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Population and pollution make notable contributions to introducing novel 
sophisticated techniques. From vehicles to industries, the release of CO2 
into the atmosphere and wastewater into the running water streams are 
key concerns. On the other hand, the population is responsible for the 
rapid manufacturing of all commercial goods. Microalgae are the only 
answer accessible for the aforementioned difficulties. Similar to plants, 
microalgae need CO2 and light to thrive and produce a variety of 
bioproducts such as carbohydrates, protein, lipids, vitamins, sterols, 
pigments, and silica. Physical (light, temperature, CO2, and UV), chemical 
(nutrient addition or depletion), enzymatic, and metabolic pathway 
reconfiguration, as well as indoor or outdoor growing, are highly regarded 
among the several optimization strategies to make desired products. 
Wastewater pollution is rectified by growing microalgae in nutrient-rich 
organic water for their growth, which is used to accelerate bioproducts. 
This review considers the use of bioproducts in food, animal and aquatic 
feed, fertilizer, biofuel, medicinal and nutraceutical sectors. This paper 
also provides different optimization strategies, which include physical and 
chemical means of extraction methods for enhancing bioactive products. 
Challenges and future recommendations for enhancing target bioproducts 
are discussed to overcome environmental issues. 
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INTRODUCTION 

 
 Population growth increases the demand for natural resources, which are employed 

to produce food, energy, and chemicals. Consequently, it greatly enhances the greenhouse 

gas emissions in the atmosphere, increasing global temperature (Hussain et al. 2021). 

However, the existing system of producing food and supporting products that cannot meet 

the current needs of humans. To combat the shortage of the existing and future world, it is 

imperative to obtain various alternatives or technological innovations that could ramp up 

production (Rahul et al. 2020). Microalgae is an appropriate answer to the aforementioned 

challenges because of its major advantages. It has a doubling time on average of 26 h, high 

productivity, and the capacity to withstand food and feed competition (Kawamura et al. 

2021). Microalgae is ecologically susceptible to manipulation, grows in non-arable land, 

requires exceptionally small spaces for farming, harnesses greenhouse gases for its growth, 

and is able to grow in wastewater with minimal nutrients (Odjadjare et al. 2015).  
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Microalgae are broadly classified into Chrorophyceae (green algae), Cyanophyceae 

(blue-green algae), Xanthophyceae (yellow green algae), Chrysophyceae (golden algae), 

Bacillariophyceae (diatom), and others (Andrade et al. 2018; Pirbazari et al. 2019; Yu et 

al. 2017) on the basis of pigments. Microalgae are a complex range of marine and 

freshwater eukaryotes, including unicellular to colonial forms of tiny algae with sizes 

ranging from a few micrometers to a few millimeters (Sarpal et al. 2015). They have 

tremendous ecological plasticity in adapting to harsh conditions, such as high temperature, 

salinity, light, pH, moisture, and nutrients. Similar to plants, microalgae function as a 

primary producer reliant on the abundantly available light source and assimilate 

atmospheric carbon dioxide (CO2) to synthesize carbohydrates (18 to 46%), lipids (12 to 

48%), proteins (18 to 46%), and other bioproducts (Tibbetts et al. 2014; Williams et al. 

2019). Its metabolic process responds to the removal of 20% of CO2 from the atmosphere 

and 40% of CO2 from the ocean. According to assessments, about 1.83 kg of CO2 was used 

to produce 1 kg of algal biomass (Kumar et al. 2011; Li et al. 2013). Microalgae can 

synthesize a variety of goods including food, animal and aquatic feed, fertilizers, 

nutraceuticals, pharmaceuticals, cosmetics, and alternative bioenergy products (Khan et al. 

2018). One of the main unprecedented increases in demand is fuel, as fossil fuels are nearly 

expended. To meet customer demands, crude oil is imported from numerous nations. It 

also increases the processing costs of producing gasoline and diesel substantially. 

Microalgae are commonly cultivated for lipid production, which accounts for almost 40% 

of their total biomass (Raja et al. 2018). The generation of a high proportion of lipids by 

microalgae paved the path for the centralization and restructuring of biodiesel synthesis via 

transesterification. The biodiesel produced from algal resources can be blended with 

conventional diesel or gasoline at various proposition to run motor vehicles, thereby 

reducing the consumption and cost of traditional fuel (Melvelle 2012). 

The study of genetic architecture also stimulates the production of novel microalgal 

products via insertion, deletion, and translocation of genes. This genetic method of 

microalgae can help to accumulate the target products to improve economic feasibility (Fu 

et al. 2017). Although there have been many studies reporting on bioactive products, 

understanding their low-cost production at a commercial scale still needs extensive work. 

To overcome these issues, microalgae have numerous advantages when compared to other 

conventional resources (Odjadjare et al. 2015). Studies show that microalgae effectively 

utilize wastewater as a low-cost nutrient source for producing biomass and its target 

products. Notwithstanding the massive potential applications of microalgae, their 

improvement is hampered by a myriad of challenges. Therefore, independent research and 

novel low-cost technologies should be implemented for the enhancement of algal 

biorefinery on the commercial scale (Mehrabadi et al. 2016).  

 This review article describes the latest technological approaches in microalgal 

biorefinery for the production of high-value-added bioproducts. In addition, this study also 

addresses the current challenges and future work on wastewater treatment using microalgae 

and genetic approaches for enhanced production of various bioproducts. 

