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Number of Measurement Points  
 

Stella S. A. Palma,a and Raquel Gonçalves a,*  

 
Tomography is a technique increasingly used in tree inspections. This 
technique can be performed in two stages: field testing and postimage 
processing. To feed the tomographic image construction software, it is 
necessary to adopt a measurement grid composed of points positioned on 
the perimeter of the stem. The images are generated through spatial 
interpolation algorithms. From a theoretical point of view, more 
measurement points taken in the perimeter of the stem result in better 
interpolation results. However, an increase in the number of mesh points 
causes a substantial increase in field work and image processing time. 
The general objective of this study was to verify the influence of the 
number of measurement points of the diffraction mesh on the ultrasound 
tomography results. For this purpose, ten simulated discs were used, all 
500 mm in diameter and with different defects in terms of size, position, 
and geometry. In each of the discs, diffraction grids were simulated with 
6, 8, 10, 12, and 14 measurement points in the contour. The results 
showed that a favorable combination of accuracy and a minimization of 
effort can be achieved with diffraction mesh with number of measurement 
points calculated as five times the perimeter of the trunk in meters.  
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INTRODUCTION 
 

The importance of trees in the urban environment is widely recognized. Despite 

their numerous benefits, trees can also generate problems due to phytosanitary conditions 

(Wolf et al. 2020). Urban conditions (lack of space, waterproofing and compaction of the 

terrain, competition with urban equipment, etc.) are, in general, aggressive to living beings, 

making them more susceptible to falls (Czaja et al. 2020). This condition is further 

aggravated in some countries due to the lack of planning in the choice of species, lack of 

care in the planting bed, and in silvicultural treatments, such as inadequate pruning that 

favor the action of rotting fungi due to the occurrence of necrosis in the trunks (Suchocka 

et al. 2021). To avoid falls, especially from the action of winds, inspections are important. 

Among the methodologies used in tree inspections, acoustic tomography is very promising 

(Gilbert et al. 2016; Palma et al. 2018; Strobel et al. 2018; Espinosa et al. 2020, 

Dudkiewicz and Durlak 2021; Linhares et al. 2021). 

 To prepare the tomographic images, wave propagation time measurements are 

performed using a mesh. In this mesh, the emitter sensor is located at each node while the 

receiving sensor travels through the other nodes. This mesh produces theoretical wave 
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propagation routes where the velocity is calculated using the relationship between the 

theoretical distance traveled by the wave and the propagation time. For the preparation of 

the tomographic image, wave propagation speed ranges are associated with colors. A 

thinner mesh produces a greater scope for the inspection inside the inspected element, as 

there will be a greater number of measurement routes (Divos and Divos 2005; Zhang and 

Khoshelham 2020; Espinosa et al. 2020; Dudkiewicz and Durlak 2021), allowing the 

visualization of deteriorations in early stages (Gilbert et al. 2016). However, increasing the 

number of theoretical measurement routes implies increasing the measurement points in 

the stem contour, which consequently increases field work (Espinosa et al. 2020). As an 

example, a diffraction mesh such as the one used in this study, with six measurement points 

in the stem contour and measurements made in only one direction (e.g., 1 for 2 or 2 for 1), 

results in 15 routes to be measured in the tree (Fig. 1). The number of routes increases to 

28 when there are eight measurement points in the contour (Fig. 1), 45 when there are ten 

measurement points, 66 with 12 measurement points, and 91 with 14 measurement points. 

 

 
Fig. 1. Example of theoretical wave propagation routes in diffraction grids with six and eight 
measurement points in the contour of a stem 

 

Even with a very fine mesh (with many measurement points in the contour of the 

stem), there will be internal zones of the stem through which no theoretical routes pass, 

and therefore, there is no calculated wave propagation speed (Feng et al. 2014). For this 

reason, for the preparation of a tomographic image, it is necessary to associate the pixels 

with velocity values obtained by interpolation, for which different algorithms are adopted 

(Feng et al. 2014; Du et al. 2015, 2018, Strobel et al. 2018). The increase in the number of 

measurement points causes the interpolation to be performed with pixels that are closer to 

the theoretical routes and have calculated velocity values. Therefore, an improvement in 

the quality of the inference of velocities obtained through the interpolation is expected 
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(Gilbert et al. 2016). However, the increase in image quality is not proportional to the 

increase in the number of measurement points in the mesh (Divos and Divos 2005) and 

causes an increase in field work and image processing time. 

