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Improving the detection accuracy of hyperbola in B-scan images has been 
a considerable challenge for ground penetrating radar (GPR) to detect tree 
roots. In this paper, a method for data enhancement and target detection, 
both based on deep learning was proposed to identify hyperbolas in GPR 
B-scan images. First, the authors used a cyclic consistent adversarial 
network (CycleGAN) to augment the original data. In this procedure, the 
hyperbolic features of the images were preserved and created a wider 
variety of training samples. Then, the authors could apply the enhanced 
dataset to the YOLOv5 detection model to evaluate the effectiveness of 
their method. Meanwhile, the detection effects of Yolov3, Yolov5, Faster 
R-CNN, and CenterNet detection models on the enhanced dataset were 
compared. The results showed that applying the enhanced dataset to the 
Yolov5 detection model exhibited better detection accuracy compared to 
other combinations of datasets and detection models. The authors 
demonstrate that the proposed method increases data diversity and the 
number of samples, improving the precision and recall of hyperbolic 
curves. These results provide a new method for tree root localization with 
important effects. 
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INTRODUCTION 
 

As a vital organ for tree growth and development, roots have a significant effect on 

the entire life cycle of trees and also play an equally important role in the material cycle 

and energy flow of the soil (Gill and Jackson 2000; Reubens et al. 2007). The specific 

structure of the tree root system can be determined through intensive analysis of parameters 

such as root diameter, orientation, burial depth, root water content, and root distribution 

(Danjon and Reubens 2008). Detection of subsurface root distribution and study of the 

specifics of root parameters are often performed using excavation methods, monoliths, etc. 

(Guo et al. 2013; Riedell and Osborne 2017), which are complex to operate and can cause 

irreversible damage to the soil environment and trees. Therefore, the nondestructive 

detection of tree roots is a challenging task. 

Ground penetrating radar (GPR), a nondestructive testing technique (NDT) has 

been widely used in tree roots research. Compared with traditional tree root NDT methods, 

such as ultrasonic pulse velocity (UPV) analysis (Wang and Li 2015; Sarro et al. 2021) 

and electrical resistance tomography (ERT) (LaBrecque and Yang 2001; Kemna et al. 
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2002), GPR has the advantages of high efficiency, safety, and high interference resistance 

(Alani et al. 2018; Mihai et al. 2019; Aboudourib et al. 2021). The method GPR can 

accurately detect targets based on the relative permittivity between the targets and other 

media. This is because the water content in the tree root system is vastly different from the 

water content in the adjacent soil (Pettinelli et al. 2014; Tanoli et al. 2019), resulting in a 

noticeable difference in relative permittivity. Therefore, it is feasible to use GPR to detect 

root structure. The use of ground penetrating radar to detect the size of plant roots is one 

of the important directions of current research. Zhou et al. (2019) proposed a model 

combining ground penetrating radar with electric field methods, which could automatically 

and quickly fit a hyperbola in the retained image area and could effectively obtain the depth 

and radius of buried objects. When the root system is detected, the general distribution of 

the root system can be observed visually, and further information such as the location, size 

and orientation of the root system can be obtained, and the specific structure of the root 

system of the tree can be established. This information can better analyze the growth and 

health of the tree, the roots usually appear as hyperbolas in the radar B-scan image. 

Automatic detection of hyperbolic features in the images can improve efficiency and 

recognition accuracy. Before the B-scan image hyperbolas can be identified, the image first 

has to be preprocessed. However, in the actual detection environment, because of the 

random nature of soil distribution, radar hardware, wave interactions, and different 

underground media (Daniel et al. 2016), there are various noises existing in the detected 

B-scan images. Therefore, B-scan images are often pre-processed by several signal and 

image processing methods. Wen et al. (2020) proposed a shearlet transform to perform 

noise removal from B-Scan images and achieved better denoising results in some image 

evaluation metrics. Deep learning models are being widely used to detect the internal 

structure of tree root systems (Xiang et al. 2019; Hou et al. 2021; Zhang et al. 2021). Hou 

et al. (2021) proposed using MS R-CNN architecture for the detection of GPR subsurface 

scanned objects, while using the transfer learning technique to obtain pre-trained models 

to solve the problem of the insufficient model training set (93 GPR root scans). Zhang et 

al. (2021) used the Faster R-CNN to train 1442 GPR B-scan images (282 for real images 

and 1160 for simulation images) to achieve automatic recognition and localization of 

hyperbolas in GPR images. It is not easy to perform effective automatic detection of tree 

root systems with these methods. The main obstacle is the single type and an insufficient 

number of datasets. 

