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A new method for predicting wood moisture content using terahertz (THz) 
time-domain spectroscopy (TDS) is presented in this paper. The THz wave 
is a promising method in measuring wood moisture content due to its 
sensitivity to water, impressive penetration ability in wood, and no 
destructive effect on wood interior. In this study, the selected wood, 
Douglas fir (Pseudotsuga menziesii), with different moisture content was 
studied. THz-TDS was used to extract the optical parameter of the sample. 
The THz refractive index and absorption coefficient spectrum of the wood 
were calculated. The first and second derivatives of the absorption 
coefficient spectrum were processed to obtain the first and second 
derivative spectra. The successive projections algorithm (SPA) was used 
to select the characteristic frequency for the THz absorption coefficient 
spectrum and its first and second derivative spectrum of the wood. A 
regression prediction model of wood moisture content was established by 
partial least squares regression (PLS). The results showed that the 
proposed model based on the second derivative spectrum had the best 
prediction effect for the moisture content of wood. 
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INTRODUCTION 
 

Wood drying is an essential procedure to improve wood quality and utilization rate. 
In this process, wood moisture content is a key parameter because one can choose a 
scientific drying technology. For instance, when the moisture content of wood is high, it is 
necessary to use lower temperature and higher humidity. When the moisture content is 
approximately 30%, the drying must be carried out slowly. Drying without knowing the 
moisture content of the wood may lead to cracking, warping, and wood defects. Therefore, 
it is necessary to detect wood moisture content accurately ahead of time. 

Traditional methods of wood moisture content detection include the weighing 
method, conductivity method, capacitance method, and microwave method (Schajer et al. 
2006; Zhou et al. 2011; Koumbi-Mounanga et al. 2015). The weighing method can obtain 
accurate measurement results. However, the testing process is time-consuming and greatly 
influenced by human factors. The resistance method determines the wood moisture content 
by measuring the resistance between two electrodes, which is based on the conductivity of 
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moisture in wood. When measuring the moisture content near the fiber saturation point, 
the measured value will suddenly deviate from the true value. The microwave method is 
used to measure the wood moisture content, and the relationship between the microwave 
and the wood moisture content can be determined. However, the measurement range is 
limited and affected by the temperature and humidity in the wood drying room, which leads 
to a large measurement error. Therefore, developing a non-contact and non-destructive 
detecting approach to obtain accurate wood moisture content during the drying process is 
an important issue that urgently needs to be solved.  

Many researchers resort to spectral analysis methods due to their characteristics of 
rapidity and non-destructiveness. The nuclear magnetic resonance (NMR) (Almeida et al. 
2007; Xu et al. 2017) method has high precision and speed, but it has a requirement on the 
size of the sample and is expensive. Near infrared (NIR) spectroscopy (Watanabe et al. 
2011; Kobori et al. 2013) can also be utilized to measure wood water content rapidly and 
nondestructively, but the poor penetration makes it helpless for measuring the inside of the 
wood. X-rays (Tanaka et al. 2009; Kim et al. 2015) have outstanding penetration in wood, 
but they are harmful to the human body. 

Terahertz (THz) spectroscopy has emerged as an important spectral analysis 
technique in recent years. The THz spectrum contains abundant physical and chemical 
information of the measured object. The weak intermolecular interactions, such as van der 
Waals force and hydrogen bond, as well as the molecular structure and related 
environmental information reflected by the skeleton vibration, dipole vibration, rotation 
transition of many macromolecules, and the low-frequency vibration of crystal lattice, have 
obvious response to the absorption intensity and the location of absorption peak in THz 
absorption spectrum (Zhang et al. 2007a). The THz time-domain spectroscopy (THz-TDS) 
spectrum can be used to calculate the optical parameters, such as the absorption coefficient, 
refractive index, and dielectric constant, of the sample. These parameters can be used to 
analyze the composition, structure, physical and chemical properties of the materials. Due 
to its strong correlation to water and good penetration in wood, THz wave is suitable for 
wood moisture content detection. 

In this paper, THz-TDS technique was used to predict the water content of Douglas 
fir. The authors collected THz time-domain spectra at different moisture content of the 
wood and calculated its absorption coefficient and refractive index spectra. It was found 
that the absorption coefficient spectrum had a strong relationship with water content. 
Furthermore, the first and second derivatives of the absorption coefficient spectrum were 
processed. Then, the successive projection algorithm (SPA) was used to select the 
characteristic frequency and the partial least squares (PLS) was used to establish a 
regression prediction model. The results showed that the SPA-PLS model can accurately 
detect the moisture content of wood and the model based on the second derivative spectrum 
displayed the best prediction effect. 
  
