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The equilibrium moisture content and specific gravity of Uludag fir (Abies 
bornmüelleriana Mattf.) and hornbeam (Carpinus betulus L.) woods were 
investigated following heat treatment at different temperatures and times. 
Two prediction models were established based on the Aquila optimization 
algorithm back-propagation neural network model. To demonstrate the 
effectiveness and accuracy of the proposed model, it was compared with 
a tent sparrow search algorithm-back-propagation network model, a back-
propagation network model, and an artificial neural network. The results 
showed that the Aquila optimization algorithm back-propagation model 
reduced the root mean square error value of the original back-propagation 
model by 87% and 97%, respectively, and the decision coefficients (R2) of 
the equilibrium moisture content and specific gravity were 0.99 and 0.98; 
as such, the model optimization effect was obvious. Therefore, this paper 
provides an effective method for the optimization of the process 
parameters (such as heat treatment time, temperature, and air pressure) 
in wood heat treatment and related fields. 
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INTRODUCTION 
 

Fir and hornbeam are important tree species in the timber industry. Fir wood can 
be used for indoor flooring and furniture, as well as outdoor building materials and 
shipbuilding. However, fir has problems such as low strength and poor dimensional 
stability, and its equilibrium moisture content is largely affected by the heat treatment 
temperature. Hornbeam wood is tough and can be used to make farm implements, furniture, 
daily gadgets, etc. However, hornbeam wood has a fine grain and will experience 
significant mass loss after heat treatment, resulting in a decrease in density (Gunduz et al. 
2009). Therefore, it is of great significance for the wood processing industry to study the 
properties of Uludag fir and hornbeam after heat treatment. 

The treatment process does not introduce chemicals, so heat treatment is generally 
regarded as an environmentally friendly modification method that has received extensive 
attention (Esteves and Pereira 2009). Stamm and Hansen (2002) used various gases to heat 
wood to reduce its shrinkage and swelling. Cronin et al. (2003) gave expressions for 
predicting the mean and standard deviation of the sheet moisture content over time. At the 
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same time, a comparison with the Monte Carlo model was carried out, and a dual set point 
planning model was proposed.  

Fortin et al. (2004) proposed a two-dimensional wood drying model based on the 
concept of water potential to simulate convective batch drying of wood at conventional 
temperatures. The model can be well combined with an intelligent adaptive kiln controller 
for an online optimized drying schedule. Oumarou et al. (2015) proposed the 3D modeling 
of high-temperature heat-treated wood. Neural networks are the primary branch of 
intelligent control technology research in recent years. Because of its parallel processing, 
self-adaptation, self-learning, and good fault tolerance, it has been widely used in the actual 
drying industry. Numerous studies on the application of artificial neural networks to the 
properties of wood after heat treatment can be found in the literature. Some of these studies 
are summarized as follows: 

  Farkas et al. (2000) established a neural network grain drying model. Nasir et al. 
(2019), using the stress wave method, established an adaptive neuro-fuzzy inference 
system (ANFIS) and a neural network (NN) model to predict the properties of thermally 
modified wood. Watanabe et al. (2013), based on the artificial neural network model, 
evaluated the final moisture content of fir wood and compared the data with the principal 
component regression (PCR) model, and concluded that the ANN model was more 
accurate.  

Tiryaki and Aydin (2014) used artificial neural networks to predict the compressive 
strength of heat-treated wood along the grain and compared the results with the multiple 
linear regression model; the results showed that artificial neural network yielded a better 
prediction effect. Chai et al. (2018), based on the BP (back propagation) neural network 
algorithm, predicted the change in the wood moisture content (MC) during high-frequency 
vacuum drying. Compared with the experimental measurement results, the predicted value 
conformed to the change law and size of the experimental value. 

   However, BP neural network has the disadvantages of easily falling into local 
minimum and slow training speed. Therefore, it is difficult for a single BP algorithm to 
meet the requirements of prediction accuracy. Many scholars choose to use metaheuristic 
methods to optimize the parameters of BP to improve the prediction accuracy. 
Metaheuristic methods simulate the behavior of animals in nature. Commonly used 
metaheuristic algorithms include the genetic algorithm, ant colony algorithm, simulated 
annealing method, etc. In this paper, a new algorithm is proposed for the prediction of the 
equilibrium moisture content (EMC) and specific gravity (SG) in the drying process. 
Specifically, Aquila optimization (AO) is used to optimize the weights and thresholds of 
the BP neural network. Through the comparison of multiple indicators, the superiority of 
the method was confirmed, and the prediction accuracy of the equilibrium moisture content 
and specific gravity of the wood during the drying process was improved. As such, this 
model has certain academic importance and application value in the research field of wood 
drying technology. 

In summary, there are many studies on heat-treated wood, but there is still a lot of 
room for improvement in prediction accuracy and training speed. This paper proposes an 
Aquila optimization algorithm back-propagation neural network model (AO-BP) algorithm 
to predict the equilibrium moisture content and specific gravity of wood and compares it 
with multiple models to demonstrate the validity and accuracy of the AO-BP model. 
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EXPERIMENTAL 
 