To overcome this obstacle, data augmentation was performed on the tree root 

system dataset. The traditional image augmentation of the tree root system uses scales, 

stretches, flips, crops, and obtains the GPR B-scan images, increasing the number of 

training data by changing the original data without expanding the number of a real dataset. 

The method of using GprMax 3.0 software (University of Edinburgh, Dr. Antonis 

Giannopoulos, UK) to generate simulation images to extend the dataset has been widely 

used (Todkar et al. 2021; Dewantara and Parnadi 2022), and the dataset composition has 

been expanded from real images to a joint composition of simulation images based on 

GprMax 3.0 and real images. This enabled the expansion of the quantity and variety of 

training data. However, the problem of the limited number of real datasets remains 

unresolved. Therefore, this paper used CycleGAN (Zhu et al. 2017) to transform the 

simulation images generated by GprMax3.0 into the corresponding generated images with 

high similarity to the real images, which achieved the augmentation of the real dataset. 

This method provides an effective expansion of real data with insufficient diversity and 

helps to improve the accuracy of target detection methods. 
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YOLOv3 and Faster R-CNN (Ren et al. 2017) with anchor-base are the most 

versatile target detection methods. YOLOv3 and Faster R-CNN have been successfully 

applied in agriculture (Liu et al. 2020; Thanh Le et al. 2021), geology (Ma et al. 2019; 

Davletshin et al. 2021), remote sensing (Zhou et al. 2019; Li et al. 2022), and medicine 

(Rosati et al. 2020; Yao et al. 2020). YOLOv3 is widely used in forestry fields, such as 

tree health classification (Yarak et al. 2021), forest census (Zheng et al. 2019), and tree 

species identification for detection. YOLO series continues to evolve and improve in both 

detection accuracy and detection speed. Recently, YOLOv5 and Anchor-free based 

CenterNet  are being used in a wide variety of fields. In this study, the real data were 

augmented by CycleGAN to obtain a mixture dataset, and the three kinds of data in the 

mixture dataset were combined to obtain seven datasets, while comparing the effect of 

different datasets trained with YOLOv5. The results show that enhanced datasets have 

better training and recognition results. Meanwhile, the detection results of four models, 

YOLOv3, YOLOv5, Faster R-CNN, and CenterNet, were compared on the same dataset. 

The results show that YOLOv5 was highly accurate in detecting tree roots. 

 

 

EXPERIMENTAL 
  
Working Principle of GPR  

The principle of GPR is based on the phenomenon that electromagnetic waves 

produce different reflections when they act on materials with different dielectric constants. 

Figure 1 shows the "scan" (a series of reflected signals detected) during tree roots detection. 

The GPR equipment moves in a preconfigured trajectory and emits electromagnetic waves 

to the ground, the electromagnetic waves are partially reflected at the roots and soil 

interface, and the rest of the electromagnetic waves continue to propagate downward until 

the signal is fully attenuated, as in Fig. 1a. After receiving the reflected electromagnetic 

waves from the roots, the receiving antenna records the electric field intensity change of 

the reflected waves in the time domain, forming an A-scan curve of the field intensity 

change with time as in Fig. 2a. 

 

  
 

Fig. 1. Ground-penetrating radar object detection imaging principle graph (A) the radar signal is 
reflected by the buried object at positions (x0, x1, and x2), and the reflection time(t1, t2, and t3) is 

recorded and plotted below the radar. (B) Different A-scans form a reflection hyperbola during the 
movement. 
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Fig. 2. A sample of real data: (A) an A-scan signal curve (B) a real B-scan image 

 

When the transmitting and receiving antennas transmit electromagnetic waves to 

the ground once at x0 of Fig. 1a, the A-scan plot of the x0 in Fig. 1b is recorded by the 

receiving antenna. When the GPR moves backward in equal steps and transmits 

electromagnetic waves to the ground, a set of A-scan curves of the field intensity change 

caused by the reflected electromagnetic waves from the tree roots is recorded. Merging this 

set of A-scan curves to form the curve in Fig. 1b, which is the B-scan image, and a true B-

scan image is displayed in Fig. 2b. 