 
ALGORITHM THEORY 
 
Successive Projections Algorithm 

The SPA is a forward variable selection algorithm to minimize the collinearity of 
vector space, which was proposed by Bregman in 1965 (Almeida et al. 2018). The 
advantage of this method is that it can extract several characteristic wavelengths of the 
whole band, thus eliminating redundant information in the original spectral matrix. The 
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SPA is a cyclic variable selection method. The projection vectors of the selected 
frequencies on the unselected frequencies are computed cyclically, and the maximum 
frequency of the projection module is taken as the selected variable. Therefore, the 
correlation between the selected frequencies and the previous frequencies is the weakest. 
The SPA calculation is simple and fast. The method is generally used to select a 
characteristic wavelength of near infrared spectroscopy (ISO 3130 (1975)). In this study, 
the characteristic frequency of THz absorption coefficient spectrum and refractive index 
spectrum were screened by SPA. 

Taking the spectral data set Xixj of j frequencies of i samples as an example, the 
steps of SPA are as follows: 

(1) Before iteration, the m column of spectral training set data is assigned to xm(1), m ∊ 1, 
2, … j. 

(2) Set the unselected frequencies as S : 

[ ]{ },1 , (1), (2), ( )S m m p p m m m i= ≤ ≤ ∉        (1) 

(3) Calculate the projection of the selected frequency in the residual vector xk, and select 
the maximum frequency of the projection vector. Cyclic calculation until all frequencies 
have been calculated: 

( )( 1)( 1) arg max ,m im i x i S+
 + = ∈         (2) 

(4) The multiple linear regression model is established by using the variables in the subset, 
and the subset with the minimum root mean square error is selected to carry out stepwise 
regression modeling, and the least characteristic variables are selected on the premise of 
guaranteeing accuracy. 

 
Partial Least Squares  

The PLS algorithm is a regression modeling method of multiple dependent 
variables to multiple independent variables, which realizes the combination of multiple 
linear regression, principal component analysis, and canonical correlation analysis.  

The principle of PLS regression modeling is as follows: The sets of dependent 
variables and independent variables are Y = (y1, y2,…yq), yj∈Rn, and X = (x1, x2,…xp), xi∈Rn. 
Then, PLS extracts component t1 from X and component u1 from Y, where t1 is the linear 
combination of x1,x2,…xp, u1 is the linear combination of y1, y2,…yq. The extracted 
components should satisfy the following two requirements: Firstly, t1 and u1 should carry 
the variation information in their respective data tables to the greatest extent; Secondly, t1 
and u1 have the greatest correlation. After the first components t1and u1 are obtained, the 
regressions of X to t1 and Y to u1 are calculated. If the accuracy of the regression equation 
does not meet the requirements, the residual information is used to extract the components. 
The m components t1, t2,…tm extracted by X are analyzed by yk(k = 1, 2…, q)regression 
method, and finally reduced to the equation of yk about x1 ,x2,…xp. 

The PLS regression model needs principal component analysis. The determination 
of principal component has a great impact on the accuracy of the model. Predictive residual 
sum of squares (Sspre) and cross validation are usually used to find the optimal number of 
principal components. The smaller the Sspre value, the higher the prediction accuracy of the 
model is. The Sspre can be calculated by: 
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𝑆𝑆spre  =  ∑(yi − 𝑦𝑦�𝑖𝑖)2        (3) 
where iy  is the standard data and ˆiy  is the predicted data. 
 
Model Evaluation Index 

The accuracy of the regression prediction model needs to be judged after it is 
established. The accuracy of the model is mainly evaluated through fitting degree, 
correlation coefficient, and root mean square error (RMSE) in this paper. 

Fitting degree is expressed by R2, whose range is [0, 1]. The closer its value is to 1, 
the better the fitting degree of the model is. Fitting degree is given as follows, 
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where n is the number of sample, yi is the standard value, 𝑦𝑦�𝒊𝒊 is the predicted value, and 𝑦𝑦�𝑖𝑖 
is the average of the standard value. 