The quality of the tomographic image can also be improved through filters, which 

can be applied to reduce interference from various causes (Pratt 1978). Filters applied to 

the signal are common in ultrasound equipment, even in the simplest ones, such as the one 

used in this study. Moreover, in more sophisticated ultrasonic tomography technologies, 

filters are applied to the signal after its passage in the material, which reduces the specific 

noise that occurs in the propagation during inspection, as well as separates the desired 

signal ranges (Espinosa et al. 2020). A simple way to minimize interference is the use of 

filters applied directly to the images to smooth effects from interpolation systems, 

including simplified techniques such as the median filter (Sun and Neuvo 1994). 

 Many studies that seek to evaluate the interference of certain factors in acoustic 

tomography images are based on the visual comparison of images and are therefore 

subjective. There are tools that can make these evaluations more objective, including the 

confusion matrix, with which the comparison is made by metrics (Strobel et al. 2018). 

 Based on the analysis of the velocities in the theoretical measurement routes and 

in the metrics of the confusion matrix, this study proposes a minimum number of 

measurement points in the diffraction mesh that does not affect the quality of the ultrasound 

tomography images. 

 

 

EXPERIMENTAL 
 

Simulations 
The analysis was performed using ten simulated discs, all 500 mm in diameter and 

with ten different defects in terms of size, position, and geometry (Fig. 2). Simulation, 

although it is a simplification of reality, is an important tool to isolate a given analysis from 

interferences that are not desired or cannot be measured. In the case of this research, the 

simulation made it possible to avoid interferences from wood heterogeneity in the process 

of analyzing the mesh measurement routes. In each disc, diffraction grids were simulated 

with 6, 8, 10, 12, and 14 measurement points in the contour (Fig. 3). The use of diffraction 

grids with an even number of measurement points allows the occurrence of three types of 

routes: radial, internal tangential, and edge tangential. The image of the discs with defects 

(Fig. 2) and the overlap of the diffraction grids with different numbers of points (Fig. 3) 

were made with the image processing software ImageJ (version 1.51), which has an open 

architecture. Using ImageJ, the 400 x 400-pixel units of the images were scaled to 

centimeters. Considering that the disc was simulated with a circular shape, one of the radial 

routes (diagonal) was selected with the “straight line” tool to obtain a referential dimension 

in pixels. Then, with the “set scale” tool, the conversion was performed, assigning 50 cm 

to the value obtained in pixels. Then, the stretch of interest (route that passed through the 

defect) was marked, and its length was obtained using the “straight line” (ImageJ) and 

“measure” (ImageJ) commands, respectively. This procedure was performed for each 

theoretical measurement route that passed through the defect, considering all the conditions 

of the number of measurement points adopted in the study (6, 8, 10, 12, and 14). The 

theoretical path lengths were obtained within the zone with the simulated defect, which 

were called (L c), adopting the simulated defect as a cavity. 
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Fig. 2. Scheme of the ten simulated defects 

 

 
Fig. 3. Example of a diffraction mesh with 6, 8, 10, 12 and 14 points in the contour with 
representation of the respective theoretical measurement routes considering a lateral defect 

 

Methods 
Generation of images 

The image was generated using the ImageWood (version 3.1), software developed 

by the Nondestructive Testing Research Group (School of Agricultural Engineering – 

University of Campinas, Brazil). To use this image generator software (ImageWood), it is 

necessary to feed the system with two spreadsheets, the contour spreadsheet and the time 

spreadsheet. The contour spreadsheet contains the coordinates of the contour, and the time 

spreadsheet contains the initial and final coordinates of the measurement route associated 

with the respective time obtained by the wave propagation test. 

 The contour worksheet contains the position, in a 2D plane, of the coordinates (x, 

y) of the perimeter points of the disc (contour) and, among them, the coordinates of each 

point, where in a real inspection, the transducer would be a coupled emitter (xi, yi) and 

receiver (xf, yf). The time sheet is obtained from a combination of the coordinates of the 

measurement points (xi, yi and xf, yf) by generating the theoretical wave propagation route 

to which the propagation time is assigned. 
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Considering that all the simulated discs had a known diameter (500 mm) and had 

perfectly circular circumferences, the perimeter coordinates for feeding the contour 

spreadsheet were calculated using a macro (regular contour generator - GCR) developed 

for ImageJ per student in the group of research in the Scientific Initiation program of the 

University. This macro allows one to obtain the coordinates of the contour, among which 

are the measurement points. The software is free available in the University repository 

(https://doi.org/10.25824/redu/SEJFAC). The macro also allows saving the points 

automatically in a text file. Thus, to obtain the time sheet, the initial and final coordinates 

of the points corresponding to the ends of each measurement route were adopted. 

 However, to complete the time sheet, it was necessary to insert the wave 

propagation times into the theoretical routes. As the discs were simulated, there were no 

real velocity measurements. Thus, it was necessary to propose a methodology to simulate 

the wave behavior and determine the final velocities in the theoretical propagation routes. 