 
Image Acquisition 

The trees detected in this paper were mainly distributed in Beijing, Shandong, 

Zhejiang, etc. The detection species mainly include willow, pine, cypress, etc. The 

measured trees were all isolated trees within a 5 m radius, ensuring that the detected roots 

were all associated with specific trees. The tree information was uploaded to the built 

website as shown in Fig. 3.  

 

 
 
Fig. 3. All trees displayed on the map 

 
The detection images of nearly one hundred trees' root systems were selected as the 

real dataset in the experiment. TRU tree radar, which is more compatible with the 

characteristics of tree roots, was chosen as the collection equipment (SIR3000T, GSSI, 
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USA). In practical applications, the antenna frequency of 900 MHz was selected, its 

maximal depth of detection was approximately 1 m, and the tracking interval and number 

of samples were 5 mm and 512, respectively. Meanwhile, the authors used a detection 

radius between 0.1 m and 3.8 m, detection depth of 0.6 m, and 0.75 m for on-site detection. 

 
Dataset Construction 

The composition of GPR image dataset consisted of four parts: acquisition of real 

data, simulated data generation, enhanced data generation, and data combination. The 

whole process is shown in Fig. 4. 

 

 
 

Fig. 4. The four parts of the dataset construction. The first section is the real data acquisition, 
which introduces the way to acquire GPR B-scan images. The second section is the generation of 
simulation data by GprMax. The third section is data augmentation. The fourth section utilizes the 
three kinds of data and constructs a hybrid dataset. 

 

Acquisition of real data 

To ensure the quality of the real dataset, the obtained real images were pre-

processed. Nearly one thousand B-scan images of tree roots were screened, all with a height 

of 512 pixels and a width ranging from 148 to 3816 pixels. To ensure the consistency of 

data size, 336 high-quality data images were obtained by discarding images with widths 

less than 512 pixels and blurred images. Based on these images, the images with a width 

more than 512 pixels were cropped to obtain 759 B-scan images with a resolution of 512 

× 512 pixels. 

 

Simulated data generating 

In this study, the simulation data had a crucial role in extending the diversity of the 

dataset. When generating simulated data, the parameter variables were controlled so that 

the GprMax software parameters remained consistent with the ground penetrating radar 

equipment parameters, where: the depth of the domain was 0.6 m, the lateral length was 6 

m, the root had a radius from 0.01 to 0.035 m, the soil and root system have relative 

dielectric constants of 6 and 12 (Attia al Hagrey 2007; Liang et al. 2021), respectively, and 

the sampling number was 512, the antenna frequency of the GPR setting was 900 MHz, 

and a total of 759 simulated images were generated.  
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Enhanced data generation 

The above analysis of the GPR target imaging process found that the tree roots 

showed hyperbolic structural features on the B-scan images, while different soil 

environments showed various background and noise features on the B-scan images. A GPR 

B-scan image was composed of three elements: hyperbolic structure, background, and 

noise features. When performing the conversion of a simulation image to a generated 

image, the complete hyperbolic structure features and nearly realistic background and noise 

features should be retained in the generated image. The tree environments in the 

experiment were different, which allowed the CycleGAN model to generate richer images, 

and the hyperbola, background, and noise features of the generated images were closer to 

the real images. Specifically, the hyperbolic feature information was fused with the 

background and noise for the real acquired GPR B-scan images, and it was difficult to 

distinguish the hyperbolic curve. Therefore, the hyperbolic image without background and 

noise was generated by style transformation, which could clearly show the hyperbolic 

structure and facilitate further study. At the same time, the generated images with different 

background and noise were generated through style transformation on the basis of retaining 

the simulation image hyperbolic features, increasing the diversity of the real dataset. The 

different backgrounds and noise were appended to the simulation images, making the 

generated images closer to the measured data. 