Materials 

To ensure the subsequent more accurate comparison of the results of the algorithms, 
this paper used the same data as Ozsahin and Murat (2018). The authors used data for the 
Uludag fir (Abies bornmüelleriana Mattf.) and hornbeam (Carpinus betulus L.) wood 
species. The samples were sourced from a local sawmill in Turkey and were taken from 
the sapwood area of a single log of each type of wood, the dimensions of which were 20 
mm × 20 mm × 30 mm (L × R × T). Before heat treatment, all samples were conditioned 
at a temperature of 20 °C ± 1 °C and a relative humidity of 65% ± 1% until they reached 
the equilibrium moisture content. The test material was heat-treated under normal pressure, 
and the thermal modification process parameters were the temperature, time, and relative 
humidity. The test samples were heat-treated in a fully controlled oven with a sensitivity 
of ± 1 °C, three levels of thermal modification temperatures (170, 190, and 210 °C), and 
three levels of heat treatment time (4, 8, and 12 h). Different temperatures and treatment 
times can be combined into 9 combinations, of which 10 samples and 10 control groups 
(200 samples each for the Uludag fir and hornbeam species) were taken for the 
determination of the specific gravity and equilibrium moisture content values.  In addition, 
ISO standard 13061-1 (2014), ISO standard 13061-2 (2014), and ISO standard 3129 (2012) 
were used to determine specific gravity and equilibrium moisture content of heat-treated 
samples at a temperature of 20 °C and a relative humidity of 35%, 50%, 65%, 80%, and 
90%.  
 
Methods 
Back-propagation neural network model 

A back-propagation (BP) neural network is a multi-layer architecture with the input 
layer, output layer, and hidden layer. Figure 1 shows the structure of a BP neural network. 
The BP model contains two propagation processes, forward and reverse. In the forward 
propagation process, the samples are processed from the input layer through the hidden 
layer neurons, and the output of each layer of neurons only affects the state of the next 
layer of neurons until the output. If there is a deviation between the output of the network 
and the expected output, back propagation is entered. During back propagation, the error 
signal is transmitted back from the original forward propagation path, and the weight 
coefficients of the neurons in each layer are corrected according to the negative gradient 
direction of the error function, and finally the error tends to be minimized. 
 

 
 

Fig. 1. BP Network Structure 
  

Hidden Layer Output Layer Input Layer 
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This work used the machine learning toolbox that comes with MATLAB (2018a) 
to create a BP network. The model used the wood species, temperature, relative humidity, 
and exposure period as the input layer data, and then used the EMC and SG as the output 
layer data, respectively. The data (90 samples) were divided into two groups, of which 60 
samples were used as the training sets and 30 samples were used as the test sets. 

To determine the optimal network architecture and parameters, a trial-and-error 
approach was employed. Several different BP network structures, parameters, and datasets 
were tested thousands of times using the developed software until the difference (error) 
between the measured and predicted values reached an acceptable level. After repeated 
trial and error, the number of hidden layer nodes of the BP network model was finally 
determined to be 7 and 16, respectively, and the mean square error of the model was the 
smallest at this time.  

The sample data and the time axis must strictly correspond, and because the sample 
data has the problem of non-uniform dimensions, it is necessary to normalize the sample 
data to achieve the best generalization potential and performance of the AO-BP model. The 
normalization formula is shown in Eq. 1, 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                    (1) 

where Xnorm is the normalized data, X is the original data, and Xmax and Xmin are the 
maximum and minimum values of the original data set, respectively.  

Generally speaking, all nodes in the hidden layer use the Sigmoid transfer function, 
and in the output layer, all nodes use the linear transfer function Pureline. The Sigmoid 
function is shown in Eq. 2, 

𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

                                                                                              (2) 

where σ(x) is the neuron output value and x is the neuron input value. 
 In this paper, the trainlm() training function with the fastest convergence speed 

was used to establish a BP neural network simulation prediction model, with a learning 
rate set to 0.01. 
 
Aquila optimizer model  

The Aquila optimizer (AO) is a swarm-based meta-heuristic optimization method 
based on the natural behavior of an Aquila when catching prey (Abualigah et al. 2021). 
When Aquila hunts prey, there are four different predation behaviors for different prey, 
and these four behaviors correspond to four optimization processes, i.e., extended 
exploration, narrow exploration, extended exploitation, and narrowed exploitation in the 
AO algorithm.  

The powerful global search ability of the AO can effectively optimize the initial 
weight and threshold of the BP network, avoiding the shortcomings of the traditional BP 
network, i.e., a slow convergence and easily falling into the local minimum. The algorithm 
flow of the AO-BP model is shown in Fig. 2. 

Firstly, the population is initialize using Eq. 3, 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑟𝑟1 × �𝑈𝑈𝑈𝑈𝑗𝑗 − 𝐿𝐿𝐿𝐿𝑗𝑗� + 𝐿𝐿𝐿𝐿𝑗𝑗 , 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑗𝑗 = 1,2, … ,𝑑𝑑𝑑𝑑𝑑𝑑                   (3) 

where r1 is a random value in [0, 1], UBj and LBj are the upper and lower bounds at 
dimension j, respectively, and dim is the dimension of the problem. 
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Fig. 2. The AO-BP algorithm flow chart 
 

After the population is initialized, the AO algorithm is divided into two stages, i.e., 
exploration and exploitation. When t is less than or equal to 2/3*T, it is in the exploration 
stage. The specific optimization process of the AO algorithm is as follows: 

1) Expanded exploration: Vertically pitch and fly high to select the hunting area. 
An aquila conducts extensive exploration at high altitudes, identifies the area where 

the prey is located, and after determining the area where the prey is located, selects the best 
hunting location by bending down vertically. The equation is expressed as shown in Eq. 4, 

𝑋𝑋1(𝑡𝑡 + 1) = 𝑋𝑋𝑏𝑏(𝑡𝑡) × �1 − 𝜏𝜏
Τ
� + (𝑋𝑋𝑀𝑀(𝑡𝑡) − 𝑋𝑋𝑏𝑏(𝑡𝑡)) × 𝑟𝑟1)                          (4) 

where X1(t+1) is the next solution after t iterations generated by the first search method X1, 
Xb(t) is the currently updated optimal solution, t and T represent the current number of 
iteration and the maximum number of iterations, respectively, and Xm(t) is the current 
solution after the average value of the t iterations, which was calculated using Eq. 5, 

