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The mechanical equilibrium of two fluids separated by a
curved interface requires the existence of a hydrostatic
pressure, Ap between them; this is given by the Laplace
equation :

Ap = -yc

Here, ly is the interfacial tension between the fluid and C is the
mean curvature of the interface, defined as 1/Rj + 1/R2 where R,
and R2 are the principal radii of curvature . For a spherical
surface of radius R, we have R, = R2 : R, and the Laplace
equation takes the familiar form :

Ap = 2y/R

An important feature of the Laplace equation is that it
defines a pressure difference. The curvature must therefore be
given an algebraic sign in order to give the correct sense to gyp.
the convention adopted is such that the pressure is higher on the
concave' side of the interface than on the `convex' side . Thus,
the pressure is higher inside a gas bubble than in the
surrounding liquid . (A consequence is that small bubbles, or
fine particles, show an enhanced solubility) .

By the same token, a wetting liquid in a fine capillary
exists under a lower pressure than the surrounding gas, since the
meniscus formed is concave towards the gas . Indeed, combining
the Lag lace equation with the expression

	

for the gravitational
head in a vertical tube leads immediately to the familiar
equation of capillary rise :

h = 2y. cos G
r. p. g
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(The relationship between the meniscus radius R, the capillary
radius r and the contact angle 8 is implied by Figure 1 .)

The Laplace equation underlies the
fluid penetration method of pore size
measurement described by Mr . Ranger (see
e .g . equation (4) of his paper), and
also methods based on static capillary
suction for wetting liquids, and
intrusion of non-wetting liquids like
mercury, when the contact angle exceeds
90 0, cos 0 becomes negative and Ap
changes sign, so that excess pressure is
needed to force mercury into the pores .

Fig 1

	

For the case of a wetting liquid in
equilibrium with a gas at atmospheric
pressure, the Laplace pressure
deficiency in the liquid may exceed one

atmosphere if the capillary or pore, is sufficiently small . For
water with

	

72mNm-1 (and assuming zero contact angle) this
will happen in pores of about 1 .4 pm radius and smaller, and the
liquid will now exist under a negative pressure, or tension.

The van der Waals isotherm of a
typical fluid below its critical
temperature is sketched in figure 2 .
The unstable region BC (where the
compressibility is negative) sepa-
rates the liquid curve AB from the
vapour curve CD (where the product
is approximately constant) . The
liquid can exist metastably at nega-
tive pressure right down to B, where
the compressibility becomes infinite
and the liquid 'bursts' .

For common liquids well below the
critical temperature,

	

the negative

	

Fig 2
pressure at B is of the order of a
hundred atmospheres or more .
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Thus, in the absence of nucleation centres, liquids can
withstand quite large tensile stresses or 'negative pressures .

Attempts to measure the limiting tensile strengths of
liquids ( ' ) have encountered difficulties, largely because of the
problems of excluding nuclei, such as dust particles, on which
vapour bubbles may well form well before the tensile limit is
reached .

	

It appears however that when the liquid is confined in
small pores, the pore space may be too small to permit the
formation of a nucleus of critical size (2) .

	

Thus, there is no
doubt that a capillary-held liquid can exist under quite
substantial negative pressures .

This has several practical consequences . The tensile force
in the liquid is transmitted to the pore walls and thus the
porous solid will behave as though under compression . Indeed,
it is well-known that even quite porous solids, such as carbon
and porous glasses, shrink when desorption of capillary
condensate begins . A more commonplace example is the way in
which the bristles of a wetted paint-brush cling together when
the first liquid is removed from between them. Some porous media
undergo irreversible structural changes on drying, partly
attributable to inelastic deformation under this capillary
stress .

This is the obverse of the effect seen in mercury intrusion
porosimetry, where the liquid is under a positive excess pressure
because the interfacial curvature is in the opposite sense .
Again, the solid distorts to accommodate the imposed stress .

A further consequence is that in extremely fine-pored solids,
the negative pressure in a capillary-condensed liquid may exceed
the liquids true tensile strength, thus imposing a lower limit
on the pore size in which capillary condensation can occur. This
possibility was foreseen several years ago by Schofield(3 ), and
has more recently been shown to be consistent with experimental
results ( 4,5 )

In summary, the pressure deficiency in a capillary-held
liquid, which arises from negative interfacial curvature, may
exoeed the liquids vapour pressure if the pore size is smaller
than 1-2 prr_ . The liquid is then subjected to a negative