The transformation of simulation images to generated images followed the 

CycleGAN architecture. The structure of this network consisted of two pairs of generators 

and discriminators. Generator A transformed the real image with features and generated 

the corresponding simulation image A'. The generated-simulation image A' was compared 

with the simulation image, expecting to obtain a generated-simulation image that could be 

faked as real, which could also be considered as a B-scan image with the background and 

noise removed. The specific architecture is shown in Fig. 5, which consists of two 

generators, GA and GB, and two discriminators, DA and DB.  

 

 
 

Fig. 5. Overall architecture of the proposed CycleGAN architecture for background and noise 
conversion of a single image 
 

In particular, generator GA was used to generate B-domain style images from A-

domain, and generator GB reverted the generated B-domain images to A-domain images. 

The discriminator DB was used to make the image generated by the generator GA as close 
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as possible to the B-domain style image, and the discriminator DA was used to make the 

image generated by the generator GB as similar as possible to the original B-domain 

original image, ensuring that when the image style was migrated, there is not only a change 

in style from the B-domain to the A-domain but also the features of the original B-domain 

original image still exist. The cyclic consistency loss allows us to train a model that does 

not require pairs of image instances with or without background and noise features.  

The real dataset and the simulated dataset were used as A-domain and B-domain in 

the structure of CycleGAN, respectively. During training, the real image A in the A-domain 

was transformed into the corresponding generated image A' after the generator GA. A' had 

similar hyperbolic features as the real image. There was no noise and background, and the 

hyperbola was clearer, which could be used as the initial noise reduction of the real image, 

and A' was compared with the B-domain simulation image by DB to discriminate whether 

A' satisfies the conditions of the B-domain images. Similarly, the simulation image B in 

the B-domain was transformed into the corresponding generated image B'. B' retained the 

hyperbolic features of B and added noise and background. B' was compared with the real 

image in the A-domain by DA to discern whether B' satisfied the A-domain image. 

Meanwhile, A' was input to generator GB to generate the reduced image A'', and B' was 

input to generator GA to generate the reduced image B'', and the cyclic consistency loss of 

A'' with A and B'' with B was calculated so that the hyperbolic features of the original 

image were still retained while the background and noise of the generated image were 

changed.  

 

 
 

Fig. 6. Image style conversion diagram 

 

The conversion of the real image to the simulation image is shown in Fig. 6, and it 

could be observed that the generated image retained most of the hyperbolic features in the 

real image. The converted image facilitated the next step of hyperbolic positioning and 

research. The disadvantage was that the generated images still had some missing features, 

and the hyperbolic features were more complex and less clear than the simulated images 

generated by GprMax. Such images were not convenient for hyperbolic labeling. 

Therefore, the real B-scan images, the generated B-scan images, and the simulation images 

generated by GprMax were used to build the hybrid dataset in the experiment. To validate 

the feasibility of generating the B-scan dataset. Both cosine similarity and SSIM were used 

to evaluate the similar relationship between the real image A and the restored image A''. 
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Structural Similarity Index measure (SSIM) is a single-scale image structural 

similarity, which is widely used as a measure of structural similarity between images. Its 

value is distributed in range of 0 to 1, and a value closer to 1 translates to more similarity 

between the two images, and a value closer to 0 means there is less similarity between the 

two images. The brightness, contrast, and structural similarity of the two images are 

reflected by the mean, standard deviation, and covariance of the images, which are 

calculated as follows. 

     ( , ) ( , ) ( , ) ( , )SSIM x y l x y c x y s x y
  

=  (1) 

2 2

1 1( , ) (2 ) ( )x y x yl x y u u c u u c= + + +   (2) 

2 2

2 2( , ) (2 ) ( )x y x yc x y c c   = + + +  (3) 

3 3( , ) xy x ys y c cx    += +   (4) 

where 𝑢𝑥  and 𝑢𝑦  indicate the average value of image 𝑥  and 𝑦, respectively, x and y  

indicate the standard deviation of image 𝑥  and 𝑦 , respectively, and xy indicates the 

covariance of image 𝑥 and 𝑦. Then 𝑐1, 𝑐2, and 𝑐3 are the very small numbers, which are 

designed to avoid the case of zero denominator in the above equation. 