𝑋𝑋𝑀𝑀(𝑡𝑡) = 1
𝑁𝑁
∑ 𝑋𝑋(𝑡𝑡),∀𝑗𝑗 = 1,2, … ,𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁
𝑖𝑖=1                                                     (5)         

where N is the population size. 
2) Narrowed exploration: Contour flight and short-range attack. 
After finding the area where the prey is located at high altitude, it hovers at a lower 

altitude above the prey, preparing for a short-range attack. At this stage, the current 
individual is updated using the levy flight distribution function, as shown in Eq. 6, 
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𝑋𝑋2(𝑡𝑡 + 1) = 𝑋𝑋𝑏𝑏(𝑡𝑡) × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷) + 𝑋𝑋𝑅𝑅(𝑡𝑡) + (𝑦𝑦 − 𝑥𝑥) × 𝑟𝑟1                          (6) 

where X2(t+1) represents the solution for the next iteration of t, XR(t) is the random solution 
for the ith iteration, x and y represents the shape of the downward spiral in the search for 
prey, as calculated by Eq. 7 

𝑦𝑦 = 𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑥𝑥 = 𝑟𝑟 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                                      (7) 

where r is calculated by Eq. 8, 

𝑟𝑟 = 𝑟𝑟1 + 𝑈𝑈 × 𝐷𝐷1, 𝜃𝜃 = −𝜔𝜔 × 𝐷𝐷1 + 3𝜋𝜋
2

                                                         (8) 

where r1 is a random value in [1-20], D1 is an integer, U equals 0.00565, ω equals 0.005, 
and Levy(D) is the levy flight function, which is obtained according to Eq. 9, 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷) = 𝑠𝑠×𝑢𝑢×𝜎𝜎

|𝜐𝜐|
1
𝛽𝛽

                                                                                       (9) 

where s is 0.001, u and υ are a random number in [0, 1], and σ is calculated by Eq. 10, 

𝜎𝜎 = �
Γ(1+𝛽𝛽)×sin �𝜋𝜋𝜋𝜋2 �

Γ�1+𝛽𝛽2 �×𝛽𝛽×2
𝛽𝛽−1
2
�                                                                               (10) 

where β is a constant value with a fixed bit of 1.5. 
3) Extended exploitation: Low-altitude flight and slow descent attack. 
After determining the approximate location of the prey, the Aquila prepares for 

vertical pre-attack, preying on the prey through a slow descent in low-flying flight. This 
behavior can be expressed by Eq. 11, 

𝑋𝑋3(𝑡𝑡 + 1) = �𝑋𝑋𝑏𝑏(𝑡𝑡) − 𝑋𝑋𝑀𝑀(𝑡𝑡)� × 𝛼𝛼 − rand + ((UB − LB) × rand + LB) × δ      
         (11) 

where α and δ are the adjustment parameters fixed to a small value (0.1), and UB and LB 
are the upper and lower bounds, respectively. 

4) Narrowed exploitation: Run on foot and catch prey. 
When Aquila approaches the prey, it observes the escape trajectory of the prey and 

selects random movements to catch the prey on land by running and raiding, and is written 
as shown in Eq. 12 through Eq. 15, 

𝑋𝑋4(𝑡𝑡 + 1) = 𝑄𝑄𝑄𝑄 × 𝑋𝑋𝑏𝑏(𝑡𝑡) − (𝐺𝐺1 × 𝑋𝑋(𝑡𝑡) × rand) − 𝐺𝐺2 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷) + rand × 𝐺𝐺1 
          (12) 

𝑄𝑄𝑄𝑄(𝑡𝑡) = 𝑡𝑡
2×rand−i

(𝑖𝑖−𝑇𝑇)2                                                            (13) 

𝐺𝐺1 = rand? 2 − 1                                                                          (14) 

𝐺𝐺2 = �1 − 𝑡𝑡
𝑇𝑇
� ? 2                                                                                (15) 

where QF is the quality function value used for the balance search step, QF(t) is the the 
value of QF after t iterations, G1 represents the various motions generated in the process of 
finding the optimal solution, calculated by Eq. 14, and G2 is the flight slope of the AO as it 
follows its prey, described as a random value decreasing from 2 to 0. 
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RESULTS AND DISCUSSION 
 
Model Evaluation Criteria 

Statistical errors are often used to evaluate the predictive performance of a model. 
Commonly used regression evaluation indicators are the mean absolute (MAE), mean 
squared error (MSE), root mean squared error (RMSE), and mean absolute percentage error 
(MAPE). The RMSE and MSE are essentially the same, so only the RMSE was used in 
this article. This was because the MSE unit magnitude and error magnitude are different, 
and the RMSE belongs to the same level as the data, so the RMSE can better describe the 
data. In general, this paper selected the MAE, RMSE, and MAPE as the evaluation 
indicators of the model, and the calculation formulas are shown in Eq. 16 through Eq. 18, 
respectively,  

RMSE = �∑ (𝐴𝐴𝑖𝑖−𝐹𝐹𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
                                                                              (16) 

MAE = 1
𝑁𝑁
∑ |𝐴𝐴𝑖𝑖 − 𝐹𝐹𝑖𝑖|𝑁𝑁
𝑖𝑖=1                                                                             (17) 

MAPE = 1
𝑁𝑁
∑ |𝐴𝐴𝑖𝑖−𝐹𝐹𝑖𝑖|

𝐴𝐴𝑖𝑖
𝑁𝑁
𝑖𝑖=1 × 100%                                                               (18) 

where Ai and Fi  represent the actual value and the predicted value, respectively.  
 
