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The drying process of bagasse particles was investigated in this study 
using an artificial neural network (ANN) and 18 thin-layer drying (TLD) 
models. These models are used for investigating kinetics and 
understanding engineering parameters involved in the drying process of 
food and agricultural products. Bagasse particles were studied at 105 to 
135 °C and an initial moisture content of 180% (based on the dry weight) 
using a halogen moisture analyzer. The results showed that an increase 
in the temperature decreased the bagasse drying period and increased 
the constant drying. The whole drying process of bagasse happened in a 
falling drying rate period. The fitness of drying curves on semi-
experimental TLD models based on statistical parameters, including root 
mean square error (RMSE), sum of square errors (SSE), and coefficient 
of determination (R2) showed that the Hii et al. model had the highest 
coefficient of determination and the lowest error percentage. The ANN 
predicted changes in the bagasse moisture content through time more 
accurately than the Hii et al model. Also, the results demonstrated that the 
selected ANN model and a number of semi-empirical models with less 
than 3 adjustable parameters provided good agreement and can be 
considered promising tools to predict drying kinetic of bagasse particles. 
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INTRODUCTION 
 

Bagasse is essentially the fiber-based residue of the sugarcane’s stalk after the 

process of syrup extraction. Bagasse is a renewable, sustainable, eco-friendly, bio-

degradable, and cheap raw material that is used very frequently on the industrial scale. For 

instance, bagasse is used as a fiber and as biofuel in the papermaking industries, and it is 

used to manufacture sugar, bio-alcohol, yeast, animal feed, and wood composites such as 

MDF and particleboard (Martinez-He rnandez et al. 2018). In Iran, sugarcane can only be 

cultivated and exploited in Khuzestan province. Historical evidence indicates that 

sugarcane cultivation in this province dates back to 2000 years ago. The name of this 

province means the sugar region, which denotes the great importance of sugarcane 

cultivation and sugar production to the economy of this region in the past. Iranian 

sugarcane production facilities annually produce nearly 1.2 million tons of excess bagasse, 

which is burned due to the lack of conversion industries. Burning and eliminating bagasse 

cause greenhouse gas emission, which contributes to climate change. Burning agricultural 

residues directly in the field is largely responsible for the production of CO2 (40%), CO 

(32%), and dust (20%) in the earth's atmosphere (Kambis and Leivne 1996; Ravindra et al. 
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2019). In addition to emitting pollutant gases and causing drastic environmental impacts, 

burning damp agricultural residue impoverishes agricultural fields as it depletes carbon 

molecules (which should be stored in the soil) by sending them back to the atmosphere 

(Lemieux et al. 2004; Zhang et al. 2011; Adejumo and Adebiyi 2020). Additionally, 

burning bagasse is a threat to human health, as a higher occurrence of asthma attack is 

correlated with the burning time of bagasse (Boopathy et al. 2002).  

Fortunately, bagasse can be used as a lignocellulosic feedstock in various 

industries, which avoids the overexploitation of other nonrenewable lignocellulosic 

sources. The industrialized use of bagasse is negatively impacted by high moisture content; 

the processed bagasse contains 50% moisture (based on wet weight). Moisture 

compromises the industrialized use of bagasse and reduces both the bagasse burning rate 

and energy production efficiency, which are the main obstacles to the application of wet 

bagasse as the energy supplier in sugarcane manufacturing (Bahadori et al. 2012). A 3 to 

4% decrease in the bagasse moisture content increases the gross calorific value and boiler 

efficiency by 700 to 800 KJ/kg and 1.5 to 2%, respectively (Sudhakaran and Vijay 2013). 

This is because the moisture content of bagasse particles must be reduced to 8% before 

they are used in the production of wood composites such as particleboard and MDF (Pang 

2000). A high level of moisture in the bagasse passing through the dryer increases the vapor 

pressure in the board thickness and bowing of the board after the pressing process. 

Therefore, it is essential to control the final moisture of processed raw materials from the 

dryer, but this is time-consuming and problematic in traditional methods such as using an 

oven. The use of halogen dryers is a rapid method for determining the percentage of 

moisture in the production lines of different industries and controlling the final moisture 

content of processed materials (Raj and Stalin 2016; Sicoe et al. 2018).  