Variable 𝑟𝑟(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖)stands for the correlation coefficient. If 𝑟𝑟(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) > 0, it indicates 
that the two variables are positively correlated. In contrast, if 𝑟𝑟(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) < 0 it means that 
they are negatively correlated. The closer|𝑟𝑟(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖)|approaches 1, the closer the linear 
relationship between the two variables is. The closer |𝑟𝑟(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖)| approaches 0, the weaker 
the linear correlation between the two variables is. Correlation coefficient is defined as Eq. 
5,  

ˆCov( , )ˆ( , )
ˆVar[ ]Var[ ]

i i
i i

i i

y yr y y
y y

=          (5) 

where Cov(yi, 𝑦𝑦�𝑖𝑖 ) is the covariance between yi and𝑦𝑦�𝑖𝑖 , and Var[yi] and Var[𝑦𝑦�𝑖𝑖 ] are the 
variances of yi and 𝑦𝑦�𝑖𝑖, respectively.  

The RMSE is used to measure the deviation between the observed value and the 
true value. The smaller the RMSE of the samples in the prediction set, the better the fitting 
and prediction effect of the model is. The RMSE is expressed as follows: 

1

1 ˆRMSE ( )n
i ii

y y
n =

= −∑          (6) 

 
 
EXPERIMENTAL 
 

Douglas fir was selected to be the experimental material. The authors made 5 pieces 
of wood samples. The samples were cut transversely and the sizes of each sample were 50 
mm × 30 mm × 5 mm. 

 
Standard Moisture Content Determination Method 

According to the method for determination of the density of wood (ISO 3131 
(1975)), the wood samples were placed in a drying box and dried at 103 ± 2 ℃ for 8 h 
(Zhao et al. 2018). Then, an electronic balance with accuracy of 0.001 g was used to weigh 
the quality. During the drying course, wood samples were weighed every 2 h and THz 
time-domain spectrum was acquired after each weighing. The test ended when the change 
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of sample weight was less than the sample mass, which means the wood was absolutely 
dried. The process is shown in Fig. 1. 

 
Weight measurement 

(m1)

Oven drying 8 h 
(103±2 ℃)

Weight 
measurement

Whether the 
weight changes?Air drying (2 h)

Weight measurement 
(m0)

N
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Fig. 1. Wood moisture content measurement process 

 
The moisture content of wood was calculated according to the following Eq. 7, 

1 0

0

100 %m mW
m
−

= ×         (7) 

where m1 is the sample weight (g) in the experiment and m0 is the sample weight (g) when 
absolutely dried. 
 
THz Time-Domain Spectrum Acquisition 

The THz-TDS is a coherent measurement technology of wideband THz pulse, 
which can detect the amplitude and phase information of THz pulse at the same time, and 
the spectral information can be achieved by Fourier transform infrared spectroscopy 
(Gribenyukov et al. 2018). It is convenient to extract the refractive index, absorption 
coefficient, extinction coefficient, and other optical parameters of the sample from the 
THz-TDS spectrum. Then, some physical properties and chemical information of samples 
can be obtained by analyzing these optical parameters. 

According to the collection mode of THz spectrum, the THz-TDS system can be 
divided into transmission type and reflection type. In practical operation, the appropriate 
THz spectrum measurement method should be varied according to different samples and 
experimental conditions. When the tested samples are thin or the absorption intensity to 



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Duan et al. (2022). “Prediction of wood moisture,” BioResources 17(3), 4745-4762.  4750 

THz pulses is low, the THz time-domain spectra of samples can be better obtained by 
transmission type. The THz time-domain spectroscopy system used in this paper is the 
transmission type. 

In this paper, the THz spectra of wood samples were collected by the THz-TDS 
equipment (MenloSystems, Martinsried, Germany) in the State Key Laboratory of 
Precision Measurement Technology and Instruments of Tianjin University. The operating 
wavelength range of the equipment is 780 to 1650 nm, pulse width is 90 fs, total average 
output power is 500 mw, and repetition rate is 100 mHz. The block diagram of the THz-
TDS system is shown in Fig. 2. 

 
Fs laser
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Amplifier

Chopper

Current
Amplifier

Motor
Controller

M3

M2
THzTHz

PM1

PM2

PM4

PM3

Delay line

LensLensM1

Splitter

Sample

Computer

 
 
Fig. 2. THz-TDS system diagram 
 

The wood samples were placed at the communal focus of parabolic mirror PM2 
and PM3 of THz-TDS system, and the THz wave was perpendicular to the wood texture. 
The transmission spectra of samples can be obtained by a scanning operation. A set of 
reference spectra with no samples were measured before the scanning operation. The 
frequency-domain spectra of the samples and reference signals were obtained after fast 
Fourier transform (FFT) was applied to the time-domain signal (TERA K15; 
MenloSystems, Martinsried, Germany). 
 
