure 8.
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DIGITIZE AND STORE FIBER SEGMENT
END COORDINATES ( RAW DATA BANK)

LENGTH

COMPUTE AND STORE:
1L.SEGMENT LENGTH 5 BFC.L.ANGLE
2.TOTAL LENGTH
3.SEGMENT ANGLE
4. END-TOEND

6.END-TOEND
ANGLE

T FIBER CURL

!

CALCULATE:

L TOTAL NO.OF FIBERS
2.MEAN SEGMENT LENGTH S MEAN FIBER CURI
3.MEAN END-TO-END LENGTH 6. MEAN NO. OFSEGMENTS

4.MEAN TOTAL LENG'IH

PER FIBER

!

TJALLY RAWDATA INTO AN EQUIDISTANT (OR EQUAL
SECTOR) CATEGORY FREQUENCY TABLE.
OBTAIN CUMULATIVE FREQUENCY TABLE

!

N\

!

and mechanical properties

COMPUTE ANGULAR ORIENTATION
DISTRIBUTION USING LEAST SGUARES
ERROR METHOD TO OBTAIN FUNCTION
PARAMETERS FOR THE THEORETICAL
MODELS {Cosine, etc.)

OM P! GOODNESS OF FIT
USING CHI- SQUARE TEST.

LENGTH DISTRIBUYIDN

ON
PARAMETERS FOR TPEORETICAL
MODELS (ERLANG, efc.)

Fig 8—Flowchart for acquisition and processing of
fibre orientation and length data.
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We have found that for
most of our calculations a
sample size of 600 fibres
is generally sufficient to
yield results that are con-
sistent and reproducible
between different opera-
tors; however, a larger
sample may be desirable
when segment lengths and
angles are measured.
Earlier direct methods re-
quired the measurement of
2000 - 2500 fibres(®:15),

Results

The full series of sheets
produced at STFI has been
studied for mechanical pro-
perties, fibre orientation,
and length distribution.
In this paper we provide
some illustrative values
obtained for fibre orienta-
tion and length distribu-
tions: a complete set of
values will appear in a
forthcoming thesis(17).

In Table 1 we present the statistics of the STFI specimen

material as to:

total number of fibres examined, mean number of

segments per fibre,

end-to-end length, and mean fibre curl factor.

mean segment length, mean total length, mean

These fibres show

that about 600 fibres were observed for each type of specimen and

that the average fibre has

between 2 and 3 segments with
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NS
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NS
LS
LT
LE
FC

NS
LS
LT
LE
FC

NS
LS
LT
LE
FC
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and mechanical properties

= Total number of fibres examined

= Mean number of segments per fibre
= Mean segment length (mm)

= Mean total length (mm)
= Mean end-to-end length (mm)

= Mean fibre curl factor (FC

1-10

702
2.22
0.788
1.75
1.64
0.063

634
2.30
0.813
1.87
1.75
0.064

612
2.50
0.684
1.7
1.61
0.058

Characteristics of dyed fibres in STFI sheets

1-30

565
2.02
0.772
1.56
1.48
0.051

3-30

609
2.15
0.865
1.86
1.75
0.059

5-30

703
.28
.811
.85
77
.043

O = = O N

1-80

595
2.23
0.830
1.85
1.75
0.054

3-80

538
2.46
.792
.95
.86
.046

o = = O

5-80

611
2.28
0.732
1.67
1.58
0.054

Table 1

2-10

657
2.03
0.872
1.77
1.67
0.056

607
2.28
0.882
2.01
1.86
0.074

1 - LE

)

2-30

597
2.40
0.725
1.74
1.62
0.069

4-30

658
2.32
0.797
1.85
1.69
0.086

515
2.37
0.726
1.72
1.58
0.081

4-80

621
2.24
0.768
1.72
1.58
0.081
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distinctly different orientations. Fibre curl factors range from
0.043 to 0,086, indicating that the fibres in this particular
pulp were not extensively curled,