Cosine similarity is also called cosine distance. This method uses the cosine of the 

angle between two vectors in vector space to evaluate the difference between two images. 

The similarity (Eq. 5) is as follows, 

2 2

( 1) ( 1) ( 1)

( , ) || || || || ( )
n n n

i i i i

i i i

Similarity A B A B A B A B BA
= = =

 
=   =  

 





    (5) 

where 𝐴 and 𝐵 represent two vectors, the closer the angle is to 0°, the closer the cosine 

value is to 1, which means the more similar the between two vectors. 

The authors calculated the cosine similarity between images in the A-domain and 

the corresponding reduced images A'' to be 0.923, and the SSIM was 0.894. The results 

showed that the generated B-scan images retained the hyperbolic features of the real images 

and generated the background and noise features similar to the real images. Extending the 

real dataset was feasible by generating B-scan images with CycleGAN. 

The 759 data of the simulation images were transformed by CycleGAN to obtain 

the generated image data, and original data of the three types of images were annotated 

using LabelImg, where YOLOv5 used TXT format, Faster R-CNN and YOLOv3 used 

XML format for annotation, and CenterNet used JSON format. The annotation information 

could indicate the location and size of the tree roots. Traditional offline data augmentation 

(random horizontal flip, random distortion, Gaussian blur, and random stretching) was 

performed on each type of labeled image, as shown in Table 1. 

 

Table 1. Data Distribution 

Image 
Original 
Quantity 

Enhanced 
Multipliers 

Enhanced 
Quantity 

Training 
Images 

Validation 
Images 

Testing 
Images 

Real 
Images 

759 15 12144 10000 1144 1000 

Simulation 
Images 

759 15 12144 10000 1144 1000 

Generate 
Images 

759 15 12144 10000 1144 1000 
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As shown in Fig. 7, the authors deployed the noise reduction function of CycleGAN 

to the designed tree management information system, and the developed tree management 

information system is able to process and analyze the GPR B-scan images online, which 

reduces the user's operation difficulty and improves the work efficiency. 

 

  

 
 
Fig. 7. Deployment of CycleGAN to a designed tree management information system 

 

Data combination 

After the above steps are completed, the combination of datasets is performed, a 

total of seven datasets are constituted, and the composition of the datasets is shown in Table 

2. 

 

Table 2. Composition of the Datasets 

Dataset 
Training 
Dataset 

Validation 
Dataset 

Testing Dataset 

Real (R) 10000 1000 

1200 

Simulation (S) 10000 1000 

Generation (G) 10000 1000 

Real Generation (RG) 10000 1000 

Real Simulation (RS) 10000 1000 

Generation Simulation (GS) 10000 1000 

Real Generation Simulation (RGS) 10000 1000 

 

Except for the RGS training dataset consisting of 4000 real images, 3000 simulation 

images, and 3000 generated images, the remaining training datasets consisting of two types 

of data are each taken the first 5000 images of each data to form the final training datasets. 

To measure the training effects of all training datasets, 400 images from each of the three 

types of data are taken to form the final testing dataset, and all training models are tested 

with it. 

 
  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Li et al. (2023). “Tree root detection training,” BioResources 18(1), 484-504.  493 

Hyperbolic Detection Model 
YOLOv5 network architecture 

With the development of target detection technology, the YOLO series has been 

pursuing the best balance of speed and accuracy in real-time detection applications. 

YOLOv5, the latest achievement in recent years, has dramatically improved speed and 

accuracy compared to the previous series and has been applied to various fields with better 

results. YOLOv5 consists of Backbone (CSPDarknet), Neck (PANet), and Head (YOLO 

layer) parts as shown in Fig. 8. 

 

 
 
Fig. 8. YOLOv5 architecture 

 

CSPDarknet reduces the parameters and computation of the model and the model's 

size, ensuring the operation speed and accuracy. The SPPF (Spatial Pyramid Pooling Fast) 

network is used to increase the receiver domain of the network, as shown in Fig. 9. The 

network uses multiple 5 × 5-sized Maxpool layers to obtain richer features. Compared to 

the SPP (Spatial Pyramid Pooling), the SPPF serially passes the input through multiple 

Maxpool layers, obtaining the same computational results as the SPP but more efficiently. 