Model Performance Comparison Analysis 

In this paper, the AO-BP algorithm was compared the BP, tent sparrow search 
algorithm-back-propagation (TSSA-BP), and ANN models. Among them, TSSA refers to 
using the Tent chaotic map to add a random sequence to improve the accuracy of the 
sparrow search algorithm (SSA) (Bing and Weisun 1997). In order to reduce disputes, this 
paper took the mean of 5 runs of the AO-BP model as the final results (Table 1).  
 
Table 1. Aquila Optimization Back-propagation Model Running Results 

Number Data set 
EMC Results SG Results 

RMSE MAE MAPE RMSE MAE MAPE 
1 Training 0.0262 0.0190 0.0022 0.0058 0.0048 0.0080 
 Testing 0.0370 0.0240 0.0026 0.0060 0.0051 0.0085 
2 Training 0.0848 0.0679 0.0083 0.0060 0.0049 0.0084 
 Testing 0.1199 0.0852 0.0102 0.0061 0.0050 0.0088 
3 Training 0.0759 0.0499 0.0054 0.0065 0.0053 0.0092 
 Testing 0.1029 0.0550 0.0056 0.0067 0.0056 0.0096 
4 Training 0.0388 0.0329 0.0042 0.0056 0.0046 0.0079 
 Testing 0.0455 0.0386 0.0044 0.0057 0.0047 0.0082 
5 Training 0.1113 0.0863 0.0091 0.0040 0.0033 0.0062 
 Testing 0.2349 0.1367 0.0188 0.0041 0.0031 0.0058 

Avg Training 0.0674 0.0512 0.0058 0.0056 0.0046 0.0079 
 Testing 0.1080 0.0679 0.0072 0.0057 0.0047 0.0082 

 
The evaluation results of each model are listed in Table 2 (Appendix Tables A1 

through A4 show the predicted values and errors for the training data and test data for each 



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Chen et al. (2022). “Predicting EMC by AO-BP,” BioResources 17(3), 4816-4836.  4823 

model). In particular, the prediction data of the ANN was taken from the research results 
of Ozsahin and Murat (2018). Compared with the unoptimized BP neural network, the AO-
BP reduced the MAPE values of the training data of the EMC and SG models by 86% and 
96%, respectively, and the RMSE by 87% and 97%, respectively. In addition, the MAE 
values were reduced by 86% and 97%, respectively. Furthermore, compared with the 
TSSA-BP and ANN models, the prediction results of the AO-BP model were closer to the 
actual value. This shows that the AO-BP model optimization effect was obvious. In 
addition, the RMSE when the AO-BP model predicts the SG was slightly higher than the 
RMSE of the ANN model, which may be due to the existence of jumping data, which leads 
to some discrete values in the prediction results. However, the MAPE and MAE of the AO-
BP model were far lower than the prediction results of the ANN model, and the prediction 
effect of the AO-BP model was generally better. 
 
Table 2. Model Evaluation Results 

Model Date Set 
EMC Results SG Results 

BP ANN TSSA-BP AO-BP BP ANN TSSA-BP AO-BP 

MAE 
Training 0.369 -- 0.240 0.0512 0.1423 -- 0.1403 0.0046 
Testing 0.590 -- 0.406 0.0679 0.1921 -- 0.1432 0.0047 

RMSE 
Training 0.511 0.180 0.351 0.0674 0.1997 0.0040 0.1954 0.0056 
Testing 0.818 0.380 0.556 0.1080 0.2312 0.0050 0.1446 0.0057 

MAPE 
Training 0.040 1.570 0.025 0.0058 0.1899 0.4900 0.1883 0.0079 
Testing 0.060 0.032 0.042 0.0072 0.3707 0.6300 0.2462 0.0082 

 

 
Fig. 3. Comparison graph of the training set for the (a) EMC and (b) SG 
 

It can be seen from Figs. 3 and 4 that the actual and predicted values of the EMC 
and SG are very similar. This shows that the predicted value can better reflect the true 
value. The maximum number of iterations of the model was set to 1000 times. Taking the 
EMC as an example, the ANN, TSSA-BP, and AO-BP models were iterated 60, 23, and 6 
times, respectively, which indicated that the AO-BP optimization model has a greater 
advantage in terms of the convergence speed when predicting the EMC. 

(a) (b) 
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Fig. 4. Comparison graph of the testing set for the (a) EMC and (b) SG 
 
Linear Regression Analysis 

This paper used linear regression to analyze the fitting effect of the model. The 
fitting effect is shown in Figs. 5a and 5b. The R-values of the EMC and SG in all data sets 
were greater than 0.99, and the target value and the output result were basically on the same 
straight line. This shows that there was a significant correlation between the measured and 
predicted values for all the data. In previous studies, Watanabe et al. (2013) using ANN to 
predict the MC of Sugi Lumber, the correlation coefficients of the training set and test sets 
were 0.91 and 0.8, respectively. Chai et al. (2018) using BP neural networks to predict MC, 
the R2 obtained was 0.974, which indicates that the model they proposed was able to 
explain more than 97% of the experimental value. In this paper, the R2 of EMC and SG, 
which were run five times, were 0.99 and 0.98, respectively. The results of these five 
operations were 0.99, 0.98, 0.99, 0.98, 0.99 and 0.98, 0.97, 0.99, 0.99, 0.97. 
 

(a) (b) 
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(a) 

 
(b) 

 
Fig. 5. Regression models for the (a) EMC and (b) SG 
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Phenomenon Analysis 
Considering the problem of space, this paper only took the EMC of Uludag fir at a 

temperature of 210 °C and the SG at a relative humidity of 35% as examples. The data in 
Figs. 6 and 7 were derived from model predictions, and a comparison of these data and 
measurements is shown in the appendix. It can be seen from Figs. 6 and 7 that the changing 
trends of the EMC and SG of the heat-treated samples were consistent with those reported 
in by Gunduz et al. (2008). This again illustrates the effectiveness of the AO-BP model. 