 During a parallel survey conducted with inspection of real discs containing 

different types and dimensions of cavities (Palma 2022 - Article 2), a model of variation 

of the percentage of maximum velocity was obtained from an index (Ic) corresponding to 

the path length within the zone with cavity (Lc), as shown in Eq. 1. 

%𝑉𝑚á𝑥 =
1

0,039−0,00018 𝐼𝑐
2

       (1) 

In Eq. 1, Ic = 0 when Lc corresponds to 100% of the interval; Ic = 1 when Lc is between 

91% and 100% of the interval; Ic = 2 when Lc is between 80% and 90% of the interval; Ic 

= 3 when Lc is between 70% and 80% of the interval; Ic = 4 when Lc is between 60% and 

70% of the interval; Ic = 5 when Lc is between 50% and 60% of the interval; Ic = 6 when Lc 

is between 40% and 50% of the interval; Ic = 7 when Lc is between 30% and 40% of the 

interval; Ic = 8 when Lc is between 20% and 30% of the interval; Ic = 9 when Lc is between 

10% and 20% of the interval; and Ic = 10 when Lc <10% of the interval. The model was 

statistically significant with a 95% confidence level and coefficient of determination R2 = 

79%. 

As the defects are simulated and the propagation medium was considered perfect 

in this study, the speed in all routes that did not pass through the defect was considered 

constant with a value of 2000 m/s, compatible with the order of magnitude of the means of 

velocities perpendicular to the fibers in intact wood. Thus, the speeds in the routes that 

passed by default were obtained by applying the percentage of maximum speed (%Vmax) 

obtained with Eq. 1 to the value of the maximum speed (2000 m/s). 

With the contour and time sheets, the image generator software (ImageWood) 

automatically calculated the theoretical lengths and velocities in the theoretical wave 

propagation routes. However, when simulating this propagation, the time was calculated 

as a function of the simulated speed in the routes without defects (2000 m/s) and with 

defects (calculated with Eq. 1). Thus, with the initial (xi, yi) and final (xj, yj) coordinates of 

the theoretical routes, the theoretical distances (L) traveled by the wave were calculated 

using (Eq. 2) in Excel. 

𝐿 = √(𝑥𝑖 − 𝑥𝑓)2 + (𝑦𝑖 − 𝑦𝑓)2      (2) 

Finally, with the simulated velocities and theoretical path lengths, the simulated 

propagation times were calculated and entered in the time sheet to feed the ImageWood 

software. 

 For the formation of the tomographic image, it was also necessary to adopt a cutoff 
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value of the percentage of the maximum velocity that would allow a better representation 

of the presence of the defect in an image. It is known that in the presence of cavities, the 

wave propagation velocity decreases (Lin et al. 2008; Palma 2017, Du et al. 2018). In 

previous studies of the group (Palma 2017; Reis 2022), the most adequate cutting speed 

for cavity zones was 40% of the maximum speed; this value was adopted for this study. 

The software used for image generation, ImageWood, allows the use of two spatial 

interpolation algorithms: the inverse square distance (ISD) and the methods of ellipses 

(ME). Although previous research by the group showed good results for ME (Palma et al. 

2018; Strobel et al. 2018; Reis 2022), the ME method always changes the calculated 

velocities with the measured real times, since the measurement route, theoretically adopted 

as a straight line, is transformed into an ellipse. The transformation increases the path and, 

as the measured real time remains, the velocity also increases proportionally (Du et al. 

2015). Considering that in this study it is necessary that the simulated velocity for the intact 

zone be kept fixed at 2000 m/s, the DQI method was adopted. 

 

Image filtering 

Images generated by the ISD algorithm show interference in the form of cords that 

radiate from the zone in which the velocities differ (Palma 2017). To reduce these 

interferences, the use of filters was tested. Before deciding on the filter to be used in the 

continuation of the research, several filters were tested using imageJ. It is important to 

highlight that filters are need to smooth the edges. This is because, in this interpolation 

algorithm (ISD), the images assume the shape of the mesh (polygons). The preliminary 

tested filters and the summary of the results that implied in their discards from the rest of 

the analysis were “Convolver”, “Variance” and “Unsharp mask” because they marked or 

reinforced the contour instead of softening it; “Gaussian blur” and “Mean” because they 

blurred the image; and “Minimum” and “Maximum” because they decreased and increased 

the image, respectively. The “Median” was the filter that presented the better result and, 

due to this result, it was adopted in the rest of the research. The median filter mitigates 

impulsive noise, replacing the intensity of each pixel by the median of the neighboring 

intensities. For this, the images of each simulated disc were generated for each condition 

of number of measurement points (6, 8, 10, 12, 14) without and with the application of a 

median filter, totaling 100 images (10 simulated discs x 5 conditions of number of 

measuring points x 2 conditions (with and without filter)). In an iterative manner, each 

image was visually evaluated, comparing it with the simulated conditions (Fig. 2), until for 

each condition of number of measurement points, the ideal number of neighboring pixels 

to filter the image was obtained. 