As indicated previously,

i 4-80 E-T-E ANGLE we have obtained experi-

45} ° mental distribution data

50

for angular orientation
and length for all types
of specimen material pro-
vided by STFI., Space
does not permit us to
tabulate all of the shape
and scale factors, proba-
bilities, and chi-square
test results for all
the orientations, basis

40
395

30

weights, and curve-fit-
ting techniques, nor
present all the graphical
data that go with these,
Again, we refer to
Chang’s thesis(17). We

.f; [ | | i | , -, have instead, selected a

-l00 -75 -50 -25 o] 25 50 75 100 particulap type of
ANGLE IN DEGREES

material and present

Fig 9—Frequency data for fibre end-to-end angular herewith some data and
orientation measurements.

Legend: data (black circles), elliptical (solid), von A
Mises (dashed), two cosine (dot-dashed) single to that type of specimen.

cosine (dotted) The specimen material

selected ws STFI-4-80,
Material designated by "4° has a moderately high degree of
orientation (highest is 5): the 80 refers to the basis weight,
80 g/mz. The curves for 4-80 demonstrate typical effects

calculations pertaining

observed in curve-fitting by various theoretical models, and
some of the perculiarities of the various distribution functions
are brought out in this set of curves. We feel that use of an 80
g/m2 specimen demonstrates that good data can be generated even



504 fibre geometry, and mechanical properties

with a moderately thick sheet, using our method of projection of
the dyed fibre images onto the digitiser tablet. The degree of
anisotropy is such that all orientation effects are noticeable
and scatter of data points is moderate, yet the sheet is not so
highly orientated as to be atypical of what one might encounter
in industrial production.
Figures 9 through 12 100
show the experimental 4-80 SEGMENT ANGLE
data points for the fibre 90— .
orientation plotted in
Cartesian coordinates 89
(frequency of occurrence
versus angle of orienta-  ©
tion in 5° increments).

There are also curves >6°
plotted for the single g

cosine term, and ellipti- §50
cal functions, all under qu

the assumption that pg =
0 (symmetry edge or an
axis of a test specimen),
whereas the curves of the
von Mises function were
plotted without this as-
sumption; the result of
this is that the von 0 I 1 1 i 1 ] | |

Mises curves are dis-
placed by approximately
0.1 radian in figures 9,
10 and 11. If the Mo
parameter is incorporated
in the other functions,
they too are displaced,
demonstrating that the edges of the sheets were not perfectly
aligned with the natural symmetry of the paper.

Determination of the actual axes of preferred orientation by

ANGLE IN DEGREES

Fig 10—Frequency data for fibre segment angular
orientations. Legend: cf. Figure 9.

use of the mean direction parameter Ho not only enables better

<00 -75 -50 -25 0 25 50 75 100
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4-80 BFCL ANGLE

35

FREQUENCY
N
1]
1

n
[e]
I

0/5; L2
ol | 1 ! ] 1 OOQﬁ’O

-100 -75 -50 -25 0 25 50 75
ANGLE IN DEGREES

Fig 11—Frequency data for the angular orientations
based on best fit to segment midpoints.
Legend: cf. Figure 9.
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modelling and testing of
mechanical behaviour, it
also improves the good-
ness of fit of the dis-
tribution
curves. The values for
probability presented in
Table 2 all have been
calculated on the basis
of adjusting for the
actual mean direction.
If one compares these
data with those of unad-
justed curves (assumption
that p, = 0), a substan-
tial difference is often

function

found.
goodness of fit of the
elliptical function to
the end-to-end data
points of specimen 4-80
is 31.1 percent in Table

For example, the

2, a very satisfactory
probability; when the
same [ value (i.e. same
shape of ellipse) is em-
ployed under the assum-

ption that the data are symmetrical (po = 0), the probability
drops to 1.1 percent. Figure 12 presents the cumulative dis-
tribution data for end-to-end orientation.