 

 

BIOACTIVE PRODUCTS FROM MICROALGAE BIOMASS 

 
 Microalgae are capable of creating numerous bioactive products that act as 

feedstock for different products (Chew et al. 2017). Carbohydrates, proteins, lipids, 

cellulose, silica, pigments, vitamins, and sterols are essential for a healthy human diet and 
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the treatment of numerous ailments. The residual goods encompass food for humans, 

biofuels, animal and aquatic feed, cosmetics, nutraceuticals, and pharmaceuticals 

(Mendoza et al. 2013; Prussi et al. 2014). Deep seawater (DSW) is used as a novel method 

for microalgae cultivation for fisheries, aquaculture, and medicine. Plant-growth-

promoting bacteria (PGPB), when co-cultured, form a symbiotic relationship with the 

microalgae for better biomass production (Tan et al. 2015). The entire product will be 

renewable and harmless compared to chemically synthesized products. Different 

bioproducts produced from the microalgae are illustrated in Fig. 1. 

 

 
Fig. 1. Illustration of various cultivation conditions used in microalgae to improve diverse 
bioproducts  

 
Carbohydrates  
 Microalgal biomass contains a high amount of carbohydrates derived from the 

photosynthetic process. Carbohydrates are either located in the cell wall as structural 

components or in the plastids as reserve materials (Chen et al. 2013). Most of the 

microalgae possess starch as a reserve material, while cyanobacteria synthesize glycogen 

and sucrose as storage products (Gonzalez-Fernandez and Ballesteros 2012; Markou et al. 

2013). The carbohydrate content in the microalgal cell may vary from species to species. 

Nevertheless, the composition of carbohydrates could be increased by various 

environmental stress conditions (Domozych et al. 2012).  

Carbohydrates from microalgae are utilized for the development and manufacturing 

of biofuels including bioethanol, biobutanol, biomethane, and biohydrogen (Markou and 

Georgakakis 2012) (Table 1). These biofuels are employed in running high-performance 

with low-emission engines (Simas-Rodrigues et al. 2015; Quader and Ahmed 2017). 

Examples of fuels, such as biobutanol, are reported to be produced by Chlorella vulgaris 

and Spirulina platensis approximately 21% and 71% via fermentation, respectively (Tan 

et al. 2020). Synechocystis sp. produced bioethanol at a density of 0.186 g/g (Ashokkumar 

et al. 2019). Further, the production of bioethanol in Chlorella minutissima was achieved 

by increasing carbohydrate up to 60.5% (Menestrino et al. 2020). Scenedesmus obliquus 

produced biohydrogen at a volume of 68.9 mL/g (Singh et al. 2019). Cuellar-Bermudez et 

al. (2019) proved that Pseudanabaena sp. yielded 25.1 mL/g of biomethane. Other 

possibilities include food thickeners, painkillers, biodegradable materials, and functional 

foods (De Souza et al. 2020).  
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Table 1. Several Optimization Strategies to Manufacture a High Amount of 
Carbohydrates to Extract Numerous Bioproducts 

Microalgae 
Carbohydrate 
Content (%) 

Product Optimization References 

Chlorella vulgaris 
FSP-E 

59.53 Bioethanol 
Light and nitrogen 

starvation 
Condor et al. 

(2022) 

Neochloris aquatica 
CL-M1 

50.5 Biobutanol 
Phosphorus and 

nitrogen starvation 
Wang et al. (2017) 

Chlorella sorokiniana 
SLA-04 

20 to 23 Lipid 
Calcium and 

nitrogen starvation 
Hanifzadeh et al. 

(2018) 

Tribonema minus 26.6 Lipid 
Phosphorus and 

nitrogen starvation 
Wang et al. (2019) 

Monoraphidium QLZ-
3 

19.1 Biofuel 
Phosphorus and 

nitrogen starvation 
Dong et al. (2019) 

Scenedesmus 
obliquus BR003 

62.5 Biobutanol 
Sulphur and 
phosphorus 

Narchonai et al. 
(2020) 

Spirulina sp. LEB 18. 63.3 Bioethanol CO2 injection Braga et al. (2019) 

Scenedesmus 
obliquus UTEX 393 

55.4 Biohydrogen pH Singh et al. (2019) 

Chlamydomonas 
moewusii 

72.8 
Starch and 

lipid 
Irradiance Gifuni et al. (2018) 

Parachlorella kessleri 
QWY28 

43 Carbohydrate Temperature Qu et al. (2019) 

Chlorella minutissima 60.5 Bioethanol Magnetic field 
Menestrino et al. 

(2020) 

Pseudoneochloris 
marina 

53.77 Biofuel 
Airlift 

photobioreactor 
Goncalves et al. 

(2019) 

Geitlerinema sp. 
Coellastrella sp. 

46 
56 

Biofuel 
Semi-continuous 
photobioreactor 

Solis-Salinas et al. 
(2021) 

Spirulina platensis 
LEB-52 

35 Bioethanol Enzyme hydrolysis 
Rempel et al. 

(2021) 

Chlorella sp. 26 
Bioproducts 
and biofuels 

Enzyme 
Arora and 

Philippidis (2021) 

Pseudanabaena sp. 23 Biomethane Anaerobic digestion 
Cuellar-Bermudez 

et al. (2019) 

Arthrospira platensis 20 Biomethane Anaerobic digestion 
Markou                

et al. (2013) 

 
Polysaccharides 

Polysaccharides are also called carbohydrate polymers. They have intricate 

structures that differ (structurally and biochemically) among the different species of 

microorganisms. Xylose, glucose, galactose, mannose, and rhamnose are the major 

components in microalgal polysaccharides (Yi et al. 2021; Chanda et al. 2019; Bernaerts 

et al. 2018). In microalgae, polysaccharides are primarily formed as part of the cell wall 

(as structural polymers), involved in various metabolic functions (as energy storage 

polymers) (Yi et al. 2021; Markou and Georgakakis 2012), and also in cellular interaction 

and protection (as exopolysaccharide) (Morais et al. 2022; Prybylski et al. 2020).  