 

Image evaluation 

 After the adoption of the filters, the final ultrasound tomography images were 

generated using the IQD interpolator for the ten discs with simulated defects and with 

diffraction grids with 6, 8, 10, 12 and 14 measurement points in the contour. The confusion 

matrix was used to assess how much the increase in the number of measurement points 

interferes with the quality of the tomographic image. This evaluation consists of comparing 

two images using the metrics of accuracy, precision, recall, and F1-score. For this purpose, 

a binary confusion matrix method was used, with the Python script proposed by Strobel et 

al. (2018). For the comparison using the confusion matrix, it is necessary to have three 

types of disc images named by the method as Roi (region of interest), model, and internal 

points. The three images must be binary and of the same size in pixels, having been treated 
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in the ImageJ software. The Roi or region of interest was obtained from the binarization of 

the image, generated by ImageWood with only two colors (up to 40% of the maximum 

speed was associated with yellow and above 40% of the maximum speed was associated 

with brown) and filtered. From this image, adjusted to 400 x 400 pixels, Roi was obtained, 

highlighting only the region of interest, which in this case was the region in yellow obtained 

by the tomographic image in the inference of the defect (Example in Fig. 4). 

 

 
 
Fig. 4. Example of Roi (b) generated from tomographic image (a) of the defect 

 

The model is the reference for the evaluation of tomographic images. To obtain this 

reference, the resolution of the images of the ten simulated discs (Fig. 2) were adjusted to 

the same dimension (400 x 400 pixels) used in the tomographic images, and through 

binarization, the defect was highlighted (Fig. 5). 

 

 
 
Fig. 5. Example of model (b) obtained from the image of the simulated defect (a). 

 

The image of internal points corresponds to the image formed by the delimitation 

of the field where the comparison of the model with Roi should occur. This image is 

obtained from the inverted binarization of the tomographic image, highlighting the area 

outside the contour (Example in Fig. 6). 

 

 
 
Fig. 6. Example of internal points (b) generated from the tomographic image of the simulated 
defect (a) 

 

(a)     (b) 

(a)     (b) 

(a)     (b) 
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The evaluation of image quality was performed by comparing the pixels within the 

internal points using the combinations proposed by (Fawcett 2006). The pixels within the 

zone of interest (in the case of this study, the zone with defects) were considered positive 

and pixels outside the zone of interest were considered negative. 
 

• True positive (PV): pixels which were expected to be positive and the result was 

positive; 

• False negative (FN): pixels which were expected to be positive and the result was 

negative; 

• True negative (NV): pixels which were expected to be negative and the result was 

negative; 

• False-positive (FP): pixels which were expected to have a negative result and the 

result was positive. 

 

 With the results of the combinations, different metrics can be calculated (Luque et 

al. 2019), from which the accuracy (Eq. 3), precision (Eq. 4), recall (Eq. 5) and F1-score 

were used. (Eq. 6). 

𝐴𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑉𝑃+𝑉𝑁

𝑉𝑃+𝑉𝑁+𝐹𝑃+𝐹𝑁
       (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑉𝑃

𝑉𝑃+𝐹𝑃
        (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑉𝑃

𝑉𝑃+𝐹𝑁
        (5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (6) 

 

Validation of results 

 To validate the results obtained in the simulations, a disc of the species Cenostigma 

pluviosum (Sibipiruna) was randomly chosen. In this disc, the conclusions of the research 

were applied in terms of measurement methodology, filter application, and number of 

measurement points. For the number of measurement points three conditions were applied 

- the number considered ideal (paper conclusion), a number above and a number below. 

The results of the confusion matrix metrics obtained in the real disc were compared to those 

obtained in the research (with the simulations).  

 

 

RESULTS AND DISCUSSION 
 

Wave Propagation Times Simulated for Image Formation 
The number of theoretical routes that passed through the simulated defects varied 

as a function of the type of defect and as a function of the number of measurement points 

in the grid (6, 8, 10, 12, or 14).  