Both the equilibrium moisture content and specific gravity of the wood after heat 
treatment were lower than the EMC and SG of the control wood, and similar results were 
also reported in the literature (Kamdem et al. 2002; Korkut et al. 2008; Liu et al. 2014; 
Kocaefe et al. 2015). The reduction of the EMC is primarily caused by the reduction of 
hydroxyl number during the heat treatment of the wood. On one hand, the non-crystalline 
area of the celluloses and hemicelluloses are degraded, while on the other hand, cross-
linking between the lignins occurs. Under the combined action of various factors, the EMC 
of wood after heat treatment is reduced (Tjeerdsma and Militz 2005; Boonstra and 
Tjeerdsma 2006).  

 

 
 

Fig. 6. Effect of heat treatment at 210 °C on the equilibrium moisture content of Uludag fir 
 

The specific gravity is the ratio of the wood density to the water density at a specific 
temperature, and the decrease in the specific gravity is primarily due to considerable mass 
loss after heat treatment, resulting in a decrease in density (Gunduz et al. 2009). During 
the heat treatment of the wood, hemicellulose first begins to thermally decompose, and the 
released acetic acid acts as a depolymerization catalyst, which further catalyzes the 
decomposition of polysaccharides, which is the primary reason for the mass loss of heat-
treated wood (Čabalová et al. 2018). 
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Fig. 7. Specific gravity of the heat-treated Uludag fir at a relative humidity of 35% 
 

Different temperatures have different effects on the EMC. Figures 7 and 8 are from 
the model prediction data. Taking different temperatures and an exposure time of 4 h as an 
example, when the relative humidity was higher than 60%, the change range of the EMC 
growth value of each sample was considerably larger, which should be caused by the 
softening of the hemicellulose. Engelund et al. (2012) reported similar results and proposed 
that the appearance of the inflection point of the hygroscopic isotherm may be related to 
the softening of some chemical components of wood, especially hemicellulose, under high 
humidity conditions. When the temperature is less than 200 °C, the EMC of the treated 
material changes considerably, and when the temperature is greater than 200 °C, the change 
of the EMC growth value of the treated material is the smallest. This is because the higher 
the heat treatment temperature, the more obvious the effect on the stiffness of the cell wall, 
so the variation range of the EMC growth value of each sample at this stage gradually 
decreased as the heat treatment temperature increased. 
 

 
 

Fig. 8. Changes in the EMC of Uludag fir at different treated temperatures 
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Fig. 9. Changes in the EMC of hornbeam wood at different treated temperatures 
 
CONCLUSIONS 
 
1. Taking Uludag fir (Abies bornmüelleriana Mattf.) and hornbeam (Carpinus betulus L.) 

wood as the research objects, this paper predicted the EMC and SG of the two woods 
after heat treatment. Taking the wood species, relative humidity, time, and temperature 
as input variables, two prediction models were established, respectively. The results 
showed that the RMSE of the two prediction models, i.e., EMC and SG, were 0.067 
and 0.0056 for the training set, and 0.108 and 0.0057 for the test set, respectively. 
Therefore, the established AO-BP model can properly simulate the EMC and SG of 
wood after heat treatment. 

2. This paper also compared the AO-BP model with the BP, ANN, and TSSA-BP 
algorithms, including not only the BP algorithm before optimization, but also the BP 
algorithm combined with other heuristics, and the analysis is more comprehensive. The 
results show that compared with other algorithms, the model proposed in this paper had 
a higher prediction accuracy and faster convergence speed, which can meet most 
requirements.  

3. A high temperature heat treatment can considerably reduce the equilibrium moisture 
content of Uludag fir (Abies bornmüelleriana Mattf.) and hornbeam (Carpinus betulus 
L.) wood. The higher the treatment temperature, the smaller the change of the EMC 
growth value. The specific gravity of the two tree species considerably decreased after 
a high temperature heat treatment. The higher the treatment temperature, the more 
obvious the decrease in the specific gravity. 
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APPENDIX 
 
Supplemental Material 
 
Table S1. Prediction Results and Errors of the Equilibrium Moisture Content 
(EMC) in Each Model Training Data Set 

Equilibrium Moisture Content (%) 

Measured 
Predicted Error 

BP ANN TSSA-BP AO-BP BP ANN TSSA-BP AO-BP 
6.62 6.52 6.64 6.67 6.59 -0.10 -0.35 0.053 0.031 
8.25 7.83 8.16 7.99 8.20 -0.42 1.10 -0.265 0.055 

14.22 13.93 14.16 14.12 14.26 -0.29 0.42 -0.103 -0.042 
7.04 7.30 7.27 7.17 7.00 0.26 -3.33 0.131 0.038 
9.58 9.23 9.43 9.43 9.56 -0.35 1.58 -0.151 0.017 
12.3 12.63 12.56 12.86 12.38 0.33 -2.14 0.556 -0.078 
16.4 15.52 16.35 15.74 16.20 -0.88 0.31 -0.662 0.200 
6.1 6.08 6.00 5.91 6.10 -0.02 1.70 -0.186 0.001 
8.24 8.88 8.54 8.26 8.20 0.64 -3.59 0.024 0.045 

13.62 13.71 13.59 13.62 13.69 0.09 0.20 -0.003 -0.073 
5.79 5.98 5.89 5.78 5.81 0.19 -1.72 -0.008 -0.023 
9.84 9.65 9.81 9.46 9.82 -0.19 0.31 -0.381 0.017 

15.29 14.93 15.05 15.54 15.24 -0.36 1.56 0.250 0.049 
5.49 5.69 5.43 5.58 5.54 0.20 1.12 0.090 -0.052 
6.26 6.52 6.59 6.61 6.25 0.26 -5.20 0.350 0.005 