Microalgae are able to synthesize polysaccharides under various stress conditions 

(Parwani et al. 2021; Colusse et al. 2021) such as temperature, light, salinity, and nutrient 

uptake etc. (Costa et al. 2021). Hence, standardization of these cultural conditions for 

microalgae cultivation are imperative to increase the production of polysaccharide 
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(Colusse et al. 2021). Earlier reports showed that white light was more suitable for the 

production of polysaccharides at levels of about 0.10 and 0.14 g/L in Porphyridium 

sordidum and Porphyridium purpureum, respectively (Medina-Cabrera et al. 2020). 

Further, Chlorella vulgaris can accumulate about 32.7% of polysaccharides at a light 

intensity of 65 µmol m−2 s−1 at 28 °C (Gui et al. 2019). About 65 µmol m−2 s−1 of light was 

supplied in nutrient media with 1%w/v of glucose helps to produce 1.46 g/L of 

polysaccharide in Chlorella sp. (Cheirsilp et al. 2016). In addition to that, the nutrient 

media supplemented with high salinity (40g/L) was supported the polysaccharide 

production in Spirulina sp. by 1.02g/g of biomass (Chentir et al. 2017).  

Polysaccharides derived from Anabaena sp. CCC 745 have a significant 

antioxidant and scavenging activity in food industries (Tiwari et al. 2019). It has been 

reported that polysaccharides from Nostoc sp., Phormidium sp. and Scytonema arcangeli 

can be used as soil-fixing agent in the agricultural fields (Park et al. 2017). On the other 

hand, polysaccharides of Spirulina platensis were used as feed for zebra fish growth and 

development (Rajasekar et al. 2019). Utilizing nanotechnology to create polysaccharide-

based goods can be applied in the food, health and beauty industries (Morais et al. 2022). 

Moreover, the polysaccharides are being used in the biomedical field for antithrombotic, 

immunomodulatory, antitumor, anticoagulant, anti-inflammatory, antimutagenic, antiviral, 

and antioxidant activities, as reported by many authors (Xu et al. 2017; Moreira et al. 2022; 

Patil et al. 2018; Li et al. 2019). 

 

Cellulose 
Cellulose is the most abundant sustainable source on Earth. It has enormous 

potential for producing renewable fuels, bioplastics, and nanomaterials. Cellulose is a 

linear homopolymer consisting of repeating β-d-glucopyranosyl units connected by 1–4 

glycosidic linkages in a diversified arrangement depending on the presence of crystallites 

and disordered amorphous regions. Cellulose is the major component in the cell wall of 

plants and algae (Popper et al. 2011). In general, the ratio of cellulose Iα/Iβ in algae was 

found to be 60/40, whereas in plants it was 25/75. Until now, four totally different sub-

polymorphs of cellulose such as, cellulose (I), cellulose (II), cellulose (III), and cellulose 

(IV) have been reported. Hydrogen bond arrangements and polarity in constituting chains 

are varied between these sub-polymorphs. The most common form of crystalline cellulose 

(I) was observed in nature, whereas cellulose (II), (III), and (IV) have been synthesized by 

thermal and chemical treatments. Based on the chain alignment and interchain hydrogen 

bonding, cellulose allomorphs have distinctive geometries (Zanchetta et al. 2021). 

Regarding micro- and macroalgae, it was reported that microalgae have remarkable 

flexibility in terms of their mode of cultivation for cellulose production. However, only 

limited studies are available for increasing the cellulose content in microalgae biomass, 

which may be the focus of more attention in the future.  

From a commercial standpoint, producing higher biomass in a short period of time 

is essential for the overall yield of cellulose. For instance, Chlorella is reported as a fast-

growing microalga and consists of a fibrillar layer of polysaccharides that can be secured 

in certain cases through a resistant algaenan outer layer (Domozych et al. 2012; Kroger et 

al. 2018). Another report shows that the cell wall of Scenedesmus quadricauda is a 

trilaminar arrangement in which cellulosic and pectic layers can be distinguished and 

secured by an algaenan layer (Nemcova 2003). Further, the cell wall of Oedogonium 

bharuchae has two layers that are a mix of cellulose, pectins, and glycoproteins followed 

by a cellulose-free layer having both extensin and arabinogalactan proteins (Estevez et al. 
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2008). Similarly, the cell wall of Nannochloropsis has a special porous inner layer mixed 

with struts connecting the cell membrane to a porous cellulose-dependent layer covered by 

an algaenan outer layer (Scholz et al. 2014).  

Furthermore, Nannochloropsis sp. is a well-studied microalga that is known for its 

great potential in cellulose extraction and production (Hamed et al. 2016; Lee et al. 2018). 

However, there is no sufficient information about other microalgal species, and hence, 

more attention is required to identify potential strains for cellulose production. A high 

concentration of cellulose was reported in Chlorella sp., Oocystis sp. (Aguirre and Bassi 

2013; Kroger et al. 2018), Scenedesmus sp., Coelastrella sp., Chlorococcum sp., 

Selenastrum sp. (Yap et al. 2016; Kroger et al. 2018), Chaetosphaeridium sp., and 

Staurastrum sp., which garners increased interest for further study in detail. Table 2 

illustrates the quantification of cellulose content in various microalgal strains. From these, 

the highest cellulose content (75 wt% dry weight basis) was observed in Nannochloropsis 

gaditana in their cell wall (Scholz et al. 2014). In contrast, low cellulose content (15.4 

wt%) was reported in Chlorella pyrenoidosa (Northcote et al. 1960). The variation of 

cellulose content from species to species can be influenced by many cultural conditions. 

Currently, genetic engineering technologies are also opening the way to enhance biomass 

yields with desired products. It was proposed that the biorefinery approach can be used for 

the successful production of cellulose (Lee et al. 2018). 