Table 1 exemplifies the results obtained for the simulated propagation times 

obtained for simulated defect 1 (Fig. 2) in routes 1-4 and 2-8 of the mesh with eight 

measurement points in the contour (Fig. 3). 
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Table 1. Example of Results Obtained 

Parameters Route 1-4 Route 2-8 

Lc (mm) 63.2 77.7 

L (mm) 462 354 

Lc/L (%) 14 22 

Ic 9 8 

%V max 41.0 36.4 

V (m/s) 820 728 

t ( s) 563 486 

Legend: Lc = defect length in the theoretical route; L = length of the theoretical route; Ic= index 
calculated as a function of the relationship (%) between the length of the defect and the length of 
the theoretical route and %Vmax = percentage of the maximum speed obtained by the model 
(Eq. 1). 
Ic = 0 when Lc corresponds to 100% of the interval; Ic = 1 when Lc is between 91% and 100% of 
the interval; I c = 2 when Lc is between 80% and 90% of the interval; Ic = 3 when Lc is between 
70% and 80% of the interval; Ic = 4 when Lc is between 60% and 70% of the interval; Ic = 5 when 

Lc is between 50% and 60% of the interval; Ic = 6 when Lc is between 40% and 50% of the 
interval; Ic = 7 when Lc is between 30% and 40% of the interval; Ic = 8 when Lc is between 20% 
and 30% of the interval; Ic = 9 when Lc is between 10% and 20% of the interval; and Ic = 10 when 
Lc <10% of the interval. 

 
Filters 

After the iterative process of applying median filters, the best image results were 

obtained using 10 to 40 neighboring pixels. In practice, the average number of neighboring 

pixels obtained for each number of points of the measurement grid could be adopted. This 

average number (Table 2) was higher for the mesh with six measurement points (30 

neighboring pixels) and remained fixed (20 neighboring pixels) from ten measurement 

points, a coherent result since greater interferences are expected in thicker meshes (with 

fewer measuring points). Figure 7 illustrates the improvement in image quality (reduction 

of interference) with the application of the filter. 

 

Table 2. Number of Neighboring Pixels Used to Filter the Images Generated by 
the Inverse Square Distance (ISD) 

  Number of points in the diffraction mesh 

 Defects 6 8 10 12 14 

1 25 25 25 22 21 

2 25 25 20 20 20 

3 40 40 35 30 30 

4 35 28 25 23 25 

5 25 22 22 21 21 

6 35 20 15 12 10 

7 25 23 17 15 14 

8 25 23 17 15 14 

9 32 15 15 12 12 

10 25 23 20 18 18 

 Mean 30 25 20 20 20 
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Fig. 7. Example of images generated from the simulated disc (top) using the Inverse Square 
Distance (ISD) interpolation algorithm with diffraction grids of 6, 8, 10, 12 and 14 points in the 
contour (intermediate) and their respective images filtered using the median filter with 25 
neighboring pixels (mesh with 6, 8 and 10 points), 22 neighboring pixels (mesh with 12 points) 
and 21 neighboring pixels (mesh with 14 points) (bottom). 

 

Visual Analysis - Qualitative 
Visually, the images produced using the DQI algorithm and cutting speed at 40% 

of the maximum speed for the identification of defective zones reasonably represented the 

simulated defects (Fig. 8), even for the mesh with the lowest number of measurement 

points. Very close defects (defect 5-Fig. 8), cannot be separated in the tomographic image, 

showing a general stain by the union of the defects. Considering the wave following the 

theoretical trajectory (straight), in the case of simulation 5 (Fig. 8), the edge tangential 

route passed through two defects, which caused a greater reduction in the wave propagation 

speed. According to the interpolator used, it is expected that the interference will form in 

the form of a bead (Palma 2017), which is not completely eliminated by the filter and 

causes the union between the defects to occur (Ostrovisky et al. 2017). It is also verified 

that the tomographic images do not represent the exact shape of the defect, especially in 

the case of defects with irregular shapes (defects 9 and 10-Fig. 8). For defect 10, which 

simulates a crack, reconstruction by interpolation is even more complex (Divos and Divos 

2005; Feng et al. 2014; Strobel, et al. 2018). 

 

Disc simulated 
 Tomographic image 

 6 -point mesh  8 -point mesh  10 -point mesh  12 -point mesh  14 -point mesh  

 
 

1 

 
A = 96% 
P = 38.6% 
R = 50.5% 
F1 = 43.7% 

 
A = 97.2% 
P = 53.8% 
R = 68.7% 
F1 = 60.4% 

 
A = 98.2% 
P = 71.9% 
R = 70.5% 
F1 = 71.2% 

 
A = 97.9% 
P = 59.4% 
R = 100% 
F1 = 74.5% 

 
A = 97.8% 
P = 59.2% 
R = 94.9% 
F1 = 72.9% 

 
 