10.96 11.82 11.44 10.89 10.99 0.86 -4.37 -0.073 -0.034 
6.26 6.23 6.31 6.15 6.25 -0.03 -0.76 -0.111 0.008 
8.16 7.78 8.29 7.96 8.10 -0.38 -1.61 -0.202 0.057 

10.92 10.65 10.61 10.66 10.95 -0.27 2.81 -0.259 -0.029 
13.28 13.25 13.03 13.05 13.35 -0.03 1.86 -0.225 -0.070 
6.36 6.41 6.37 6.38 6.34 0.05 -0.14 0.022 0.020 
8.03 8.50 8.30 7.84 7.97 0.47 -3.36 -0.192 0.061 
10.5 10.42 10.24 10.45 10.51 -0.08 2.49 -0.045 -0.010 

12.93 11.71 13.04 12.92 13.00 -1.22 -0.84 -0.007 -0.070 
5.07 5.28 5.12 5.10 5.17 0.21 -0.91 0.034 -0.096 
7.62 7.42 7.82 7.77 7.56 -0.20 -2.69 0.153 0.061 

12.78 10.97 12.66 12.60 12.85 -1.81 0.94 -0.178 -0.067 
4.82 5.12 4.97 4.87 4.95 0.30 -3.02 0.052 -0.129 
5.85 5.54 5.92 5.77 5.87 -0.31 -1.22 -0.076 -0.016 
9.12 9.13 9.15 9.52 9.08 0.01 -0.30 0.395 0.039 
7.7 7.83 7.65 7.99 7.65 0.13 0.68 0.286 0.052 
10 10.10 10.27 10.36 10.00 0.10 -2.69 0.362 0.000 

13.14 13.93 13.12 14.12 13.22 0.79 0.16 0.977 -0.080 
16.7 16.36 16.85 17.24 16.45 -0.34 -0.89 0.536 0.252 
5.9 6.18 5.95 6.13 5.92 0.28 -0.76 0.232 -0.020 
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9.6 9.23 9.15 9.43 9.58 -0.37 4.71 -0.171 0.016 
12.6 12.63 12.28 12.86 12.68 0.03 2.56 0.256 -0.080 
5.8 6.08 5.83 5.91 5.83 0.28 -0.48 0.114 -0.027 
7 7.29 6.85 6.67 6.96 0.29 2.19 -0.327 0.040 

13.6 13.71 13.66 13.62 13.67 0.11 -0.44 0.017 -0.074 
5.6 5.98 5.57 5.78 5.64 0.38 0.62 0.182 -0.043 
9.6 9.65 9.29 9.46 9.58 0.05 3.25 -0.141 0.025 
15.9 14.93 15.83 15.54 15.77 -0.97 0.46 -0.361 0.127 
5.4 5.69 5.24 5.58 5.46 0.29 2.89 0.180 -0.063 
6.6 6.52 6.42 6.61 6.57 -0.08 2.80 0.010 0.028 
10.8 11.82 10.93 10.89 10.83 1.02 -1.25 0.087 -0.029 
13.9 14.22 14.13 13.43 13.95 0.32 -1.67 -0.472 -0.054 
6.3 6.23 6.29 6.15 6.29 -0.07 0.17 -0.151 0.011 
7.9 7.78 7.95 7.96 7.84 -0.12 -0.63 0.058 0.056 
9.7 10.65 9.78 10.66 9.69 0.95 -0.82 0.961 0.011 
5.3 5.52 5.25 5.46 5.37 0.22 0.86 0.161 -0.068 
6.3 6.41 6.15 6.38 6.28 0.11 2.36 0.082 0.016 
9.3 10.42 9.37 10.45 9.27 1.12 -0.78 1.155 0.028 
6.1 5.84 5.98 6.12 6.10 -0.26 1.96 0.016 0.003 
7.6 7.42 7.48 7.77 7.54 -0.18 1.61 0.173 0.060 
11.7 10.97 11.62 12.60 11.75 -0.73 0.69 0.902 -0.055 
4.9 5.12 4.99 4.87 5.02 0.22 -1.78 -0.028 -0.117 
7.1 6.62 6.99 7.24 7.05 -0.48 1.49 0.138 0.050 
8.9 9.13 8.95 9.52 8.86 0.23 -0.60 0.615 0.044 
11.6 10.78 11.59 11.60 11.65 -0.82 0.07 0.003 -0.049 

 
  



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Chen et al. (2022). “Predicting EMC by AO-BP,” BioResources 17(3), 4816-4836.  4833 

Table S2. Prediction Results and Errors of the Equilibrium Moisture Content 
(EMC) in Each Model Testing Data Set 

Equilibrium Moisture Content (%) 

Measured 
Predicted Error 

BP ANN TSSA-BP AO-BP BP ANN TSSA-BP AO-BP 
10.85 9.58 11.05 10.41 10.88 -1.27 −1.86 -0.44 -0.029 
17.7 16.73 16.88 17.36 17.22 -0.97 4.61 -0.34 0.477 
6.18 5.76 6.19 5.96 6.18 -0.42 −0.11 -0.22 0.004 
7.27 7.05 6.95 6.73 7.22 -0.22 4.42 -0.54 0.049 

12.18 9.90 11.34 10.87 12.25 -2.28 6.92 -1.31 -0.073 
7.5 7.06 7.25 7.52 7.44 -0.44 3.37 0.02 0.060 

12.95 11.26 12.36 11.91 13.02 -1.69 4.54 -1.04 -0.070 
9.42 8.00 8.93 8.62 9.39 -1.42 5.15 -0.80 0.034 