 
Table 2. Cellulose Content of the Microalgal Feedstock 

Name of the Algal Strain Class 
Cellulose 

(%) 
References 

Mixed culture of microalgae 
and cyanobacteria from the 
wastewater treatment plant 

Mixed culture 7.1a Ververis et al. (2007) 

Chlorella vulgaris Chlorophyceae 10–47.5a Aguirre and Bassi (2013) 

Nannochloropsis gaditana Eustigmatophyceae 25a Hamed et al. (2016) 

Chlorella pyrenoidosa Chlorophyceae 15.4b Northcote et al. (1960) 

Nannochloropsis gaditana Eustigmatophyceae 75b Scholz et al. (2014) 

Staurastrum sp. Chlorophyceae 72b 
Gunnison and Alexander 

(1975) 

a. Represents the amount of cellulose in a total dry weight basis; b. Represents the amount of 
cellulose in a cell wall dry weight basis 

 

Proteins 

 Proteins are produced from a variety of green vegetables and animal meat, but 

diatoms can generate them in greater quantities, which allows them to be sold 

competitively as tablets and pills. For instance, Tetraselmis suecica can produce a protein 

of approximately 12% using bead milling. In general, microalgae generated a protein with 

outstanding emulsification, frothing, and gelatin properties, a noteworthy breakthrough for 

the food sector (Garcia et al. 2018). Chlorella thermophile exhibited an increase of 36% in 

its protein content and was studied using artificial neural networks-genetic algorithm 

(ANN-GA) (Sarkar et al. 2022). In addition, Arthrospira platensis was discovered to 

account for 110% of the protein production from sugarcane bagasse in solid-state 

cultivation (Pelizer et al. 2015). Microalgal proteins are used in the cosmetic, medicinal, 

and animal/aquaculture feed industries (Caporgno and Mathys 2018). Chlorella has the 
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capability of producing 62% protein content for cosmetics and nutraceutical production 

through enzyme hydrolysis (Pekkoh et al. 2021). Microalgae such as Botryococcus braunii, 

Chlorella protothecoides, Chlorella vulgaris, Neochloris oleoabundans, and Scenedesmus 

acutus can synthesize protein as a nutrition and dietary supplement of approximately 40%, 

36.1%, 48.6%, 49.5%, and 53.2% protein content, respectively, using photobioreactors 

(PBRs) (Tibbetts et al. 2015; Baldisserotto et al. 2022). In comparison to another 

optimization method, enzyme hydrolysis helps to extract the maximum amount of protein 

present in the microalgal cell. 

 

Lipids and Their Derivatives: Eicosapentaenoic Acid, Docosahexaenoic 
Acid, and Isoprenoids  

 Lipid productivity in microalgae can be classified into two parts: (i) 14 to 19 carbon 

atom chains used for the generation of biodiesel because of the unavailability of double 

bonds in the chain; and (ii) poly-unsaturated fatty acids (PUFAs) (Surendhiran et al. 2015). 

Furthermore, δ-3 fatty acids have many health benefits and can be found in a variety of 

food products that act against arthritis, asthma, cancer, cardiovascular disease (CVD), 

inflammatory disorders, depression, and schizophrenia by preventing the production of 

oxidative stress as antioxidants (Adarme-Vega et al. 2012). Lipids are also used as 

nutritional supplements and feed, antioxidants in beverages and functional foods, pills, 

capsules, and food additives in candies, gum, pasta, etc. (Chen et al. 2014). 

The PUFAs, such as docosahexaenoic acid (DHA) and eicosapentaenoic acid 

(EPA), are necessary for the development of the human brain and the prevention of 

coronary heart disease (CHD). Additionally, because of their anti-carcinogenic, anti-

thrombotic, anti-diabetic, and anti-obesity quality, as well as an immune modulator and in 

pregnant women for better fetus growth (Echeverria et al. 2017), they are commonly 

utilized in many health drinks. The production of EPA, C20:5 n-3 was 23.6% and DHA, 

C22:6 n-3 was 36.5% in Phaeodactylum tricomulum under the nutrient depletion (Yi et al. 

2017). The quantity and composition of PUFAs are invariably influenced by growth phases 

and environmental factors. The lipid's PUFA can also be turned into biodiesel by the 

transesterification method (Chen et al. 2012).  

Microalgae can store a substantial amount of lipids with high biological activity. 

Phaeodactylum tricornutum constituted a neutral fraction containing greater than 60% 

triglycerides (TAGs), the primary component for biodiesel generation under outdoor 

conditions (Steinrucken et al. 2018). It was reported that Chlorella vulgaris, Scenedesmus 

sp., and Spirogyra sp., can accumulate 15 to 40% of lipids by their dry weight of biomass 

(Mata et al. 2009; Cai et al. 2013). In addition, this fraction of lipid accumulation might be 

augmented to 70 to 90% by modifying cultivation conditions, such as supplementing 

KNO3, as a nitrogen source (Gour et al. 2018). Addition of NaNO3 at a concentration of 

18.75 mg/L to Nitzschia sp. produced a lipid content of around 60 mg/L (Harini et al. 

2020). Carbon-nitrogen (C/N) ratio, pH, high salinity, temperature, and nitrogen depletion 

in the medium play a key role in boosting lipid formation (Kwak et al. 2016). Amphora 

coffeaeformis RR03 produced a lipid of about 67.15% cultured in an open raceway pond 

(Rajaram et al. 2018). In the semicontinuous mode in the open raceway pond (ORP) 

Chlorella vulgaris UTEX 26 was grown and produced the highest lipid of 6.1 g m-2 d-1 

along with the periodic addition of NH4HCO3 and ammonia (Ramirez-Lopez et al. 2019). 