Then, using PANet (Path Aggregation Network) as a neck network can preserve the spatial 

information accurately. This network contributes to the correct positioning of pixels and 

forms a mask to better utilize the extracted features. When the image passes through each 

layer of the neural network, the feature complexity increases, while reducing the spatial 

resolution of the image. Thus, the pixel-level masks are not accurately recognized by the 

high-level features.  

The FPN (Feature Pyramid Network) uses a top-down path to extract semantic-rich 

features and combines them with accurate location information. Meanwhile, CBL 

(Convolution, Batch Normalization, and leaky-ReLU) is replaced by CBS (Convolution, 

Batch Normalization, and SiLU), and the SiLU activation function has better nonlinear 

capabilities. The head part uses the head network of YOLOv3 to predict the obtained 

features.  
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Fig. 9. Comparison between SPP and SPPF 

 

Training setup 

The training environment was on the basis of Python 3.8.6, PyTorch 1.7 (used in 

CenterNet, YOLOv3, and YOLOv5 models), and Python 3.6.13, tensorflow 1.11.0 (used 

in Faster R-CNN models). The computers used in all experiments were equipped with the 

following features: Intel(R) Core(TM) i5-9400 CPU, 16GB RAM, NVIDIA GeForce GTX 

1660 Ti GPU, and a SAMSUNG 250G SSD hard drive. 

This paper compares four different models, YOLOv3, YOLOv5, Faster R-CNN, 

and CenterNet. YOLOv5 has four models (S, M, L, and X) with different depths, and the 

S model was selected for training. The suitable model parameters were selected after a 

comprehensive consideration of the dataset and hardware. The hyperparameters of the 

model were set as follows: batch size was 16; momentum decay and weight decay were 

0.8 and 0.0005, respectively; input size was 256 × 256; initial learning rate was 0.002; the 

epoch of YOLOv3, YOLOv5, and CenterNet models was 100; iteration of Faster R-CNN 

model was 10,000 iterations, which was approximately equal to 325 epochs, satisfying the 

basic training requirements; other default values were used. 

 

Model Evaluation Indicators 
In this paper, several quantifiable metrics were employed to evaluate the 

performance of the selected model quantitatively, including mean precision (mAP), 

precision (P), recall (R), and F1 score. 

 

The precision and recall rate 

In the object detection model, precision and recall are the two most basic evaluation 

indicators. Precision is defined as the percentage of all detected objects that are correctly 

detected, while recall is defined as the percentage of all detected positive samples that are 

correctly detected. The equations for these two metrics are as follows, 

P TP FP TP= +   (6) 

R TP FN TP= +   (7) 

where 𝑇𝑃  is the number of correctly detected hyperbolas, 𝐹𝑃  is the number of non-

hyperbolas treated as hyperbolas, and 𝐹𝑁 is the number of hyperbolic selections treated as 

non-hyperbolas. 
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The mAP and F1 score 

The mean average precision is a composite metric that combines precision and 

recall. It is the average value of the average precision (AP) of all categories. In this study, 

mAP is equivalent to AP because only one object (hyperbola) is available. The 𝑚𝐴𝑃 can 

be expressed as the area enclosed by the accuracy and recall curves, as in Eq. 8: 

1

0
( ) mAP P R dR=    (8) 

The 𝐹1  score is used to assess the overall performance of the model. The 

calculation formula is shown in Eq. 9: 

1 2F P R P R=  +   (9) 

 

 

RESULTS AND DISCUSSION 
 
Analysis of Training Results 

The value of loss indicates the difference between the predicted value and the true 

value. A low value of loss corresponds to a well-trained effect. At the same time, a higher 

mAP value also indicates that the trained model has a better performance. The loss curve 

and mAP curve of the model were compared, as shown in Fig. 10. 

In Fig. 10(a,b), training on the use of YOLOV5 for the selected seven datasets, the 

simulated dataset had the lowest loss and the highest mAP, which was due to the absence 

of a noisy background from the simulation image, making it easier to detect and identify. 