 
RESULTS AND DISCUSSION 

 
THz Spectral Analysis 

The original THz time-domain spectra of wood were obtained by transmission of 
THz-TDS. In order to reduce the influence of ambient noise, each sample was measured 
three times and the average value was taken as the detection result. A total of 200 groups 
of wood THz spectra below fiber saturation point were obtained in the test, including 
moisture content ranged from 1.29% to 35.49%.  
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Five kinds of wood THz spectra with different moisture contents were selected to 
display how the spectral waveform change with moisture content, which is shown in Fig. 
3. Compared with the reference spectra, the THz time-domain spectra of wood samples 
had a certain delay in time and an attenuation in amplitude. The time delay increased along 
with the moisture content of wood samples, while the amplitude decreased with it. In order 
to eliminate the measurement errors caused by factors such as equipment accuracy, water 
vapor in air, and the oscillation caused by reflection and refraction of THz wave, the wood 
THz time-domain spectral data were intercepted by Windowing. 

 

 
 
Fig. 3. THz time-domain waveform of wood samples with different moisture content 

 

 
Fig. 4. THz frequency-domain waveform of wood samples with different moisture content 



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Duan et al. (2022). “Prediction of wood moisture,” BioResources 17(3), 4745-4762.  4752 

The THz frequency-domain spectra of wood samples can be obtained by 
performing FFT to the time-domain spectra, which is shown in Fig. 4. It can be seen that 
the trend of the spectral waveform of wood samples with different moisture content was 
similar. However, the amplitudes were quite different. With the increase of moisture 
content of wood samples, the THz spectrum amplitude of wood samples decreased. 

In conclusion, the THz time-domain waveform of wood samples with different 
moisture content showed different time delay and amplitude attenuation. The amplitude 
was negatively correlated with the moisture content of wood samples, while the time delay 
was positively correlated with it. In frequency-domain, the THz waveform of wood 
samples further showed the amplitude-frequency characteristics with different moisture 
content. The amplitude was negatively correlated with the moisture content of wood 
samples. It showed that it was feasible to use THz wave to predict wood moisture content. 

 
THz Optical Parameter Extraction 

According to the optical constants extracting model based on THz time-domain 
spectroscopy proposed by Dorney and Duvillaret, the absorption coefficient and refractive 
index can be calculated based on THz frequency (Li et al. 2014).  

Macroscopic optical properties of samples can be described by complex refractive 
index, 

n n ik= −           (8) 

where ñ is complex refractive index and n is real refractive index, which is used to describe 
the dispersion characteristics of samples, and k is extinction coefficient, which is used to 
describe the absorption characteristics of samples. 

The refractive index of THz spectrum can be expressed as follows, 

( )( ) 1cn
d

ϕ ωω
ω

= +          (9)  

and the expression of the absorbance is shown below in Eq. 10, 

2

2 4 ( )( ) ln
( )( ( ) 1)

n
d n

ωα ω
ρ ω ω

=
+

        (10) 

where n(ω) is the real part of refractive index, d denotes the sample thickness (m), c is the 
velocity (m/s) of the THz wave propagating in a vacuum, ω is angular frequency, and ρ(ω) 
and φ(ω) represent the amplitude ratio and phase difference between sample signal and 
reference signal, respectively.  

The absorption coefficient and refractive index spectrum are shown in Fig. 5 and 
Fig. 6. It can be seen from Fig. 5 that THz absorption coefficient spectrum was greatly 
influenced by water content. Though the waveform trends and the position of absorption 
peaks were basically the same, there were quite differences in the absorption intensity. The 
THz absorption intensity of wood enhanced with the increase of moisture content, 
indicating that the THz absorption intensity of wood was positively correlated with the 
moisture content of wood. In Fig. 6, the refractive index spectra of different water content 
seemed similar in appearance, no clear pattern was found. Therefore, the authors chose the 
THz absorption coefficient spectrum to predict the moisture content of wood in this paper. 
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Fig. 5. Waveform of THz absorption coefficient of wood samples at different moisture contents 
 

 
 
Fig. 6. THz refractive index waveform of wood samples with different moisture content 
 