Nitrogen plays a major role in the synthesis of lipids. Excessive addition of nitrogen to the 

media helps improve the production of the lipid and the products (Table 3). 
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Table 3. Adaptation of Conditions to Promote Lipid Products for the Production of 
a Wide Range Bioproducts 

Organism 
Lipid 

Content 
(%) 

Product Optimization References 

Chlorella sp. 34 
Bioproducts 
and Biofuels 

Enzyme 
Arora and Philippidis 

(2021) 

Neochloris 
oleoabundans; 

Chlorella vulgaris 

16.04 
> 20 

- Ionic liquids Zhou et al. (2019) 

Chlorella vulgaris > 19 - Bio-sourced solvent Breil et al. (2017) 

Thrustochytrium 
sp. 

91 Biorefinery Organic Solvents Zhang et al. (2018) 

Ascochloris sp. 
ADW007 

34.98 - 
Open raceway 

pond 
Kumar et al. (2019) 

Tribonema sp. 55.4 - 
Intermittent-

vacuum stripping 
(IVS) system 

Huo et al. (2020) 

Chlamydomonas 
mexicana 

33 Biodiesel - 
Abou-Shanab et al. 

(2013) 

 

Pigments  
 Pigments present in microalgae have a pivotal role in the development of a myriad 

of bioactive compounds in the form of secondary metabolites. Microalgae are used to 

produce feed, antibiotics, cosmetics, nutritional food, and economically efficient pigments. 

It is also used to treat cancers, neurological disorders, and eye ailments (Chew et al. 2017). 

Current research focuses on the exploitation of wastewater sources for pigment synthesis 

(McClure et al. 2018). Algal pigments include phycocyanin, lutein, fucoxanthin, β-

carotene, diatoxanthin, diadinoxanthin, and astaxanthin (Sathasivam et al. 2017). 

Phycocyanin fluorescent blue-colored phycobiliprotein acts as an antioxidant and anti-

inflammatory, is found in cosmetics, and it also helps treat liver, colon, lung, and breast 

cancers (Fernandez-Rojas et al. 2014; Kumar et al. 2014). Among its many health benefits 

are its antioxidant, anti-inflammatory, and hepatoprotective properties (Lima et al. 2018). 

It is also used in popsicles, chewing gum, confectionery, wasabi, dairy products, and soft 

drinks (Gattullo et al. 2012). Research has shown that extract of phycocyanin used for the 

production of biscuits along with which wheat flour has higher nutritional properties 

(Garcia et al. 2017). Spirulina platensis produced 159.9 mg/g of phycocyanin using a 

pulsed electric field, a sort of pretreatment method that increases the permeability of algal 

cells (Martinez et al. 2017). Ultrasound-assisted extraction (UAE) of phycocyanin from 

Spirulina platenis yielded around 13.6% of pigment (Hadiyanto and Suttrisnorhadi 2016). 

Phycoerythrin, a phycobiliprotein was purified and exploited as a fluorescent dye for 

Porphyridium marinum study and produced B-phycoerythrin of about 40 mg/g of dry cell 

weight (DCW) NaNO3 = 3.4 g/L with the light intensity of 70 μmol photons/m2/s and metal 

solution about 1.5 mL/L (Garcouch et al. 2018). Biomass from Porphyra sp. and 

Arthrospira sp. produced 8.32 mg/g and 8.18 mg/g of phycoerythrin, respectively using 

UAE (Ardiles et al. 2020). 

Lutein is one of the two most abundant carotenoids in the human eye (macula and 

retina). Many individuals consider lutein to be "the eye vitamin." Many microalgae can 

synthesize lutein pigment. For example, Chlorella minutissima MCC-27 contributes to the 
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generation of 17.28 mg/L of lutein based on the study of ANN and particle swarm 

optimization (PSO) (Dineshkumar et al. 2015). In a two-stage fed-batch mixotrophy 

condition, Chlorella sorokiniana FZU60 produced 65.96 mg/L of lutein (Ma et al. 2020). 

Isoprenoids constitute a significant and vital class of biomolecules. A collection of 

isoprenoids composes the various pigments. Fucoxanthin, β-carotene, diatoxanthin, and 

diadinoxanthin are regarded as isoprenoids in this context and found in Phaeodactylum 

tricornutum and Botryococcus braunii (Niehaus et al. 2011). Fucoxanthin has an allenic 

link, nine conjugated double bonds, a 5,6-monoepoxide, and several oxygenic functional 

groups. They possess numerous biological features, including antioxidant, anti-obesity, 

and anti-inflammatory qualities (Maeda 2015; Zhang et al. 2015). Fucoxanthinol, the 

deacetylated derivative, demonstrated potential in the therapy of numerous cancer cell 

types and antineoplastic activity (Martin 2015). Fucoxanthin is one of the main chlorophyll 

a/c complex compounds found predominantly in diatoms, where it functions as a light-

harvesting pigment during photosynthesis and growth. For instance, Isochrysis sp. in better 

media after optimization produced 7.5 to 23.3 mg/g (Sun et al. 2019). For Nitzschia sp. 

under high silica, the concentration produced was 12 to 32.8 mg/g (Mao et al. 2020) and 

Tisochrysis lutea synthesized 2.1 to 79.4 mg/g under single-cell fluorescence (Gao et al. 

2020). Phaeodactylum tricornutum produced approximately 59.2 mg/g of fucoxanthin. 

Compared to the synthesis of fucoxanthin in an open raceway pond, the growth of 

microalgae in a controlled environment, such as a PBR, yields a higher product yield 

(Quader and Ahmed 2017). 