However, the worst results were obtained when detecting real images, and it was almost 

impossible to recognize hyperbolas. Compared with the R and RS training models, the RG 

training model and the RGS training model had worse convergence loss and mAP after 

training. Both the G and GS training models without adding real B-scan images had poorer 

loss and mAP, and mAP was 49.25% and 33.78% lower for the G training model compared 

to the RG training model and the GS training model compared to the RGS training model, 

respectively. Therefore, the involvement of real B-scan images is necessary to obtain better 

training results. Comparing the results of the R training model and the RS training model, 

as well as the RG training model and the RGS training model, it can be seen that the mAP 

decreased 1.76% to 6.75% after adding the simulated data to the corresponding real B-scan 

dataset. This is because the number of dataset is sufficient to achieve good results when 

using R or RG dataset for training. If simulated data are added, the number of real data is 

reduced, while simulated data will disturb the judgment of the real data and affect the 

training effect. The better training effect of the RG dataset than the R dataset indicates that 

the addition of the generated data helps to increase the convergence effect of the model and 

improve the recognition ability of the model, mAP is improved 7.14%. 

Due to the small amount of real data, the traditional way of training using the RS 

dataset keeps its mAP value at approximately 71.53%. Adding generated data to the RS 

dataset and training using the RGS dataset keeps its mAP at approximately 82.78%, with 

an 11.25% increase in mAP, which is noticeable. The results show that the generated data 

can both expand the real B-scan dataset and increase the performance and detection 

accuracy of the trained model. To further validate the effect of the generated data on the 

training effect, YOLOv3, Faster R-CNN, and CenterNet networks are used to train the RG 

dataset and RGS dataset. 
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Figure 10(c,d,e) corresponds to the Loss curves of the three networks after training. 

The Loss values of three networks after training were lower than 1.5, and the loss value of 

the RG model was lower than that of the RGS model, verifying that the simulation images 

increase the loss value of its model and decrease its mAP value. The mAP curves after 

training using different deep learning methods for the RG and RGS datasets are shown in 

Fig. 10f. The YOLOv5 model outperforms the YOLOv3, Faster R-CNN, and CenterNet 

models in terms of mAP during training (Fig. 10f). The mAP of the YOLOv5 model 

exceeds 80% on both datasets. The mAP values of both Faster R-CNN and YOLOv3 

remain between 70% and 80%, and the mAP value of Faster R-CNN is slightly higher than 

that of YOLOv3. CenterNet has the worst training results, with mAP below 70%. 

Combining the loss and mAP values yields that YOLOv5 model has an impressive training 

performance. 

 

 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Li et al. (2023). “Tree root detection training,” BioResources 18(1), 484-504.  497 

 

 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Li et al. (2023). “Tree root detection training,” BioResources 18(1), 484-504.  498 

 
 

Fig. 10. Training results of the model: (A) The mAP values of the training process using YOLOv5 
for 7 datasets. (B) Training Loss values for 7 datasets. (C) Loss curves of the YOLOv3 model. (D) 
Loss curves of the Faster R-CNN model. (E) Loss curves of the CenterNet model. (F) The mAP 
values of the different methods on each of the two datasets. 

 

Table 3 summarizes all training results for the four networks corresponding to the 

eight models. The values of the evaluation indicators of the YOLOv5 model exceed the 

other models by 5% to 15% in terms of F1 scores and mAP values. 

 

Table 3. Training Results of the Eight Models 

      Model                   Dataset 

RG RGS  

P R mAP F1 P R mAP F1 

YOLOv3 0.76 0.72 0.74 0.77 0.77 0.68 0.72 0.74 

YOLOv5 0.84 0.81 0.85 0.83 0.88 0.75 0.82 0.81 

Faster R-CNN 0.79 0.78 0.79 0.81 0.81 0.73 0.77 0.76 

CenterNet 0.70 0.71 0.69 0.71 0.73 0.67 0.68 0.70 

 
Analysis of Testing and Test Results 

In this paper, all dataset models were tested with the same testset, and the test results 

are shown in Fig. 11. The RGS training model testing results are the best, with better 

detection for real data, simulated data, and generated data. The mAP value is improved 

approximately 10% compared to the RS training model, while the RG training model 

outperforms the R training model in terms of recall and mAP, confirming the reliability of 

the training results. It was shown that the generated data may improve the comprehensive 

performance of the training model. 
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Fig. 11. Effect of testing set on seven dataset models(RGS: Real Generation Simulation;G: 
Generation;GS: Generation Simulation;R: Real;RS: Real Simulation;S: Simulation;RG: Real 
Generation) 