2 

 
A = 95.6% 
P = 73.5% 
R = 91.9% 

 
A = 97.7% 
P = 98.0% 
R = 80.3% 

 
A = 87.1% 
P = 45.1% 
R = 90.4% 

 
A = 87.4% 
P = 46.0% 
R = 100% 

 
A = 94.2% 
P = 65.1% 
R = 100% 
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F1 = 81.7% F1 = 88.3% F1 = 60.2% F1 = 63.0% F1 = 78.9% 

 
 

3 

 
A = 98.6% 
P = 76.9% 
R = 93.5% 
F1 = 84.4% 

 
A = 97.2% 
P = 59.1% 
R = 98.1% 
F1 = 73.8% 

 
A = 97.5% 
P = 63.7% 
R = 91.7% 
F1 = 75.2% 

 
A = 97.7% 
P = 64.0% 
R = 100% 
F1 = 78.1% 

 
A = 97.7% 
P = 64.2% 
R = 100% 
F1 = 78.2% 

 
 

4 

 
A = 92.3% 
P = 47.4% 
R = 90.0% 
F1 = 62.1% 

 
A = 98.4% 
P = 89.3% 
R = 88.0% 
F1 = 88.6% 

 
A = 94.9% 
P = 58.1% 
R = 96.6% 
F1 = 72.6% 

 
A = 96.4% 
P = 66.0% 
R = 99.4% 
F1 = 79.3% 

 
A = 96.5% 
P = 66.8% 
R = 98.1% 
F1 = 79.5% 

 
 

5 

 
A = 81.2% 
P = 31.4% 
R = 96.5% 
F1 = 47.4% 

 
A = 82.7% 
P = 33.6% 
R = 100% 
F1 = 50.3% 

 
A = 91.8% 
P = 51.9% 
R = 97.1% 
F1 = 67.6% 

 
A = 92.6% 
P = 54.4% 
R = 100% 
F1 = 70.4% 

 
A = 91.3% 
P = 50.3% 
R = 100% 
F1 = 66.9% 

 
 

6 

 
A = 91.9% 
P = 91.6% 
R = 96.3% 
F1 = 93.9% 

 
A = 87.1% 
P = 83.3% 
R = 100% 
F1 = 90.9% 

 
A = 80.1% 
P = 76.4% 
R = 100% 
F1 = 86.6% 

 
A = 86.8% 
P = 83.1% 
R = 100% 
F1 = 90.7% 

 
A = 82.0% 
P = 78.2% 
R = 100% 
F1 = 87.8% 

 
 

7 

 
A = 70.3% 
P = 51.4% 
R = 96.7% 
F1 = 67.1% 

 
A = 91.8% 
P = 83.5% 
R = 92.3% 
F1 = 87.6% 

 
A = 76.1% 
P = 56.8% 
R = 99.9% 
F1 = 72.4% 

 
A = 84.8% 
P = 67.4% 
R = 100% 
F1 = 80.5% 

 
A = 80.4% 
P = 61.6% 
R = 100% 
F1 = 76.2% 

 
 

8 

 
A = 68.9% 
P = 49.1% 
R = 96.6% 
F1 = 65.1% 

 
A = 92.0% 
P = 80.6% 
R = 96.8% 
F1 = 87.9% 

 
A = 75.7% 
P = 55.3% 
R = 100% 
F1 = 71.2% 

 
A = 91.6% 
P = 78.3% 
R = 99.9% 
F1 = 87.8% 

 
A = 77.8% 
P = 57.5% 
R = 100% 
F1 = 73.0% 

 
9 

 
A = 82.1% 

 
A = 79.4% 

 
A = 81.2% 

 
A = 81.3% 

 
A = 82.2% 
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P = 58.1% 
R = 89.3% 
F1 = 70.4% 

P = 53.1% 
R = 98.7% 
F1 = 69.1% 

P = 55.9% 
R = 99.1% 
F1 = 71.5% 

P = 56.1% 
R = 100% 
F1 = 71.9% 

P = 57.4% 
R = 99.7% 
F1 = 72.8% 

 
10 

 
A = 74.7% 
P = 23.5% 
R = 98.3% 
F1 = 37.9% 

 
A = 92.7% 
P = 51.9% 
R = 93.9% 
F1 = 66.8% 

 
A = 84.8% 
P = 34.0% 
R = 98.9% 
F1 = 50.6% 

 
A = 89.4% 
P = 42.1% 
R = 91.6% 
F1 = 57.7% 

 
A = 88.8% 
P = 40.7% 
R = 93.1% 
F1 = 56.6% 

 

Fig. 8. Discs with ten types of simulated defects, tomographic and metric images of the confusion 
matrix (accuracy (A), precision (P), recall (R) and F1-score (F1) resulting from diffraction grids with 
6, 8, 10, 12 and 14 measurement points. 