Carotenoids are isoprenoid structured lipophilic pigments that are found in non-

photosynthetic organisms. They have strong antioxidant properties, thereby protecting the 

organisms from oxidative and free-radical stress. A range of 0.1 to 0.2% of total dry matter 

of microalgae may consist of carotenoids. It contains an abundance of colors, including 

yellow, orange, and red. Carotenoids consist of over 600 colors found in nature (Herrero 

et al. 2013). In the food and pharmaceutical industries, it has expanded applications to 

lessen the effects of smoking, hypertension, dyslipidemia, diabetes, cancer, cardiovascular 

disease, and atherosclerosis (Lobo et al. 2010; Herrero et al. 2013). According to reports, 

using the modified medium with different concentrations of NaCl, 10% to 14% of β-

carotene was recovered from Dunaliella salina, which is beneficial for vision and the 

immune system (Sathasivam and Juntawong 2013). 

Xanthophylls, specifically diatoxanthin and diadinoxanthin, are regarded as 

beneficial chemicals that are diatom-specific (Sathasivam et al. 2017). The article 

demonstrates that numerous diatom species manufacture these pigments efficiently. 

Mytilus coruscus produced approximately 133.97 mg/kg of diatoxanthin and 107.16 mg/kg 

of diadinoxanthin from its DCW by altering the acetylenic carotenoid pathway and 4-keto 

oxidative pathway (Li et al. 2022a). Isochrysis zhangjiangensis also generated 0.75 mg/g 

and 4.5 mg/g of diatoxanthin and diadinoxanthin, respectively. The researcher also found 

that increasing light induces the biosynthesis of fatty acids but reduces the formation of 

fucoxanthin, whereas, in intense light, the cycle of diadinoxanthin to diatoxanthin was also 

triggered (Li et al. 2022b). Haematococcus pluvialis produced approximately 4% of its 

DCW as astaxanthin using different cell disruption methods (Kim et al. 2022). It was 

observed that Oedocladium carolinianum produced 24.2 mgL-1day-1 of astaxanthin along 

with the production of lipids in the open and closed PBRs (Wang et al. 2022). Possessing 

medicinal properties, these pigments treat maladies such as diabetes, ageing, cancer, 

obesity, and stroke (Raposo et al. 2013; Lin et al. 2016). Based on previous studies, it can 

be assumed that a consistent light source can enhance the growth of microalgae, leading to 
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a rise in product output. Depending on the different physical and chemical factors and the 

type of microalgae, the composition of the pigments varies in their biomass. 

 

Silica   
 Silica forms the cell wall of diatoms, a characteristic feature in the family 

Bacillariophyceae. They overlap with valves designated epitheca and hypotheca, which 

mimic a petri dish structure interconnected by a silica girdle band. Utilizing a minuscule 

amount of energy, silica absorbs diatoms from the external environment via silica acid 

transporters. In addition, the consumption of silica from surface water to sediments is a 

benefit of diatoms. Because diatoms are the primary and dominant producers in aquatic 

ecosystems, they deposit a greater quantity of silica in deep water over time (Sun et al. 

2017). The presence of silica causes the diatoms in diatomaceous earth to settle and settle 

over years. According to reports, diatomaceous earth could potentially act as an adjuvant 

for vaccination against chicken infections (Nazmi et al. 2017). This silica is primarily 

obtained from Coscinodiscus wailesii, Cyclotella sp., and Chaetoceros sp. (Esfandyari et 

al. 2020) and is taken advantage of in the biosensor field (antibody conjugation). In 

addition, it serves as a drug carrier for Nitzschia palea (Singh et al. 2020) and Thalassiosira 

weissflogii (Cicco et al. 2016). 

 

Vitamins 
Microalgae are capable of generating and accumulating a wide assortment of 

vitamins, including pro-vitamin A, some B vitamins (B1, B2, B3, B5, B6, B8, B9, and B12), 

vitamin C, and vitamin E (Galasso et al. 2019). Spirulina platensis, Isochyris galbana, T. 

suecia, and P. cruentum produced an abundance of vitamin E (tocopherols) about 120.5, 

115.5, 159.8, and 184.7 µg/g in continuous cultivation (Lopez-Hernandez et al. 2020). 

Porphyridium cruentum generates large quantities of vitamin A of 0.75 mg/g in closed 

PBR (Santiago-Morales et al. 2018). Dunaliella salina synthesizes vitamin E, vitamin C, 

pyridoxine, nicotinic acid, thiamine, riboflavin, and biotin efficiently (Tafreshi and Shariati 

2009). In contrast, Tarento et al. (2018) investigated the vitamin synthesis of several 

microalgae. Based on his study, 1 g of cylindrical Anabaena powder contains 64% of 

vitamin B12. Additionally, Spirulina has a maximum of 40.9 mg/g of vitamin B2. 

Approximately 0.24 mg/g of vitamin B3 was extensively synthesized by Chlorella sp. 

 

Sterols 
Phytosterols are sterols, such as sitosterol, campesterol, and stigmasterol, which 

have diverse pharmacological effects, including anticancer and anti-inflammatory, are 

exploited as food additives. Several microalgal strains produce phytosterols primarily 

utilized to reduce cholesterol levels (Luo et al. 2015). Chaetoceros sp. yielded phytosterols 

at a concentration of 27.7 mg/g DCW. In similarity, Pavlova lutheri produced 22 mg/g of 

total sterol (Ahmed and Schenk 2017). Pavlova lutheri, Tetraselmis sp. M8, and 

Nannochloropsis BR2 yield a range of 0.4 to 2.6% sterols (Ahmed et al. 2015; Santhosh et 

al. 2016) (Table 4). 
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Table 4. Bioactive Chemicals from Several Microalgae for the Synthesis of Non-
Hazardous Renewable Products 

Compounds Product Examples References 

PUFA Docosahexaenoic acid 
(C22:6), Eicosapentaenoic 

acid (C20:5), 
Arachidonic acid (C20:4), 

Linolenic acid (18:3) 

Chlorella vulgaris, 
Phaeodactylum tricornutum, 

Botryococcus bruanii, 
Amphora sp., Nitzschia sp. 