15.67 14.08 15.44 14.45 15.57 -1.59 1.44 -1.22 0.098 
5.2 4.93 5.22 5.31 5.29 -0.27 −0.31 0.11 -0.085 
5.08 5.57 5.42 5.17 5.18 0.49 −6.61 0.09 -0.097 
6.07 6.18 6.03 6.11 6.07 0.11 0.59 0.04 0.001 
9.66 9.01 9.34 9.57 9.64 -0.65 3.33 -0.09 0.021 
7.21 7.08 7.39 7.20 7.16 -0.13 −2.53 -0.01 0.054 

11.14 11.86 11.28 11.54 11.18 0.72 −1.27 0.40 -0.036 
6.4 6.81 6.30 6.44 6.38 0.41 1.60 0.04 0.017 
7.3 7.36 7.05 7.13 7.25 0.06 3.48 -0.17 0.047 
16.2 16.15 15.99 15.99 16.03 -0.05 1.31 -0.21 0.166 
9.2 8.03 8.41 8.39 9.17 -1.17 8.56 -0.81 0.031 
9.8 9.90 10.39 10.87 9.80 0.10 −6.04 1.07 -0.004 
6.6 7.06 6.83 7.52 6.58 0.46 −3.47 0.92 0.024 
12.1 11.26 11.66 11.91 12.17 -0.84 3.60 -0.19 -0.067 
8.1 8.00 8.58 8.62 8.05 -0.10 −5.98 0.52 0.053 
5.3 4.93 5.12 5.31 5.37 -0.37 3.37 0.01 -0.072 
13 13.26 12.69 13.19 13.07 0.26 2.40 0.19 -0.074 
7.7 7.31 7.92 8.06 7.64 -0.39 −2.82 0.36 0.058 
12.8 13.38 13.02 13.09 12.87 0.58 −1.71 0.29 -0.071 
4.9 4.92 5.06 5.07 5.02 0.02 −3.27 0.17 -0.120 
9.2 9.01 9.16 9.57 9.17 -0.19 0.39 0.37 0.034 
5.9 5.93 5.98 5.71 5.91 0.03 −1.33 -0.19 -0.011 
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Table S3. Prediction Results and Errors of the Specific Gravity (SG) in Each 
Model Training Data Set 

Specific Gravity (g/cm3) 

Measured 
Predicted Error 

BP ANN TSSA-BP AO-BP BP ANN TSSA-BP AO-BP 
0.481 0.467 0.481 0.482 0.488 -0.014 −0.04 0.001 -0.007 
0.486 0.489 0.487 0.486 0.494 0.003 −0.17 0.000 -0.008 
0.497 0.496 0.496 0.499 0.509 -0.001 0.220 0.002 -0.012 
0.481 0.480 0.479 0.481 0.488 -0.001 0.390 0.000 -0.007 
0.483 0.482 0.484 0.485 0.492 -0.001 −0.20 0.002 -0.009 
0.486 0.485 0.486 0.491 0.497 -0.001 −0.10 0.005 -0.011 
0.492 0.486 0.492 0.495 0.504 -0.007 −0.10 0.003 -0.012 
0.469 0.469 0.469 0.474 0.473 0.000 −0.08 0.005 -0.004 
0.479 0.480 0.478 0.480 0.486 0.001 0.260 0.001 -0.007 
0.482 0.480 0.486 0.487 0.493 -0.002 −0.81 0.005 -0.011 
0.477 0.477 0.475 0.477 0.478 0.000 0.420 0.000 -0.001 
0.488 0.494 0.485 0.483 0.493 0.006 0.560 -0.005 -0.005 
0.492 0.495 0.492 0.492 0.500 0.003 0.090 0.000 -0.008 
0.467 0.467 0.470 0.475 0.467 0.000 −0.59 0.008 0.000 
0.474 0.475 0.474 0.477 0.476 0.001 −0.01 0.003 -0.002 
0.485 0.487 0.482 0.484 0.490 0.002 0.580 -0.001 -0.005 
0.473 0.471 0.469 0.473 0.473 -0.003 0.890 0.000 0.000 
0.469 0.472 0.473 0.475 0.472 0.003 −0.82 0.006 -0.003 
0.473 0.474 0.475 0.479 0.477 0.001 −0.43 0.006 -0.004 
0.48 0.475 0.478 0.481 0.485 -0.005 0.470 0.001 -0.005 

0.464 0.464 0.467 0.466 0.463 0.000 −0.62 0.002 0.001 
0.466 0.467 0.470 0.468 0.467 0.001 −0.91 0.002 -0.001 
0.468 0.470 0.474 0.472 0.471 0.002 −1.20 0.004 -0.003 
0.474 0.472 0.474 0.476 0.477 -0.002 −0.10 0.002 -0.003 
0.46 0.440 0.454 0.466 0.455 -0.020 1.400 0.006 0.005 

0.456 0.456 0.457 0.469 0.456 0.000 −0.22 0.013 0.000 
0.468 0.464 0.457 0.473 0.470 -0.004 2.260 0.005 -0.002 
0.441 0.437 0.441 0.468 0.437 -0.004 0.090 0.027 0.004 
0.436 0.438 0.441 0.468 0.435 0.002 −1.06 0.032 0.001 
0.437 0.441 0.440 0.471 0.439 0.004 −0.65 0.034 -0.002 
0.792 0.489 0.792 0.486 0.790 -0.303 0.050 -0.306 0.002 
0.788 0.496 0.789 0.492 0.789 -0.292 −0.11 -0.296 -0.001 
0.793 0.496 0.791 0.499 0.795 -0.297 0.210 -0.294 -0.002 
0.79 0.497 0.792 0.504 0.793 -0.294 −0.26 -0.286 -0.003 
0.78 0.464 0.779 0.479 0.776 -0.316 0.110 -0.301 0.004 