 

Analysis Using the Confusion Matrix - Quantitative 
Quantitative analysis indicates that, considering the mean values obtained for the 

different simulated defects and different numbers of measurement points adopted, recall 

showed the best results for tomography (overall mean 95%), followed by accuracy 

(overall mean 89%), the F1-score (overall mean 72%) and, finally, the accuracy (overall 

mean 60%). Other researchers obtained similar results regarding the classification of 

metrics, with better results for recall and worse results for accuracy (Du et al. 2018). 

 Of the metrics of the confusion matrix, the accuracy represents the relationship 

between the observations that were correctly predicted (positive and negative) and the total 

number of observations (Eq. 3). In this paper, this metric indicates the relationship between 

the general correctness of the tomography in the detection of pixels in the zones with 

defects and in the zones without defects and all the points (pixels) that constitute the image 

(Eq. 3). Considering the means by defects, the worst results for accuracy were found for 

the largest defects (Fig. 8), and the best results were found for the smallest defects (Fig. 8). 

The reference literature of this methodology (Luque et al. 2019) indicates that the accuracy 

is affected when there is an imbalance between the positive and negative zones. In the case 

of this study, this occurs for small defects, since the positive zone (PV) is very small 

compared to the zone without defect (NV). Disregarding the type of defect, in the real case 

of an inspection where the internal condition of the stem is unknown, the best accuracy 

results (greater than 90%) were obtained for eight points (91.6%) and 12 points (90.6%) of 

measurement in the contour. Although the highest accuracy was obtained for eight and 12 

points, for six measurement points, the mean result (85.1%) was only 7% lower than the 

best accuracy, confirming the visual observation that all the images produced made it 

possible to infer, in a general and approximate manner, the simulated defects. 

In this study, precision is the relationship between correctly predicted positive 

observations (i.e., correctly predicted defects) and the total number of positive observations 

(true or false) (Eq. 4). Thus, this metric has higher values when the image does not infer 

positive points (defects) out of place (FP), even if the dimension of the defective zone is 

smaller in the image than in the real condition. For this metric, the use of eight measurement 

points generated the best result (Fig. 8), followed by 12 points (10% worse) and 14 points 

(12% worse). This metric, in addition to having the worst overall mean, was also the one 

with the highest coefficients of variation among the different types of defects (from 16.7% 

for 14 points to 39.3% for 6 points). 
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Recall is obtained by the relationship between correctly predicted positive 

observations (in the case of this study, the correctly predicted defective zones) and all real 

positive observations, including the pixels that are positive in the real image and were 

inferred as negative, i.e. the false negatives (Eq. 5). Thus, in this case, the metric verifies 

that the dimension of the defect is not smaller than the real dimension; that is, it considers 

the false negatives that are the pixels where the image should have shown a defect but did 

not. This metric was the only one with 100% values for some types of defects from eight 

measurement points (Fig. 8). For this metric, the best results were obtained for 12 

measurement points (99.1%), with 100% accuracy for 70% of the types of defects (Fig. 8). 

Any number of points (six to 14) had values greater than 90% for recall, and the variability 

in the relation to the type of defect, measured by the coefficient of variation (between 2.6% 

for 14 points and 15.8% for six points), was the lowest among all metrics, with a mean of 

8.4%. It is important to note that the problem with this metric is that because it does not 

consider false positives, the values can be high or even 100% even when the image is filled 

with the zone of interest, showing a defect of dimensions much larger than the real one. 

The F1-score (Eq. 6) is a metric that indicates a balance between precision and 

recall; therefore, the result (Table 3) was a mixture between the correctness of the size and 

position of the defects. Thus, for this metric, the best number of measurement points was 

eight (76.4%), followed by 12 with a very close value (75.4%) and 14 (74.3%) (Fig. 8). 

The coefficient of the mean variation for the case of this metric, considering all types of 

defects, was 17%, ranging from 11.2% (14 points) to 28% (6 points). 

Because there is no prior knowledge of the type of defect, a condition for the 

inspection of a tree is considering all types of mixed defects. As such, the statistical analysis 

of comparison of means (with 95% confidence level) shows that there was a significant 

difference between the results obtained with different numbers of measurement points (Fig. 

11) only for the recall metric. In this case, the recall for 12 and 14 measurement points 

differed statistically from that obtained for six measurement points. For the other metrics, 

the results were statistically equivalent because the variability around the mean prevented 

the detection of significant differences (Fig. 9, 10 and 12). 

Numerically, the adoption of eight measurement points allowed for the conditions 

of the simulated discs to obtain the best mean values of accuracy, precision, and F1-score, 

while 12 points had the best recall value. When adopting eight measurement points, the 

loss of recall was 7%, while when adopting 12 measurement points, the loss of precision 

was 10%, and of accuracy and F1-Score was 1% each (Table 3). 