Figures 13 and 14 show the data points for end-to-end length

distribution and cumulative distribution.
function is used to curve-fiit these data.
distribution are tabulated in Table 3.

An Erlang distribution
Results for length
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Discussion of results

Characteristics of the orientation distribution functions.

Goodness of fit.

Examination of Table 2
and figures 9 to 12, show
that certain characteris-
tiecs in the angular
distribution functions
lead to the conclusion
that, while some func-
tions are usually super-
ior for describing fibre
orientation data, there
is no one function that
is inherently superior
under all conditions.
This point cannot be too
much emphasised, since
every fibre network is
different. The results we
present here are from one
very limited example in-
corporating only one
level of anisotropy.

As previously noted,
the incorporation of a
mean direction parameter

4-80 E-T-E ANGLE

=)

o

CUMULATIVE FREQUENCY (NORMALIZED)

GLU l | ] ] | A
0o 15 30 45 60 75 90
ANGLE IN DEGREES

Fig 12—Cumulative frequency data for fibre end-to-end
angular orientations. Legend: cf. Figure 9.

tests, among other things, the hypothesis that the set of data
points is symmetrical. 1In figures 9 to 11, the only function to
be plotted with LS # 0, the von Mises function, demonstrates
that there is some statistical displacement of the data from an
axis through 0°, and that the axes of symmetry are rotated. In
figure 9 the peak of the von Mises curve is displaced by -7.10,
in figure 10 by -5.7°, and in figure 11 by -6.1°,
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Von Single Two
Mises Elliptical Cosine Term Cosine Term

Shape Factors: K Bo aj aq aj
End-to-end

angle 1.12  =0.12 2.43 0.97 0.97 0.31
Segment angle 0.91 -0.10 2.10 0.83 0.83 0.18
BFCL angle 1.4 -0.11 2.45 1.00 1.15 0.18
P by 2 test
for frequency

%

End-to-end

angle 64,2 31.1 0 60.5
Segment angle 45.6 2.3 8.‘4x10"6 48,3
BFCL angle 1.4 8.5x10™9 1.5 27.2
P by 2 test
for cumulative
frequency, %
End-to-end

angle 99.9+ 4y.2 4.0 99.9+
Segment angle 99.9+ 3.0 25.2 99.9+
BFCL angle 66.0 2.1x1079 2.6 99.9+

Table 2

Shape factors, goodness of fit* of function to data, and
goodness of fit* to cumulative data by Chi-squared test
for 4 orientation distribution functions with results from
specimens of the 4-80 pulp.

* First fit - subject to improvement by further adjustment of
parameters, and additional Chi-squared testing
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Each type of function so- 4-80 E-T-E LENGTH
has certain peculiarities
The single cosine term 45
curve in figure 9 has a

peak substantially lower 40

than the others, indica-

tive of its inability to )

represent highly orien- .

tated sheets with high 2

accuracy. g 25l
The two-cosine term w

curve in figure 9 shows "'m

local minima at 65°:

when the material has an 15

extremely high degree of
orientation, these minima 10
may actually lie below
the x-axis, thus gener-
ating a theoretical dis-
tribution that has no o 5 24
physical validity for

32 40
LENGTH, mm

part of the curve, even Fig13—Frequency data for fibre end-to-end length
measurements in 0.2 mm increments compared

h the sh -
though the ape para with an Erlang distribution.

meters a; and a, give an

acceptable match to the

data on other parts of

the curve, The elliptical function generally shows a poor fit to
the data at fibre orientation angles greater than 50° from the
axis of symmetry (see also figures 10 and 11),

We note from the limited base of data that we have generated
that the highest probabilities for the fit of the cosine
functions tend to occur for the relatively unorientated papers,
the highest von Mises probabilities lie in the middle range of
orientation, and the best elliptical fits occur when data for
very highly orientated material are matched to that function,
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End-to-end Segment Total
Length Length Length

Shape parameter c 3 4 4
Scale parameter b 0.527 0.191 0.41Y4

P by Chi-squared
test for frequency
% 7.3 0 0.87
P by Chi-squared
test for cumulative
frequency, % 79.4 0.01 94,7

Table 3
Shape and scale factors for Erlang probability density function,
goodness of fit of function to data by Chi-squared test, and
goodness of fit to cumulative data, for U4-80 pulp results.