Although hot air dryers are most commonly used for drying agricultural residue 

and lignocellulosic materials, their efficiency in the falling rate period of drying is lower 

than radiant dryers such as halogen lamps. This is because the temperature is directly 

(without any contact with the surrounding air) brought to the surface of materials under 

drying, resulting in an increase in the rate of heat transfer to the surface of solid materials 

(Sharma and Prasad 2001; Al‐Hilphy et al. 2021; Huang et al. 2021). Du et al (2005) and 

Huang et al. (2021) studied the drying process of wood strands and lignocellulosic biomass 

by microwave heating dryers and concluded that these dryers functioned more effectively 

than hot air dryers at moisture contents below the fiber saturation point (FSP) point.  

Drying of materials is a complicated process because mass and temperature are 

simultaneously transferred inside the material and its surrounding environment (Midilli et 

al. 2002; Erbay and Icier 2009; Ghazanfari et al. 2016; Ertekin and Firat 2017). Drying 

lignocellulosic biomass is also a complex, dynamic, highly nonlinear, and energy-intensive 

process involving simultaneous heat and mass transfer (Ribeiro et al. 2019; Han et al. 2020; 

EL-Mesery et al. 2022). The theoretical modeling of lignocellulosic biomass drying is very 

complicated because lignocellulosic biomass fiber shrinks anisotropically during the 

drying process (Sander et al. 2001; Soni 2007). It seems that semi-empirical thin-layer 

drying models developed on a laboratory scale are a suitable option for examining the 

drying kinetics of biomass materials (Babalis et al. 2006; Demir et al. 2007; Doymaz 

2007a; Hii et al. 2009). Thin-layer drying (TLD) models and curves, which are known as 

specific curves of the drying rate, have been used to characterize agricultural residues and 

their drying kinetics (Verma et al. 1985; Kaleta and Górnicki 2010; Gan and Poh 2014;; 

Buzrul 2022).  
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The models and curves of TLD and convective dryers have been used to study the 

drying kinetics of food materials (Wang and Singh 1978; Vega et al. 2007; Kumar et al. 

2012), agricultural products (Lee and Kim 2009; Kaleta et al. 2013; Kaur and Singh  2014), 

lignocellulosic biomass (Zarea Hosseinabadi et al. 2012; Arabi et al. 2017; Brys et al. 

2021), and sugarcane bagasse (Freire et al. 2001; Vijayaraj and Saravanan 2007; Shah and 

Joshi 2010). However, the effect of halogen rays has not yet been studied on bagasse 

particle drying kinetics. Halogen dryers represent an innovative, fast, and very accurate 

method for determining the moisture content in a wide range of materials (Kambis and 

Leivne 1996; Ravindra et al. 2019). For example, the ASTM D6980 (2012) standard 

describes a standard test for determining moisture content and drying plastic granules using 

a halogen moisture analyzer. This is the first study to investigate the sugarcane bagasse 

drying process with halogen lamps. The drying process of agricultural and lignocellulosic 

materials usually takes place in three different periods, including constant drying rate, the 

first falling rate period of drying, and the second falling rate period of drying (Ghazanfari 

et al. 2006). Low energy efficiency and lengthy drying periods are important disadvantages 

of hot-air drying. In hot-air dryers, the heat transfer to the inner parts of materials under 

drying is limited, and energy efficiency is low owing to low thermal conductivity, leading 

to longer periods to dry materials (Du et al. 2005; Huang et al. 2016). In this study, the 

bagasse particles' drying process with halogen rays was investigated to solve the mentioned 

problem, avoid low thermal conductivity and energy inefficiency, and obtain an effective 

thermal process. In addition to TLD models, the neural network (NN) is one of the latest 

modeling techniques and predicts complicated physical processes that can predict 

materials’ drying kinetics very accurately. The NN has been used for modeling the drying 

kinetics of agricultural products and the drying process of wood (Celma et al. 2008; Dash 

et al. 2020; Saxena et al. 2022). The results of previous studies clearly show that the ANN 

predicts the drying process of materials more effectively than TLD models (Chai et al. 

2019; Sadeghi et al. 2019).  

Therefore, the objectives of this study were to study bagasse drying kinetics and 

the effect of temperature on the process of bagasse drying using a halogen lamp dryer; to 

fit bagasse drying curves on TLD models; to determine the most appropriate model; and 

to predict the bagasse moisture content over time using an artificial neural network (ANN). 