Yi et al. (2017); Gour 
et al. (2018); Rajaram 
et al. (2018); Harini et 

al. (2020) 

Pigments/ 
Carotenoids 

β-carotene, astaxanthin, 
lutein, 

zeaxanthin, canthaxanthin, 
chlorophyll, phycocyanin, 
phycoerythrin, fucoxanthin 

Chlorella vulgaris, 
Coelastrella striolata, 

Haematococcus pluvialis, 
Chlorella zofingiensis, 

Dunaiella salina, 
Muriellopsis sp. 

Koller et al. (2014); 
Hamed (2016)  

Vitamins A, B1, B6, B12, C, E, 
biotin, riboflavin, nicotinic 
acid, pantothenate, folic 

acid 

Cylindrospermus sp., 
Tolypothrixtenus, Nostoc 
muscorum, Hapalosiphon 

fontinalis, Nostoc, 
Hapalosihon 

Custodio et al. 
(2012); Xia et al. 

(2014) 

Antioxidants Catalases, polyphenols, 
superoxide dismutase, 

tocopherols 

Lyngbya majuscule, 
Chlorellazo fingiensis, 
Coccomyx aonubensis 

Mostafa (2012); Xia 
et al. (2014) 

Bioactive 
compounds 

Antimicrobial, antifungal, 
antiviral, amino acids, 

proteins, sterols, toxins 

Chlorella vulgaris, 
Phaeodactylum tricornutum, 

Dunaiella salina, 
Muriellopsis sp. 

Markou and 
Georgakakis (2012); 

Mostafa (2012) 

 
 
GENETIC ENGINEERING OF MICROALGAE 

 
 Genetic engineering is the process of manipulating genes to mass-produce the 

desired product. The associated procedures are mostly utilized in chemistry, 

pharmacology, biochemistry, and biotechnology (Manuel et al. 2018). Important steps in 

genetic engineering investigation include transformation techniques and selection. Genetic 

engineering uses particle bombardment, glass beads, electroporation, agrobacterium-

mediated transformations, direct gene editing, etc. for direct gene transfer (Ng et al. 2017). 

The genomic sequences of Chlamydomonas reinhardtii and Phaeodactylum 

tricornutum were completely analyzed and sequenced. In microalgae, Chlamydomonas 

reinhardtii is the first model organism (Merchant et al. 2007). The comprehensive 

examination of the order of the genes prepares for the enhancement of the production of 

various chemicals via genetic modifications such as inducible promoters, regulatory 

elements, and the insertion or exclusion of genes. The transition of the gene into nuclear 

DNA results in either stable or temporary gene expression for the synthesis of various 

products (Kao and Ng 2017). 

Through CRISPR-mediated phosphoenolpyruvate carboxylase regulation, 

Nannochloropsis sp. has become a new model organism for carbon sequestration and oil 

production with 94% stability over seven generations (Kao and Ng 2017). It has been 

reported that suppression of CrPEPC1 by substituting the CRISPRi gene in 

Chlamydomonas reinhardtii CC400 was used for the first time to effectively increase lipid 

synthesis (Johnson et al. 2016). As described by Jester et al. (2022), homologous 

recombination of the antibiotic-resistance (ABR) gene and the gene of interest (GOI) in the 
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genomic DNA of Spirulina produced 15% of the targeted product, it can be administered 

orally without purification. The HMG reductase gene was targeted to alter the critical 

components that are produced by the diatoms. In Phaeodactylum tricornutum, the gene 

HMG reductase and IDI-SQS are targeted for the expression and overproduction of the 

triterpenoid biosynthesis pathway (D’Adamo et al. 2018). 

Ribonuclease (RNA) interference using the PEPC1 gene in Chlamydomonas 

reinhardtii resulted in a 1.5-fold increase in lipid accumulation by electroporation (Ahmad 

et al. 2015). Modified NAB1 gene from Chlamydomonas reinhardtii (T541A, T676A) 

upregulated by glass bead transformation (Beckmann et al. 2009). In Haematococcus 

pluvialis, particle bombardment induced the expression of the modified PDS gene (L504R) 

to boost astaxanthin synthesis by 45% (Steinbrenner and Sandmann 2006). Electroporation 

and agrobacterium-mediated transformation of the gene by RNA interference, gene-editing 

employing ZFNs and CRISPR was tested in Chlamydomonas reinhardtii to determine the 

most effective gene transformation (Mini et al. 2018). 

 

 

WASTEWATER AS A NUTRIENT SOURCE FOR PRODUCING BIOACTIVE 
COMPOUNDS 
 
 Microalgae, particularly diatoms, can proliferate under low-light circumstances, 

which may aid their growth in wastewater. The increase of numerous hazardous 

greenhouse gases, such as CO2, methane (CH4), nitrous oxide (N2O), and wastewater 

(Gimpel et al. 2013) commensurately accentuates several environmental dangers. To 

reduce the use of commercial nutrients, wastewater is increasingly and commonly used for 

algae cultivation (Ho et al. 2011). Because of its dual role in treating wastewater and 

creating biomass, it has attracted considerable interest (Rajkumar et al. 2022). 

Consequently, microalgae play a vital role in a variety of industries for satisfying 

test demands without causing harm to the environment or posing a threat to human health. 

Phycoremediation is the utilization of microalgae in wastewater treatment (Phang et al. 