Spectral Derivative Processing 

To eliminate the baseline drift of the spectrum, enhance the spectral characteristics, 
and reduce the noise influence of the instrument itself, the first derivative and the second 
derivative of the absorption coefficient spectrum were processed to obtain the first 
derivative spectrum and the second derivative spectrum, as shown in Figs. 7 and 8. 
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Fig. 7. First derivative waveform 
 

 
 
Fig. 8. Second derivative waveform 

 
Spectral Characteristic Selection 

The characteristic frequencies of THz absorption coefficient spectrum, first 
derivative spectrum, and second derivative spectrum were selected by SPA. As shown in 
Fig. 9, seven characteristic frequency points were selected from the135 frequency points 
of absorption coefficient spectrum, accounting for 5.18% of all frequency bands. Figure 10 
shows the variation of RMSE value with the increase of the number of variables. It can be 
seen that the RMSE decreased with the increase of variables at the beginning. When the 
number was 7, the RMSE reduced to 0.02421 and tended to be stable. 
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Fig. 9. Characteristic frequencies selection of absorption coefficient spectrum 
 

 
Fig. 10. Variation of RMSE with the number of variables in absorption coefficient spectrum 

 
The SPA screened nine characteristic frequency points from a total 135 frequency 

points of first derivative spectrum, accounting for 6.67% of all frequency bands, which is 
shown in Fig. 11. The RMSE was 0.0362, and the RMSE variation with the number of 
characteristic variables is shown in Fig. 12. 
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Fig. 11. Characteristic frequency selection of first derivative spectrum 
 

 
 
Fig. 12. Variation of RMSE with the number of variables in first derivative spectrum 

 
As shown in Fig. 13, approximately 16 characteristic frequency points were 

screened from 135 frequency points of second derivative spectrum, accounting for 11.85% 
of all frequency bands. The RMSE was 0.0364, and the RMSE variation with the number 
of characteristic variables is shown in Fig. 14. 
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Fig. 13. Characteristic frequency selection of second derivative spectrum 
 

 
 

Fig. 14. Variation of RMSE with the number of variables in second derivative spectrum 
 

PLS Modeling and Evaluation 
The authors respectively divided 200 sets of THz absorption coefficient spectra, 

first derivative spectra, and second derivative spectra into two groups, 150 groups as 
training set and 50 groups as test set. The PLS regression prediction model was established 
using training set, then the data of test set are predicted. 

The PLS prediction model of wood moisture content was established based on THz 
absorption coefficient spectrum, first derivative spectrum, and second derivative spectrum. 
Figures 15, 16, and 17 show the scatter plots of PLS model based on training set and test 
set of three kinds of spectra, respectively. 
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Fig. 15. Scattered plot of absorption coefficient SPA-PLS prediction results based on training set 
and test set 
 

 
 
Fig. 16. Scattered plot of first derivative SPA-PLS prediction results based on training set and test 
set 
 

 
 
Fig. 17. Scattered plot of second derivative SPA-PLS prediction results based on training 
set and test set 
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By analyzing the fitting results of scatter plots, the SPA-PLS prediction model 
based on the second derivative spectrum had the best fitting effect on the training set, while 
the absorption coefficient spectrum had the worst performance. The results showed that the 
derivative processing had an obvious effect on reducing noise and enhancing spectral 
characteristics, thus the prediction accuracy of the model was improved.  

The fitting degree, correlation coefficient, and RMSE were used to evaluate the 
model, which is shown in Tables 1, 2, and 3. The results of training set and test set of PLS 
model were compared in different frequency bands of 0.2 to 1 THz and the feature 
frequencies screened by SPA. 

 
Table 1. PLS Prediction Model Based on Absorption Coefficient 

 
Frequency 

(THz) 

 
Number of 
Principal 

Components 

Training Testing 

R2 Correlation 
Coefficient RMSE R2 Correlation 

Coefficient RMSE 

0.2 to 0.4 2 0.8871 0.9419 0.0296 0.9148 0.9374 0.0170 

0.4 to 0.6 3 0.8877 0.9422 0.0295 0.9011 0.9398 0.0166 

0.6 to 0.8 3 0.8355 0.9141 0.0358 0.7952 0.8496 0.0259 

0.8 to 1.0 3 0.7965 0.8925 0.0398 0.8007 0.7902 0.0305 

SPA 2 0.9245 0.9615 0.0242 0.9221 0.9613 0.0133 

 
Table 2. PLS Prediction Model Based on First Derivative 

 
Frequency 

(THz) 