 

 

EXPERIMENTAL 
 
Materials 

Bagasse particles used in this study were obtained from the Neopan Karon 

Company. The dimension of bagasse particles were 8 to 13 mm length and 0.5 to 2 mm 

thickness. Its density was 0.12 g/cm3. Bagasse drying experiments were conducted with an 

initial moisture content of 180% (based on the dry weight) to study the drying rate of 

bagasse particles under a moisture content higher than the FSP. Therefore, bagasse 

particles were mixed with water (with the equivalent weight ratio) for 24 h. The samples 

were kept in sealed polyethylene bags at 3 to 5 °C for 7 days so that the moisture was 

distributed evenly. During this period, samples were mixed daily to maintain homogenous 

moisture content in all bagasse particles. 
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Drying Process 
The drying process of bagasse particles was conducted using a halogen moisture 

analyzer (Model MB45, OHAUS Company, University of Tehran, Iran) at three 

temperatures of 105, 120, and 135 °C. The MB45 has a sample capacity of 45 g, with a 

readability of 0.001 g and repeatability to 0.015% (using a 10 g sample). It is shown in Fig. 

1. The heater is a halogen lamp, and the operating temperature range is 50 to 200 ºC in 1º 

increments. During the drying operation, the moisture content was constantly calculated 

based on the gravimetric method, and the weight difference between before and after 

drying to represent the loss of moisture. This drying method is called loss-on-drying 

(LOD), which is a standard method for measuring moisture. The sample is weighed, 

receives heat, is dried, and then is weighed again. This device is used for testing moisture 

and analyzing the moisture content in samples such as wood, pulp, biomass, granules, 

edible materials, food products, and pastes. A series of tasks were followed to study the 

drying kinetics of bagasse particles. First, 4 g of bagasse particles was evenly distributed 

on the surface of a stainless-steel tray for keeping samples inside a halogen dryer chamber. 

The surface of the tray was covered with an identical thickness of bagasse particles. A 

decrease in the samples’ moisture content at 105, 120, and 130 °C was recorded every 30 

seconds to study the effect of temperature on the drying rate of bagasse particles. All 

experiments were repeated in triplicate for each temperature, and the average values of the 

moisture content for each temperature were used for drawing and fitting drying curves. 

 
Fig. 1. Halogen moisture Analyzer, MB45 AM (ohaus.com) 

 
Drying Kinetics 

Drying is one of the widely used methods for the preservation of cereals, fruits, and 

vegetables. These models are used for estimating the time in which several products are 

dried under various drying conditions, improving the efficiency of the drying process, and 

generalizing drying curves for the design and function of dryers. Equation 1 is used for 

determining the moisture ratio (MR) of bagasse particles, 

MR = (
𝑀t−𝑀e

𝑀0−𝑀e
)                                                                             (1) 

where MR is the moisture ratio (dimensionless), Mt is the momentary moisture content per 

kg of solid matter/kg of water, Me is equilibrium moisture (kg of material/kg of water), and 

M0 is the initial moisture content (kg of material/kg of water), where their values are 

expressed on a dry basis. In the IR process, samples may be dried as much as dry solid 

content (Celma et al. 2008). Especially for long drying times, Me is relatively small in 
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comparison with Mt or M0. Therefore, Therefore, Eq. 1 is simplified as Eq. 2 (Shah and 

Josh 2010; Doymaz et al. 2007). 

MR = (
𝑀t+dt

𝑀0
)                                                                                           (2) 

The evaporation ratio in bagasse particles was calculated using Eq. 3,  

DR = (
Mt+dt−Mt

dt
)                                                                                (3) 

where DR is the drying rate (kg/s), Mt + dt is the moisture content (kg water/kg d.b) at the 

time t + dt, Mt is the moisture content in the time t, and t is the drying time (s). To determine 

the MR in this study, experimental data were examined for 18 most important and 

commonly used models that are used to predict the MR of food and other agricultural 

products (Table 1). The fixed variables and the constant drying of each TLD model were 

analyzed and obtained based on the time (the independent variable) using MATLAB 2016 

software. The best model was determined using three statistical parameters, namely 

coefficient of determination (R2), root mean square error (RMSE), and the sum of squared 

errors (SSE). The fit of a model with the highest value for R2 and lowest values for SSE 

and RMSE best describes the drying characteristics of bagasse particles. The values for R2, 

RMSE, and SSE were calculated using Eqs. 4, 5, and 6, respectively, 
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SSE = ∑ (MRpre,i
n
i=1 −MRexp)

2                                              (6) 

where Mexpi and Mpre,i are respectively the observed and model-predicted bagasse particles 

moisture contents in the ith measurement, , N is the number of observations (data), and n is 

the number of constants used in the equation. 