 

 
Fig. 9. Statistical analysis of comparison of means of accuracy obtained in ultrasonic tomography 
for different measurement points in the diffraction mesh 
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Fig. 10. Statistical analysis of the comparison of the averages of the precision obtained in 
ultrasonic tomography for different measurement points in the diffraction mesh 

 
Fig. 11. Statistical analysis of comparison of recall averages obtained in ultrasound tomography 
for different measurement points in the diffraction mesh 

 

 
Fig. 12. Statistical analysis of the comparison of F1-score means obtained in ultrasound 
tomography for different measurement points in the diffraction mesh 
 

Although the problem of the recall metric can be high even with oversizing of the 

defect, in terms of safety, it would be more appropriate than the precision, since the highest 

values occur when there are fewer false negatives, i.e., errors of nondetection of the defect 

are smaller. However, for eight points, the difference for this metric was less than 10%, 

and in terms of fieldwork, eight points represent 42% fewer routes to be measured. 
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 In addition to the frequency of the transducer and the interpolator used, the number 

of sensors is directly related to the image resolution (Espinosa et al. 2020). However, 

increasing the number of translators too much leads to an increase in fieldwork and 

processing time without a proportional increase in image quality (Divos and Divos 2005). 

As the result showed a number of measurement points (n) ideal for ultrasonic 

tomography considering a fixed  perimeter, it is possible to propose a calculation of “n” as 

a function of the perimeter, allowing the application of the result for different trunk 

dimensions. If 8 measurement points (n) showed good metrics for a perimeter (P) of 1.57 

m, then it is possible to calculate how many points will be necessary to other perimeter (P) 

as n = 8*P/1.57 or n  5 P.  This number of measurement points appears to be suitable to 

obtain a tomographic image with good metrics without excessive increase in fieldwork.  

 

Table 3. Percentage of Losses in the Metrics When Separately Adopting Each 
Number of Measurement Points 

Number of 
points 

Relationship 
with 

perimeter 

 Accuracy  Precision  Recall F1-Score 

6 4 7 21 9 14 

8 5 0 0 7 0 

10 6 5 17 5 9 

12 8 1 10 0 1 

14 9 3 12 1 3 

 

Considering the need to cover, in addition to the edges and radial directions, the 

inner zone of the disc section, it is important to adopt at least 6 measurement points. 

Additionally, to ensure that there are radial measurement paths, the number of 

measurement points must be even. So, when calculating the number of points through the 

relationship with the disc perimeter (n = 5*P), adopting even and integer numbers, if the 

result is between 6 and 8, it is suggested to adopt 6 for results of n less than 7 and 8 for 

results of n greater than 7; between 8 and 10 adopt 8 for results of n less than 9 and 10 for 

results of n greater than 9 and so on. 

 

 

VALIDATION 
  
  The results of the confusion matrix metrics (Fig. 13) validated the results obtained 

in the simulated discs, with the most representative image of the actual condition of the 

disc obtained with number of measurement (n) corresponding to five times the perimeter 

(P). As with the simulated discs, the accuracy, precision, and F1-score were higher when 

using the number of measurement points (n) calculated as a function of the disc perimeter 

(n = 5*P). Recall is the only metric that grows as the number of measurement points 

increases until it reaches values close to 100%, because as the mesh gets narrower, the 

number of false negatives (indicative of no defect where it exists) decreases. This result is 

consistent with the definition of metrics, as already discussed in the previous item. 
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Disc  
Cenostigma pluviosum 

(Sibipiruna) 
 
 

 Tomographic Image 

 6 -point mesh  8 -point mesh  10 -point mesh 

 
 

P = 1.66 m 
(ncalculated = 5*1.66 = 8.3) 

(nadopted = 8) 

 
A = 75.5% 
P = 34.0% 
R = 74.6% 
F1 = 46,7% 

 
A = 93.3% 
P = 70.9% 
R = 89.1% 
F1 = 78.9% 

 
A = 85.4% 
P = 48.3% 
R = 97.4% 
F1 = 64.6% 

 
Fig. 13. Disc with cavity, tomographic and metric images of the confusion matrix (accuracy (A), 
precision (P), recall (R) and F1-score (F1) resulting from diffraction grids with 6, 8 and 10 
measurement points 
 

 

CONCLUSION 
 

Considering the relationship between the quality of the tomography and the field 

work required in the inspection, the calculation of the number of measurement points (n) 

in the diffraction mesh can be adopted as five times the average perimeter of the trunk (in 

meters), approximate for an even number (to guarantee radial routes), and always equal to 

or greater than six (to guarantee a minimum number of routes that pass through the trunk 

transversal section). 
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