Overall, the percent probability P that the distribution
function describes our data is highest for the two cosine term,
closely followed by the von Mises function (see Table 2).
Somewhat less accurate is the elliptical function. The single
cosine term function is seen generally to be the least accurate.
However, there are several exceptions to this ranking, even in
our limited data: we believe that all of these functions have
utility and that one can use different functions for different
levels of anisotropy and other variability with profit.

Characteristi i distributio

In figure 12 and Table 2 further confirmation is seen that
the von Mises and two cosine term functions describe the data for
4-80 specimens with greater precision than do the elliptical and
single cosine term. The accuracy of the latter is exceeded by
the elliptical function in describing the cumulative frequencies
of orientations based on lines connecting the ends of the fibres,
but the elliptical fit is poor for segment angular orientations
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and very poor for the best fit of segment centre-~line points. For

two of the three measurement techniques used, the probability
exceeds 99.9% that the cumulative frequency is represented by the

von Mises function; this probability level is achieved in all
three cases by the two cosine term function (see Table 2).

Observations concerning the length distributions

4-80 E-T-E LENGTH

1.0~ (1]

(<]
I

~
1

)
i

2
I

S
I

ola_l 1 1 1 1 1 ] J
0 08 16 24 32 40 48 56 €4
LENGTH, mm

Fig 14—Cumulative frequency data for fibre end-to-end
length measurements compared with cumulative Erlang
distribution.

As one can see from
figures 13 and 14 and
Table 3, an Erlang func-
tion fits the observed
length distributions in
an acceptable way, except
for the case of fibre
segment lengths; perhaps
a larger segment length
data base is needed. It
has been observed(2’18)
that the length distribu-
tion makes a significant
contribution to elastic
properties in the case of
low-density paper but not
for high density
an,

On the basis of a very

sheets

limited amount of data,
it appears possible that
there is some periodicity
or preferred orientation
of fibres according to
length distribution., If
so, the result may have
significant structural

(3%)

implications .
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However, we do not yet have sufficient results to draw any
conclusions.

Relations between orientation functions:
comparison and application of results

FREQUENCY
3
I

ol | | L I l I
~100 ] -30 -3 o 25 50 ™ 100
ANGLE IN DEGREES

Fig 15—Elliptical (solid line), single cosine term (dotted line) and
two cosine term (dot-dashed line) distributions adjusted for best
fit to a von Mises distribution (dashed line) with shape parameter
K=15.

In figure 15, a graphical comparison is shown of the four
distributions that illustrate some of the mathematical inter-
relationships between the functions. In this figure, a plot is
made of a von Mises distribution for By = 0 and arbitrarily
assigned K = 1.5 (corresponding to the highest anisotropy
observed in series 5 sheets). An attempt is then made to adjust
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the other 3 functions to fit the von Mises curve using the least
square method. It is seen that no congruence occurs: the best-
fitting elliptical function generates a curve between -50° and
50° that is narrower and higher, while the cosine function curves
are wider and lower. In the 50°-90° range, other disparities
occur. We include this illustration to emphasise that the choice
of distribution function may be different for each data set:
there is no ‘right” function, nor a universal correspondence
between data and function or function and function.