 

Artificial Neural Network Model 
The multilayer perceptron (MLP) is a widely used and practical ANN model that 

was chosen from the ANN toolbox of MATLAB v.16 to predict the MR. In this model, the 

drying time and temperature of bagasse particles and MR were introduced as the input and 

output data, respectively. To acquire a suitable topology of the ANN, it is trained with 

experimental data, and the best topology was determined by trial and error and minimizing 

the ANN error (Sadeghi et al. 2019; Haftkhani et al. 2021). 

The mathematical equation of the MLP ANN is as follows, 

𝒀 = 𝒈(𝜽 + ∑ 𝒗𝒋
𝒎
𝒋=𝟏 [∑ 𝒇(𝑾𝒊𝒋𝑿𝒊 + 𝜷𝒋

𝒏
𝒊=𝟏 ])                                       (7) 

where Y is the dependent variable, g (.) is the activation function of output neurons, θ is the 

bias value for output neurons, vj is the value of weights between the jth output neuron and 

hidden neurons, f (.) is the activation function of hidden neurons, Wij is the weights between 
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the jth input neuron and the jth hidden neuron, Xi is the input value of the ith dependent 

variable, and βj is the jth hidden neuron bias. 

 
Table 1. Mathematical Models Applied to Drying Curves 

Model name Model equation  Reference 

Lewis (Newton) MR = exp(−kt) Ghazanfari et al. (2006) 

Henderson and Pabis MR = a exp(−kt) Kaur and Singh (2014) 

Logarithmic MR = a exp(−kt) + b Gan and Poh (2014) 

Modified Midilli et al.-III MR = a exp(−kt) + bt Kaur and Singh (2014) 

Two-term MR = a exp(−k1 t) + b 
exp(−k2 t) 

Kumar et al. (2014) 

Noomhorm and Verma MR = a exp(−k1 t) + b 
exp(−k2 t) + c 

Kaleta and Gornicki (2010) 

Modified Henderson and 
Pabis 

MR = a exp (−k1 t) + b 
exp(−k2 t) + c exp(−k3 t) 

Erbay and Icier (2009) 

Two-term exponentia MR = a exp(−kt) + (1 − a) 
exp(−akt) 

Lee and Kim (2009) 

Modified two term-V MR = a exp(−kt) + (1 − a) 
exp(−gt) 

Verma et al. (1985) 

Page MR = exp (−ktn ) Doymaz (2007a) 

Modified Page-IV MR = a exp(−ktn )  Babalis et al. (2006) 

Hii et al MR = a exp (−ktn ) + b 
exp(−gtn ) 

Hii et al. (2009) 

Kaleta et al. II MR = a exp(−ktn ) + (1 − 
a)exp(−gtn ) 

Kaleta et al. (2013) 

Modified Page II MR = exp[−(kt) n] Vega et al. (2007) 

Modified page .III MR = a exp[−(kt) n] Ertekin and Firat (2017) 

Demir et al. MR = a exp[−(kt) n] + b Demir et al. (2007) 

Wang and Singh MR = 1 + at + bt2 Wang and Singh (1978) 

Midilli et al. MR = a exp(−ktn ) + bt Midilli et al. (2002) 

 

In this study, 70, 15, and 15% of the data were randomly selected for training, 

validation, and testing purposes, respectively. The Levenberg-Marquardt algorithm was 

chosen for training data. The activation function of the output neuron was linear, but that 

of the hidden neuron was a hyperbolic-tangent-sigmoid function as follows, 

𝑓(𝑥) =
2

1+𝑒(−2𝑥)
− 1                                                                            (8) 

where f(x) and x are neurons’ output and input values, respectively. The structure of MLP 

for predicting MR is shown in Fig. 2. Also, it was reported in earlier works (Sadeghi et al. 