 

 

 
 

Fig. 12. Testing results of the data set: (A) Detection results of seven dataset models using 
YOLOv5; (B) Detection results of images under complex conditions 
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Figure 12a shows the partial detection results of YOLOv5 training seven dataset 

models on real B-scan images. There are three hyperbolic features in the real B-scan image, 

except for the S dataset training model, which is not detected completely, the rest of the 

dataset training models are detected completely, and the RG training model has the lowest 

confidence in detection with the mean value of only 0.68. The training model for the G 

dataset improved slightly with a confidence mean value of 0.74. The confidence mean 

values for the RS, R, RG, and the RGS training models were above 0.8, and the RG training 

models had the highest confidence mean value of 0.92. 

To further verify the effect of various datasets, images with more complex 

backgrounds and hyperbolas with crossover cases for recognition were selected, with 

recognition confidence thresholds of 0.2 and 0.01, respectively, and the recognition results 

are shown in Fig. 12b. The recognition results show that the RGS training model had the 

best robustness and good recognition effect for various pairs of hyperbolic cases with a 

high recall rate. Especially for the hyperbolic images with a complex background, the 

recognition confidence of the RGS training model still reached 0.65, while the other dataset 

models can barely recognize the hyperbolas with complex backgrounds. The R, RS, and 

RG training models have high confidence in the recognition of identifiable curves when 

recognizing the presence of crossed hyperbolas, maintaining approximately 0.9 with a high 

accuracy rate, but half of the hyperbolas were not identified and the recall rate was low. 

 

 
 

Fig. 13. Detection results of four methods for two datasets 

 

Figure 13 shows the detection results of four deep learning methods for the RG 

dataset and the RGS dataset, all eight models identified and localized the three hyperbolas, 

but there were large differences in confidence levels. The CenterNet model had a minimum 

confidence value of 0.5, while in the Faster R-CNN, the maximum value was 0.94. The 

YOLOv3 confidence value ranged from 0.62 to 0.76. The YOLOv5 and the Faster R-CNN 

had similar results, with the mean confidence values reaching 0.9 or higher, and YOLOv5 

was slightly higher than Faster R-CNN. The above results show that YOLOv5 model 

detection recognition performance using the enhanced dataset is the best. 
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CONCLUSIONS 
 
1. Based on the deep learning method to achieve automatic recognition and localization 

of hyperbolas, the YOLOv5 model had the best detection results compared to 

YOLOv3, Faster R-CNN, and CenterNet. The average accuracy of the models all 

amounted more than 80%, and the recognition rate and recall rate of the YOLOv5 

training model reached 84.45% and 81.23%, respectively, and the target hyperbolas 

had strong detection for different detection tasks and recognition capability for 

different detection tasks.  

2. The real dataset was enhanced by CycleGAN, and the enhanced image had high 

similarity with the real images. In addition, the hyperbolic features were kept intact. 

At the same time, the background and noise of the real images could be removed. The 

removed image was similar to the simulation image, and only a few hyperbolic features 

were lost, resulting in a good overall effect for the next step of the study. 

3. Compared with the traditional RS dataset, the RGS dataset and the RG dataset train 

the model better, the loss and mAP of the training process were higher than in other 

datasets, and the actual detection effect was the best, with the highest confidence of 

detecting hyperbola.  

4. When constructing the GPR B-scan training dataset, there must be a large amount of 

real data, and less real data would lead to poor actual results; generating B-scan data 

had similar background and noise and hyperbolic features as the real data, and the 

expansion of the real dataset, while being able to improve the effectiveness of the 

training model, the mAP improvement reached more than 3%. 

5. The extracted method was applied to the web-based management information 

system, simplifying the operation process and making the processing results easy to 

observe. 

6. By the method in this paper, the user can clearly observe the number of roots, root 

density, and root distribution, which is useful for predicting root diameter and other 

information. In the future, such information can be used for assessment of tree growth 

and health. 
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