The four fibre orientation distributions can be compared
theoretically by selecting one of the distributions as a
reference. For this purpose, one can neglect many of the factors
that influence paper elasticity and focus attention only on those
factors that depend on fibre orientation. Following the
development given above and relations (19),we can compare all of
the distribution functions by assigning for each distribution the
corresponding values for the Fourier coefficients. For the
present comparison it sufficies to assume the paper is freely
dried and therefore only the coefficients a, and a, are required.
The coefficients a;, a, are given for the elliptical and Von
Mises distributions by relations (27) and (28). The coefficients
for the single cosine, two cosine, and €lliptical distributions
were selected by least squares analysis to match the von Mises
distribution for each choice of the shape parameter K.

Since it is of interest to investigate the influence of the
choice of distribution function on the predicted elastic
properties, the quantities

%% ¥ & a *% % @ a
E =(8p)/lwe E ), E =(8Ep)/wy E )
X x s 1ls fo y y f s 1s fo
%% x @ a
and ¢ =(8 p)/we E )
Xy xy f s 1s fo
and ny, Vyx are plotted in figures 16 to 20. The von Mises

distribution was taken as the reference. The von Mises parameter
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K was assigned values of 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.5, and
2.0. Corresponding values of the elastic parameters were
calculated and plotted with the prediction from the von Mises
distribution as the abscissa.

6.00p
$.50
A
FUNCTION
'g 8.0 Q2 -cosine term A
= | “cosine term
H] A eltiptical ° [ ]
2 x
= aso}- ka3 X2
% L2 1)
- xS
2 x
w400}
xz7
350} x=.3
x=.3
300
Kzl
250 L L | 1 1 1 |

250 3.00 3.50 4.09 450 $.00 350 6.00
2l
Ex (von Mises distribution)

Fig 16—Influence of choice of distribution function on two-
dimensional anisotrpic elastic constants of paper.

1. Prediction of E%* (MD modulus of elasticity) for von
Mises = two cosine term distributions (solid line) vs. elliptical
(black triangles) and single cosine term (black circles)
distributions corresponding to 8 values of the shape para-
meter K.

In this theoretical comparison, there is no discernible
difference between the two cosine term and the von Mises
distributions. The least squares procedure picks essentially the
same values for aq and a, as those corresponding to the Fourier
expansion of the von Mises distribution. Inspection of figures 16
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to 20 shows that the single cosine term distribution predicts a
'Y
constant value of ny as the degree of orientation changes. This

is because the csr.xstant a, = 0 for the single cosine term
distribution and ny =1 - a2/2.
32—
28—
- FUNCTION
-4 = cosine t x|
§ 2 9?:-3:.::::'"':
e A eliptical
2
5 20
¥y

] 1 | | | d

0.4 os 1.2 1.6 20 24 28 32
*

E; (von Mises distribution)

Fig 17—Influence of choice of distribution function on two-
dimensional anisotropic elastic constants of paper.

2. Prediction of EY* (CD modulus of elasticity) for von
Mises = two cosine term distributions (solid line) vs. elliptical
(black triangles) and single cosine term (black circles)
distributions corresponding to 8 values of the shape para-
meter K.
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The figures show that E;., Ey

xy

’ \Y and V are well

¥x

approximated by the single cosine term distributions when the

value of K < 1.0.

’l, (other functions)

so}-
FUNCTION
56— O 2- cosine term
@ | ~cosine term
A etliiptical
52—
o
48— (
44
A
40
Klz
36—
32 ] | |
2 .36 A0 A4 48 52 .56 60

Fig 18—Influence of choice of distribution function on two-
dimensional anisotropic elastic constants of paper.

3. Prediction of Poisson ratio Vxy for von Mises = two cosine
term distributions (solid line) vs. elliptical (black triangles) and
single cosine term (black circles) distributions corresponding to
8 values of the shape parameter K.
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The elliptical distribution provides a better approximation

[T} %
of ny and Ex than the single cosine term distribution but
(1)

appears to provide a less accurate prediction of Ey , ny, and
Vyx' )

32—

FUNCTION
O 2 -cosine term

-~ .28}—. @ | - cosine term K=l
H A elliptical
2
L
i 24—
s
=

.20}—

A6

A
il A
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oelA
[ 4
PO F S | ! | | | |
04 08 Rrd 18 .20 24 .28 .32

Xx (von Mises distrittion)

Fig 19—Influence of choice of distribution function on two-
dimensional anisotropic elastic constants of paper.