2019; Haftkhani et al. 2021) that a network with one hidden layer and hyperbolic tangent 

sigmoid (tansig) function is commonly used for forecasting in practice. The statistical 

parameters MSE, MAPE, and R2 were used for assessing the efficiency of the ANN model 

to investigate the error value and match the real and predicted data. These statistical 

parameters were calculated using Eqs. 9, 10, and 11, 

𝑴𝑨𝑷𝑬 =
𝟏

𝒏
∑ (

|𝑦𝑒𝑥𝑝.−𝑦𝑝𝑟𝑒𝑑.|

𝑦𝑒𝑥𝑝.
) 100𝒏

𝒊=𝟏                                                    (9) 

  

𝑴𝑺𝑬 =
𝟏

𝒏
∑ (𝑦𝑒𝑥𝑝. − 𝑦𝑝𝑟𝑒𝑑.)

2𝒏
𝒊=𝟏                                                                   (10) 
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𝑹𝟐 = 1 −
∑ (𝑦𝑒𝑥𝑝.−𝑦𝑝𝑟𝑒𝑑.)

2𝒏
𝒊=𝟏

∑ (𝑦𝑒𝑥𝑝.−𝑦𝑒𝑥𝑝.̅̅ ̅̅ ̅̅ ̅)
2𝒏

𝒊=𝟏

                                                                   (11) 

where yexp and ypred are the real and predicted data, respectively, 𝑦𝑒𝑥𝑝.̅̅ ̅̅ ̅̅  is the average of real 

data, and n is the number of data.  

 
 

Fig. 2. Schema of artificial neural network for prediction moisture content of bagasse particle 

 
 
RESULTS AND DISCUSSION 
 

To change the anatomy and position of moisture in hygroscopic materials, the 

temperature is used both directly and indirectly during the drying process. Changes in the 

bagasse MR in different temperatures over time, influenced by the direct heat transfer, on 

the surface of bagasse particles are shown in Fig. 3, indicating an exponential reduction in 

the bagasse MR during the drying process. The bagasse particle MR at 105, 120, and 135 

°C approached zero in 1110, 630, and 420 seconds, respectively. The change in the 

moisture content of bagasse particles was significantly influenced by increasing the 

temperature from 105 to 135 °C (an increase of 30 °C), which reduced the bagasse drying 

time (reducing the bagasse moist content) by 2.7 times (Fig. 3).  

 
Fig. 3. Moisture content versus drying time at different halogen drying temperature 
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Drying with halogen radiation involves heating with electromagnetic radiation 

having a wavelength ranging from 0.76 to 2.5 μm. Halogen radiant energy can be easily 

passed through the air without heating the ambient air. When the halogen lamp is radiated 

toward the cellulosic materials, in general, reflection varies within the range between 10 

and 30%, and the penetration depth of the radiation is close to 0.3 mm. This means that the 

cellulosic materials surface absorbs 70 to 90% of all incident IR radiation. So, the surface 

of cellulosic materials becomes strongly heated and then a thermal gradient within the 

material significantly increases in a short period by conduction. In most previous studies, 

the impact of temperature on the bagasse drying process was studied indirectly using hot-

air dryers. Recently, the direct radiation of IR and microwave dryer has been used in a few 

studies, indicating a reduction in the drying period using infrared radiation compared with 

the hot air dryers, especially in the falling drying rate period (Huang et al. 2021). Infrared 

energy penetrates into the materials and then is converted to heat without heating the 

adjacent air. Thus, the internal part of materials would be warmer than the surrounding air 

and the rate of heat transfer is greater as compared to the hot air drying technique (Huang 

et al. 2021; Al‐Hilphy et al. 2021). Figure 4 shows the bagasse drying rate against its 

moisture content. Accordingly, the slope of drying curves changes during the drying period 

of bagasse particles. Depending on the physical features and the moisture content of the 

materials, the drying process of hygroscopic materials takes place in three separate stages, 

including the constant drying rate and the first and the second falling rate period of drying. 

According to Fig. 5, a constant drying rate was not observed in any of the drying 

temperatures of bagasse particles, and the whole drying process of bagasse particles 

happened during the falling rate period of drying. Vijayaraj et al. (2007) dried bagasse 

particles in at 80 to 120 °C and an air velocity of 0.5 to 2 m/sec. Their results showed that 

the entire drying process happened in the falling rate period of drying despite a high initial 

moisture content of bagasse. Freire et al. (2001) and Shah and Joshi (2010) observed no 

constant drying rate in the drying process of bagasse. Du et al. (2005) investigated the 

drying process of wood chips in convective and microwave dryer. Their results showed 

that the value for the output moisture microwave dryer was approximately twice that of 

convective dryers in the initial 100 seconds. 