 
Number of 
Principal 

Components 

Training Testing 

R2 Correlation 
Coefficient RMSE R2 Correlation 

Coefficient RMSE 

0.2 to 0.4 3 0.8294 0.9107 0.0364 0.8599 0.8798 0.0236 

0.4 to 0.6 2 0.7605 0.8721 0.0432 0.8592 0.7736 0.0324 

0.6 to 0.8 3 0.7011 0.8373 0.0482 0.7862 0.8255 0.0284 

0.8 to 1.0 3 0.6111 0.7817 0.0550 0.3621 0.7378 0.0344 

SPA 2 0.9332 0.9660 0.0228 0.9527 0.9751 0.0107 

 
By comparing and analyzing Tables 1, 2, and 3, the fitting and prediction results of 

the three spectra in PLS screening band were better than those in 0.2 to 1 THz band. The 
principal component of SPA-PLS model based on absorption coefficient spectrum was 2, 
the fitting degree of training set was 0.9245, the correlation coefficient was 0.9615, the 
RMSE was 0.0242. In the test set, the fitting degree was 0.9221, the correlation coefficient 
was 0.9613, and the RMSE was 0.0133.  

The principal component of SPA-PLS model based on first derivative spectrum was 
2, the fitting degree of training set was 0.9332, the correlation coefficient was 0.9660, the 
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RMSE was 0.0228. In the test set, the fitting degree was 0.9527, the correlation coefficient 
was 0.9751, and the RMSE was 0.0107.  

 
Table 3. PLS Prediction Model Based on Second Derivative 

 
Frequency 

(THz) 

 
Number of 
Principal 

Components 

Training Testing 

R2 Correlation 
Coefficient RMSE R2 Correlation 

Coefficient RMSE 

0.2 to 0.4 2 0.8406 0.9168 0.0352 0.8809 0.8703 0.0262 

0.4 to 0.6 3 0.8575 0.8986 0.0387 0.9020 0.9009 0.0216 

0.6 to 0.8 3 0.7260 0.8520 0.0462 0.8619 0.8241 0.0281 

0.8 to 1.0 3 0.6307 0.7942 0.0536 0.4532 0.5186 0.0432 

SPA 4 0.9636 0.9816 0.0168 0.9921 0.9587 0.0143 

 
The principal component of SPA-PLS model based on second derivative spectrum 

was 4, the fitting degree of training set was 0.9636, the correlation coefficient was 0.9816, 
the RMSE was 0.0168. In the test set, the fitting degree was 0.9921, the correlation 
coefficient was 0.9587, and the RMSE was 0.0143.  

By comparing the optimal models under three data sets, it was found that the 
prediction effect of SPA-PLS model based on second derivative spectrum was slightly 
better than that of SPA-PLS model based on first derivative spectrum, and it was better 
than that of SPA-PLS model based on absorption coefficient spectrum. The results showed 
that the selection of characteristic frequency points by SPA can effectively improve the 
model fitting prediction effect, and the derivative processing can enhance the 
characteristics of THz spectrum and reduce the impact of noise. Therefore, the SPA-PLS 
wood THz moisture prediction model based on second derivative spectrum had the best 
fitting effect and the highest prediction accuracy. 

 
 
CONCLUSIONS 

 
1. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to predict the 

moisture content of Douglas fir. THz time-domain and frequency-domain spectral data 
of Douglas fir under different moisture content were obtained, and it can be seen that 
the moisture content had an obvious effect on THz spectra. The THz wave was sensitive 
to the moisture content of Douglas fir.  

2. For further analysis, the optical parameters were extracted from the THz spectrum. 
Different moisture content of Douglas fir was found to have a significant effect on 
terahertz absorption intensity, and there were large differences in absorption intensity. 
In summary, the terahertz absorption intensity increases with increasing moisture 
content, and there is a positive correlation between the terahertz absorption intensity 
and the moisture content of Douglas fir. 
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3. The THz absorption coefficient spectra of Douglas fir samples with different moisture 
content were processed by first derivative and second derivative. The PLS regression 
prediction models were established based on absorption coefficient spectra, first 
derivative spectra, and second derivative spectra for prediction. The predictive ability 
of the model was compared by using fitness, correlation coefficient, and root mean 
square error. The results showed that the SPA-PLS model based on the second 
derivative spectrum had the best prediction effect on the moisture content of Douglas 
fir. Therefore, THz-TDS had a good performance in the prediction of moisture content 
of Douglas fir. 
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