4. Prediction of Poisson ratio vyx for von Mises = two cosine
term distributions (solid line) vs. elliptical (black triangles) and
'single cosine term (black circles) distributions corresponding to
8 values of the shape parameter K,



fibre geometry, and mechanical properties 517

-
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Fig 20—Influence of choice of distribution function on two-dimensional
anisotropic elastic constants of paper.

5. Prediction of in-plane shear modulus of rigidity G,*(; for von Mises
= two cosine term distributions (solid line) vs. elliptical (black triangles)
and single cosine term (black circles) distributions corresponding to 8
values of the shape parameter K.

Evaluation of drying restraint stiffening parameter H,

As shown in relations (19), the drying restraint conditions

can be expected to influence the paper anisotropy.

Although the

simple form of relation (15) may not perfectly describe the
stiffening phenomenon, the use of (15) permits one to investigate
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the expected influence of different drying restraint conditions
on the elastic properties through (19), providing the value of
the drying restraint stiffening parameter H can be estimated and
the sheet shrinkage strains axM and ayM are known., The
stiffening parameter H can be estimtated from the experimental
results of Setterholm and Chilson''9). 1In their work, the
samples were handsheets, and hence were characterised by an
isotropic fibre orientation distribution and restrained
uniaxially. The expression for E; =_E; = E from r'ef‘(19) was used
with a, = ay ='ag = 0. The drying shrinkage for Setterholm and
Chilson’s experiments was estimated to be 6%. Based on these
assumptions, the value of H corresponding to their experiments
was found to lie in the range 10 to 30. The.calculated value of
H was found to depend on the choice of restraint conditions.
This finding suggests that E? may depend on eND raised to some
power, This behaviour can be readily incorporated into the
theory described above; however, it is suggested that more
experimental work is needed before the choice of the most
satisfactory form for the stiffening relation can be made.

ompari f mechanic d theoreti diction
regarding orientation anisotropy

A series of tests was carried out with the intent of testing
the capability of relations (19) to predict the influence of
fibre orientation distribution. As mentioned above, 5 series of
papers were prepared at the Swedish Forest Products Research
Laboratory using a ‘Formette Dynamique’ apparatus., The samples
were dried by placingﬁhem on a metal plate. Thus, the samples
that were made were very flat after drying. The exact conditions
of restraint are not known for this experimental procedure, One
might expect that the procedure would correspond to completely
uniform restraint, i.e.,, eyp = e D= 0. This condition would be
expected to result in different stiffening effects for different
orientation directions in as much as the shrinkage strain axM and
ayM must depend on fibre orientation distribution (cf. Gal lay(zo)
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and de Ruvo(21)). In fact, if the x-direction corresponds to the
‘machine direction” one would expect the fibres that are aligned
in the y-direction to experience more stiffening since ayM > axM.
This will be expected to reduce the observed anisotropy of the
Young’s moduli from that anticipated on the basis of fibre
orientation effects. Based on the estimate of the stiffening
parameter H from Setterholm and Chilson's(19) experiments that
was discussed above, the magnitude of the elastic modulus
anisotropy due to drying restraint can be estimated by direct
application of relations (19). In making these calculations we
set H = 10 and (ayM + ayM)/Z = 0,06, Young’s modulus
measurements of E; and E; were made for each orientation level
from 1 to 5. Using the procedures that were discussed in detail
above, estimates were made of the orientation parameters aq, ap
and ag, the elliptical distribution parameter [, and the von
Mises parameter K, A comparison between the theoretical and
experimentally obtained ratios E;/E; was made by plotting the
ratio predicted from relations (19), (E;/E;)pre, versus the ratio
obtained from mechanical testing, (E§/E§)exp' Interestingly, it
was found that relations (19) closely predict the experimentally
observed results when the sheet was assumed to have been dried
under conditions of no restrant. Evidently the procedure of
drying the samples on a metal plate was not characterised by
uniform restraint. In fact, this procedure is apparently closer
to freely dried conditions in so far as loading the fibres during
the drying process is concerned.