 
 

Fig. 4. Drying rate versus drying time at different halogen drying temperature 
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When the moisture of the surface layer in the sample evaporates very quickly, the 

surface of particles dries very quickly with shrinkage, which reduces the diameter of 

cellular pores and cavities. Therefore, quick transfer and moisture extraction from the 

lower layers close to the surface of particles are not possible when there is free water in the 

lower layers of the surface layer. In fact, the moisture evaporation rate from the surface of 

the particles is faster than the surface layer’s rate of feeding moisture from its lower layers. 

Therefore, it is not possible to observe a constant drying rate. In this study, using the 

halogen lamp and direct transfer of the temperature to bagasse particles caused a fast 

reduction of the water-air interface and its fast recess to the pores near the surface. As a 

result, it was difficult to observe a constant drying rate. This type of drying behavior can 

also be interpreted based on the Biot (Bi) number. For solid materials with a Bi number 

less than 0.1, the process of drying takes place at a constant rate (Sander et al. 2001), while 

the Bi number for lignocellulosic materials has been reported to be more than 0.2 (Soni 

2007). The first (A-B) and second (B-C) falling rate periods of drying are obvious in the 

curves of the bagasse drying rate, (Fig. 5).  In the first falling rate period of drying, the 

moisture moves from lower layers from the wood surface to its outer surface (from higher 

to lower concentrations), which is influenced by the diffusion mechanism. At the beginning 

of this period, wood surface lower layers are rich in moisture and the drying rate of bagasse 

particles is high, with a steeper slope of particle drying curves. The moisture content of 

particles’ lower layers is reduced over time, making the moisture exhaust from bagasse 

particles more difficult. This increases the surface temperature of the particles, and a 

temperature gradient is formed contrary to the direction of the moisture gradient in the 

particles. In lower moisture contents, a sharp deviation is observed in the slope of the 

drying curve, suggesting that there is no free water available in this stage of drying, with a 

completely dry surface of fibers. Therefore, this minimizes the drying rate of particles and 

increases the drying period. This period of drying is known as the second falling rate period 

of drying. 

 

 
 
Fig. 5. Drying rate versus moisture content at different halogen drying temperature 
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Drying Curves Fitting 
Modeling the drying process of agricultural products is based on a collection of 

accurate and simple mathematical equations that can adequately describe various 

conditions of the drying process and drying materials. Eighteen models (Table 1) were 

fitted on the drying curves obtained from the experimental data using MATLAB 2016 

software. The best TLD model was selected based on a higher value of R2 and lower values 

of SSE and RMSE. The results from the fit of mathematical models on the experimental 

data showed that the Hii et al. model had the best fit on the experimental data. The Hii et 

al. model is a combination of the Page and two-term drying model (Hii et al. 2009).  

The results from the fit of mathematical models on the experimental data with their 

fixed coefficients and the values for statistical parameters at different temperatures are 

shown in Tables 2, 3, and 4. A careful inspection of these results revealed that there was 

only a limited difference between the results of Hii et al. model as best model and other 

TLD models.  According to Tables 2, 3, and 4, most of TLD models showed relatively high 

values of R2 (0.9995) and lower values of SSE and RMSE (0.001213 and 0.007601). Some 

of the models given in Tables 2 to 4 are derived from the based model and were modified 

by increasing the number of parameters.  

Since, the effect of different parameter values on the drying curve shape is always 

not significant, some drying model showed the same fit with each other. Thus there was no 

reason to use complex models for drying data. For example, results showed that Henderson 

and Pabis model with 2 parameters and Logarithmic, Modified Midilli et al.-III, Modified 

page II and Modified Page-IV models with 3 parameters showed good fitness and 

prediction of moisture content of bagasse particles (R2>0.99), and there was no significant 

different among these models and the Hii et al model based statistical index (R2, RMSE 

AND SSE). Therefore, it should be noted that a simple model with the same degree of fit 

or with a slight loss of goodness of-fit can be used instead of a complex model. Buzrul 

(2022), proposed that complex models or models that have more than three parameters and 

models that have the same fit with another model but have more adjustable parameters can 

be safely eliminated without hesitation. Hence, among the 18 selected models, statistical 

analysis implied that the Modified Henderson and Pebis model with only two parameters 

could accurately predict changes in moisture content of bagasse particle. 