2015). Because of their efficient cellular mechanisms and adaptive methodology, 

microalgae have the capacity to phycoremediate diverse forms of wastewater. They uptake 

macro-and micronutrients from wastewater to make biomass. When diatoms are grown in 

wastewater, their biomass can be used to produce a wide range of high-value chemicals 

with a broad range of applications in bioenergy, medicinal chemistry, food, and nutrition 

(Olguin 2012). Thus, wastewater can be utilized for the production of desirable items such 

as renewable fuels, food, fertilizer, pharmaceuticals, cosmeceuticals, PUFAs, and 

aquaculture. The oxygen produced by photosynthesis can support the growth of 

heterotrophic aerobic bacteria, hence accelerating the biodegradation of pollutants (Godos 

et al. 2010). Microalgae were cultivated using several forms of wastewater, including 

municipal, aquaculture, dairy, poultry, etc. (Fig. 2) 

Approximately 116.2 mg/g of ethanol was produced from 1.4 g/L of biomass 

containing 38% carbohydrates, 15% proteins, and 22% lipids by growing in dairy effluent 

(Hemalatha et al. 2019). Tribonema sp. was cultivated in swine effluent and yielded a lipid 

concentration of approximately 42.4% (Cheng et al. 2020). In Desmodesmus sp. PW1, 

29.4% of the generated lipids were derived from swine wastewater (Chen et al. 2020). 

Chlorella sorokiniana CY-1 cultivated in the wastewater of a palm oil mill yielded 14.43% 

lipids (Cheah et al. 2020). 



 

PEER-REVIEWED REVIEW ARTICLE    bioresources.com 

 

 

Baala Harini & Rajkumar (2022). “Microalgal biomass,” BioResources 17(4), 7285-7312.  7297 

Chlorella sp. helps anemic consumers boost their haemoglobin (Barrow and 

Shahidi 2007), whereas Azolla and Anabaena work as a biofertilizer to increase the 

nitrogen content of soil (Priyadarshani and Rath 2012). For cosmetics, Dunaliella salina 

strongly affects the energy metabolism of cells to promote their growth (Stolz and 

Obermayer 2013). Treatment of slaughterhouse wastewater by Chlorella salina for the 

utilization of nitrate and phosphate for the growth of the microalgae was performed in the 

open raceway pond. The biomass further used for producing different bioactive products 

(Habibi et al. 2018). 

 

 
 

Fig. 2. Exploitation of microalgae for the biodegradation of toxic nutrients from wastewater from 
different streams to manufacture bioactive products and recycle water 
 

 

CHALLENGES AND PROSPECTS 

 
 Because the products from the microalgae are exposed to the higher demands in 

various streams such as food, cosmetics, nutraceuticals, and synthesis of the renewable 

products occurs. Challenges occur when the production cost is comparatively higher than 

the product cost. Hence the need for alternatives is high before production at a low cost. 

The necessity of the compounds has increased, and therefore the best technologies have to 

be implemented for better results.  

Existing systems for cultivation and post-harvest processing are unsustainable and 

unaffordable, as they consume around 40% of the total cost (Gifuni et al. 2019). Changes 

in geometry and fluid mixing pattern, better gas exchange, light penetration, and building 

material, all of which have advantages and disadvantages, must still be adjusted for 

production in PBRs. When operating PBRs, the majority of studies prioritize lighting 
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patterns, fluid dynamics, cooling requirements, mixing efficiency, and mass transfer 

(Sirohi et al. 2022a). 

There are certain downsides to the large-scale cultivation procedure. Therefore, the 

creation of open ponds for growth decreases costs and is simple to handle, but there are 

more variances such as pollution, irregular growth, predator contamination, temperature 

and light complications (Xu et al. 2009). 

The creation of large-scale PBRs, such as tubes and containers, with minimal 

contamination risk would be more beneficial in the future (Wang et al. 2012). The PBRs 

provide numerous advantages over open systems, in terms of reduced pollution and the 

ability to cultivate monocultures of axenic algae. They provide more places before starting 

factors including pH, temperature, light, and CO2 concentration. In addition, water does 

not evaporate in PBRs. In PBRs, higher cell concentrations are also realistically possible 

(Sirohi et al. 2022b; Udayan et al. 2022). The construction cost of the PBRs is higher 

compared with the open raceway ponds. The production of the product has to be more 

continuous than batch culturing. For biomass collection and product recovery, several 

technologies must be updated for the effective collection of products. Environmental and 

economic studies are needed along with a life cycle assessment for a better yield of the 

products without loss. 

 

 

CONCLUDING REMARKS 

 
 In comparison to a great number of other chemical and artificially manufactured 

goods, microalgae are considered as more important while avoiding many of the associated 

drawbacks. Scientists in multiple fields are studying the potential of microalgae in different 

products. Microalgae include a variety of species capable of utilizing environmentally 

harmful compounds, wastewater, and CO2. Treatment of wastewater is one of the most 

efficient strategies for the management and production of high-value compounds. Even 

while it serves as biomass for biofuels, health, cosmetics, and saves the environment from 

profoundly detrimental repercussions, biodiesel is less economically competitive than 

biohydrogen and biobutanol.  

The high value-added bioproducts, such as astaxanthin, that were derived from 

microalgal sources have the potential to be applied in the pharmaceutical and nutraceutical 

industries. In comparison to first and third-generation fuels, intensive research has been 

conducted on fourth-generation fuels, which includes advanced low-cost technology and 

genetic modification for enhancing sustainable bioproducts. This has been done in an effort 

to improve the algal bioeconomy.  

There is still a significant amount of cross-disciplinary research and development 

work that has to be done before more complex uses of algae may be implemented in any 

industry. To improve the process of acquiring the products, a wide variety of procedures 

and extraction methodologies need to be developed and put into practice.  
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