The results of the experimental-theoretical comparison are
illustrated in figure 21. The experimental scatter present is
attributed primarily to the problems associated with conducting
the mechanical measurements of Young’s modulus, and forming the
ratios of values for different samples. Probably a larger number
of replications would reduce the amount of scatter. Nonetheless,
the results show a remarkably good correlation between the
theoretical and experimental values, If there is any tendency
for a consistent departure from perfect correlation, it is for
the experimental ratios to be higher than the ratios predicted
from the observed fibre orientation distributions.
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Fig 21—Relation between ratio (Ex/Ey)pgg found from relations (19)
with direct measurement of fibre orientation and (Ex/Ey)pxp found
from mechanical tests.

Thus, the mechanical tests showed a higher anisotropy than
would be expected on the basis of fibre orientation effect. Any
influence of drying restraint would have produced exactly the
opposite trend; therefore, the restraint during drying, although
perhaps not perfectly predicted by relation (15), was not a
factor in this study. As an example, consider the experimental
results from the level 5 orientation and 80g/m2 basis weight
sheets., Based on the estimated value of H = 10 and average
shrinkage strain of 6%, the Young’s modulus ratio would be
predicted to be approximately 3.3. As shown in figure 21, the
ratio obtained from the mechanical tests was about 4.5.
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It is also of interest to note from figure 21 that the
elliptical distribution gives rise to a lower estimate for the
E;/E* ratio at the higher orientation levels than does the von
Mises distribution. This behaviour is consistent with that shown
in figures 16 to 20 to be characteristic of the elliptical

distribution.

It was noted above
that relations (19) pre-
dict that G;y is expected
to decrease with in-

1LIof- creased orientation ani-
O vor Mises ditribution | sotropy provided that the
00 L4 Elliptical dstribution_| coefficient a, is not

dropped. The results for
the Young’s modulus

=0m— ratios indicate that
g drying restraint effects
8 were negligible for the
& 080 present experimental
material. Therefore,
070k relation (19) predicts
! ! | ] | that G§y is proportional

0 Y] 02 03 0.4 05

Fibre Orientation Parameler,a, to the quantity 2 - a,.
The experimental values
Hg22-Ex$ggnHHMyfme?zfG;Ynonpmumjwnh of ny were obtained by a
:ezs;()sfc'trte(l)ation (r?;t)e)zlrla vs. fibre orientation parameter torsion pendulugl method
for the 80g/m“ basis
weight material and the 5
orientation levels. ‘A
comparison between the
theoretical and experimental results is shown in figure 22, where
the data has been normalised with respect to the level 1
material, Both the predicted and the experimental results are
observed to decrease with increasing anisotropy as expected.

It is worth noting that relation (19) can be used as a basis
for predicting the elastic constants G;y, and ny, Vyx from
measurements of the Young’s moduli in the machine and cross-
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machine directions., If the conditions of drying restraint are
known or can be reasonably approximated, and if experimental
values for E. and Ey are available, relation (19) can be used to
calculate the ratio E /Ey. It is recommended that the parameters
aj, ax- and as be represented in terms of the von Mises shape
parameter K with the help of eq. (27). Then, the experimentally
obtained value of’Ex/Ey can be used to calculate K. This
value of K can be used with the remaining relations to estimate
G;y, ny and Vyx' This procedure has been found to give quite
satisfactory predictions when employed on the experimental
results reported by Jones(12X

1 i i istrib a he
coupling parameters a

Inspection of relations (5) through (19) shows that the in-
plane elastic properties of a paper sheet depend on basis weight
Wy, apparent fibre density p?, apparent fibre modulus Ea, and the
length distribution factor P1g° E% depends not only on the true
elastic modulus of the cell wall material but on the degree of
bonding of fibres, i.e., the relative bonded area (RBA) and the
stiffness of the fibre-to-fibre bonds., Moreover, E% depends on
the loading of the fibre during the drying of the sheet.