0.766 0.482 0.777 0.485 0.768 -0.284 −1.43 -0.281 -0.002 
0.79 0.485 0.778 0.491 0.791 -0.305 1.490 -0.300 -0.001 
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0.767 0.469 0.766 0.474 0.763 -0.298 0.140 -0.293 0.004 
0.774 0.480 0.769 0.477 0.771 -0.294 0.700 -0.297 0.003 
0.769 0.480 0.773 0.487 0.772 -0.289 −0.51 -0.282 -0.003 
0.782 0.477 0.782 0.477 0.774 -0.305 0.010 -0.305 0.008 
0.784 0.494 0.781 0.483 0.780 -0.290 0.330 -0.301 0.004 
0.78 0.495 0.780 0.492 0.780 -0.285 −0.06 -0.288 0.000 

0.764 0.467 0.766 0.475 0.756 -0.297 −0.25 -0.289 0.008 
0.766 0.475 0.767 0.477 0.760 -0.291 −0.12 -0.289 0.006 
0.773 0.487 0.772 0.484 0.771 -0.287 0.150 -0.289 0.002 
0.774 0.492 0.773 0.488 0.773 -0.283 0.160 -0.286 0.001 
0.764 0.471 0.759 0.473 0.757 -0.294 0.640 -0.291 0.007 
0.756 0.472 0.763 0.475 0.752 -0.284 −0.98 -0.281 0.004 
0.764 0.474 0.768 0.479 0.761 -0.290 −0.51 -0.286 0.003 
0.739 0.457 0.740 0.464 0.729 -0.282 −0.18 -0.275 0.010 
0.739 0.464 0.738 0.466 0.732 -0.275 0.160 -0.273 0.007 
0.747 0.470 0.747 0.472 0.743 -0.278 0.010 -0.275 0.004 
0.694 0.446 0.697 0.467 0.687 -0.248 −0.38 -0.227 0.007 
0.691 0.456 0.695 0.469 0.686 -0.235 −0.52 -0.222 0.005 
0.731 0.464 0.724 0.473 0.728 -0.267 0.890 -0.258 0.003 
0.684 0.437 0.676 0.468 0.673 -0.247 1.100 -0.216 0.011 
0.666 0.440 0.672 0.469 0.659 -0.227 −0.84 -0.197 0.007 
0.696 0.441 0.693 0.471 0.691 -0.255 0.480 -0.225 0.005 

0.7 0.443 0.705 0.473 0.697 -0.257 −0.75 -0.227 0.003 
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Table S4. Prediction Results and Errors of the Specific Gravity (SG) in Each 
Model Testing Data Set 

Specific gravity (g/cm3) 

Measured 
Predicted Error 

BP ANN TSSA-BP AO-BP BP ANN TSSA-BP AO-BP 
0.49 0.682 0.493 0.634 0.500 0.192 −0.55 0.144 -0.010 

0.502 0.700 0.502 0.647 0.515 0.198 −0.05 0.145 -0.013 
0.475 0.775 0.474 0.619 0.480 0.300 0.150 0.144 -0.005 
0.48 0.876 0.474 0.631 0.485 0.396 1.320 0.151 -0.005 

0.475 0.878 0.480 0.647 0.485 0.403 −1.10 0.172 -0.010 
0.485 0.604 0.480 0.603 0.488 0.119 1.040 0.118 -0.003 
0.486 0.659 0.490 0.618 0.493 0.173 −0.79 0.132 -0.007 
0.474 0.825 0.479 0.611 0.478 0.351 −1.00 0.137 -0.004 
0.487 0.787 0.484 0.624 0.494 0.300 0.570 0.137 -0.007 
0.462 0.869 0.465 0.598 0.461 0.407 −0.65 0.136 0.001 
0.461 0.505 0.464 0.586 0.458 0.044 −0.60 0.125 0.003 
0.453 0.740 0.455 0.590 0.451 0.287 −0.50 0.137 0.002 
0.463 0.747 0.458 0.602 0.464 0.284 0.980 0.139 -0.001 
0.441 0.868 0.441 0.596 0.441 0.427 0.110 0.155 0.000 
0.436 0.835 0.437 0.606 0.440 0.399 −0.21 0.170 -0.004 
0.792 0.708 0.792 0.617 0.788 -0.084 0.050 -0.176 0.004 
0.784 0.815 0.780 0.628 0.782 0.031 0.510 -0.157 0.002 
0.789 0.855 0.779 0.649 0.791 0.066 1.310 -0.140 -0.002 
0.776 0.877 0.770 0.639 0.775 0.101 0.710 -0.137 0.001 
0.77 0.878 0.773 0.647 0.772 0.108 −0.34 -0.123 -0.002 

0.785 0.604 0.783 0.603 0.779 -0.181 0.300 -0.182 0.006 
0.789 0.659 0.780 0.618 0.786 -0.130 1.190 -0.172 0.003 
0.765 0.825 0.770 0.611 0.761 0.060 −0.62 -0.154 0.004 
0.752 0.869 0.759 0.598 0.744 0.117 −0.91 -0.154 0.008 
0.767 0.870 0.769 0.627 0.765 0.103 −0.22 -0.141 0.002 
0.739 0.557 0.737 0.597 0.734 -0.182 0.220 -0.142 0.005 
0.765 0.686 0.756 0.607 0.761 -0.079 1.200 -0.158 0.004 
0.705 0.684 0.703 0.583 0.695 -0.021 0.350 -0.122 0.010 
0.719 0.747 0.712 0.602 0.715 0.028 1.030 -0.117 0.004 
0.674 0.869 0.672 0.589 0.665 0.195 0.370 -0.085 0.009 
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