The length distribution factor Ps depends, of course, on the
actual length distribution of the fibre segments lS and, as
discussed above, the Erlang distribution with parameters b and c,
appears to be Satisfactory for describing the distributions in
paper. The length factor wls also depends very strongly on the
degree of couplng of the fibres to the remainder of the network
as described by the coupling parameter a (cf. relation (7)). The
degree of coupling depends both on the bending and shearing of
crossing fibres and on the shear stiffness of the fibre-to-fibre
bond. Bending and shearing effects predominate when the relative
bonded areas are very low as in the case of tissue papers. In
the case of moderate density papers, the bending and shearing
effects are negligible and the shear stiffness of the fibre-to-
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fibre bonds dominates the behaviour of the system, For either
coupling mechanism, the effects of length distribution will be
important only when the coupling is quite weak. An indication of
the magnitude of the length effect can be seen in an example
based on the data that has been collected in the present study.

If one confines attention to the moderate density range, the
coupling can be approximately expressed in the form

f1oc
aL £ 20 RBA L _aB (30)
we | Ef

The coupling efficiency n; can be approximated as
0. £ 1 - 1/2aL (31)

Using relation (14), one finds that

c Yr 1 Er
1 e — —  — — (32)

(e=1) <1p> 20 RBA  [10G,

kpls -

The parameter c, the shape parameter for the Erlang
distribution, was found to have the value 4 for the case of the
SOg/m2 basis weight level 4 orientation sample material. For
this material, it was estimated that RBA = 0.5, the average
segment length <1;> was found to be 0,76 mm, and the ratio
Wwg/<1lg> was taken to be 1/40. Of course, the value of P,g now
depends on knowing the bond shear stiffness Gb. Unfortunately,
there is no experimental data presently available that can be
used to estimate Gy, however some indications of the dependence
of P15 on G, can be obtained from relation (32), For example, if
the value of Gb/E? is taken as 10, P, is found to be 0.96, If
the bond stiffness were decreased to make the ratio 10'4, then
@15 would be found to have the value 0.89. Evidently quite
small values of the ratio Gb/E% would be necessary in order for
the length distribution to have a noticeable effect on the
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elastic behaviour., It is apparent that more experimental work is
needed, especially where papers having substantially different
measured values of ¢ and <ls> are to be compared. Inasmuch as
both the length distribution and the coupling are so closely
interrelated it will be necessary to have extensive experimental
information concerning the relative bonded area as well. It
should also be recognised that even though ¢,4 may not
significantly influence the elastic properties, the length
distribution may in fact have an important effect on the strength
properties of the sheet.
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Transcription of Discussion

Discussion following papers given by Prof. R.W. Perkins,
and by Dr. C. Fellers.

Prof. J. Silvy, Ecole Francaise de Papeterie

Firstly, in the example given of the length distribution, was
the sample beaten?

Secondly, how long does it take to obtain the information
from a complete run in your process?

Prof. R.W. Perkins, Syracuse University, USA

I don’t think the pulp was beaten, but I am not certain
because it comes ready prepared from STFI. I do know that it
was a bleached softwood kraft.

Our procedure is quite rapid, because although the digitising
must be done manually, to do it the cursor need only be placed on
each individual point. No intermediate stopping or steps are
necessary. The total time for a run involves the manufacture and
digitising, and this was done for all 600 fibres per sample.

Prof. J. Silvy
As a point of information, it takes us an hour and a half to
digitise 1800 fibres at Grenoble.