 

Artificial Neural Network Model 
Experimental data were categorized into three classes for modeling with the ANN. 

Accordingly, 70, 15, and 15% of the data were considered for training, validation, and 

testing of the ANN model, respectively. The ANN model with topologies of 2-5-1 and 2-

20-1, with one hidden layer presented the best results for prediction of variations in 

moisture content of bagasse particles. If the computing time and simplicity of the topology 

are considered, the best choice is the topology of 2‐5‐1. Based on the results in Table 5, the 

mean absolute percent error (MAPE) and R for the whole dataset in the ANN for predicting 

MR is 2.61% and 0.99969, respectively. A high R2 and a low error (%) between 

experimental and predicted data shows that the ANN can better predict the bagasse MR 

than Hii et al. model.  
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Table 2. Statistical Results and Drying Constant of Mathematical Models at Different Temperature Drying (T=105 °C) 

T°C Model Equation R2 Constants RMSE SSE 

 
 
 
 
 
 
105 
°C  

f(x) = exp(-kt) 0.9850 k = 0.006706 0.07281 0.1007 

f(x) = aexp(-kt) 0.9909 a = 1.949, k =-0.002802   0.05269 0.1083 

F(x)=aexp(-kt)+b 0.9983 a = 2.047, k = 0.002217, b = -0.1695 0.02282 0.0198 

F(x)=aexp (-kt) + bt 0.9978 a = 1.883, k = 0.002379, b = -0.0001286   0.02532 0.07116 

F(x)=aexp(-k1t)+cexp(-k2t) 0.9914 a =-0.08839, k1 =0.9134, k2 =0.002837, c = 1.974   0.05268 0.1027 

F(x)=a exp(-k1t) + c exp(-k2t) 
+d 

0.99917 a =2.003, k1 =0.002038, k2 = 0.9134, d = -0.2112   0.04202 0.01053 

F(x)=a exp(-k1t) + c exp(-k2t) + 
d exp(-k3t) +d 

0.9914 a =1.974, k1 = 0.002837, k2 = 0.975, k3 =0.5469, c = -
0.1334, d = 0.04506   

0.05416 0.1027 

F(x)=a exp(-k1t) +(1-a) exp(-
ak2t) 

0.9259 a =1.974, k1 = 0.002837, k2 =0.9134 0.1527 0.8863 

F(x)=a exp(-kt) +(1-a) exp(-gt) 0.9253 a =1.974, k =0.002837, g=0.975 0.1527 0.8863 

F(x)=a exp(-ktn) 0.9941 a =1.837, b = 0.0009851, n = 1.161   0.04295 0.07009 

F(x)=exp(-ktn) 0.83 k =5e+05, n =0.9706 0.2232 1.944 

F(x)=a exp(-ktn) + (1-a) exp(-
gtn) 

0.9291 a =1.785, k =0.0007033, g =2.978, n = 1.211 0.1515 0.8489 

F(x)=a exp(-ktn) + c exp(-gtn) 0.9995 a =1.294, k =1.367e-05, c = 0.5862. g =0.0002719, n 
= 1.786   

0.01333 0.006401 

F(x)=a exp(-ktn)+bt 0.8484 a =1.242, k =0.01256, b =-0.001228, n = -9.701 0.2214 1.814 

F(x)=1+at+bt2 0.7426 a = -0.0007124, b= -2.295e-07 0.281 3.08 

F(x)=a exp[-(kt)n] 0.994 a =1.83, b = 0.002531, n = 1.166   0.0435 0.07189 

F(x)= exp[-(kt)n] 0.9822 b =0.001611, n = 2.395   0.07392 0.2131 

F(x)=a exp[-(kt)n]+b 0.9938 a =1.827, b = 0.002536 , n = 1.166   o.04414 0.07402 
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Table 3. Statistical Results and Drying Constant of Mathematical Models at Different Temperature Drying (T=120 °C) 

T°C Model Equation R2 Constants RMSE SSE 

 
 
 
 
 
 
 
 
 
120 °C 

f(x) = exp(-kt) 0.9881 k = 0.003745 0.06306 0.09942 

f(x) = a exp(-kt) 0.999 a = 2.116, b = 0.00577   0.01889 0.008567 

F(x)=a exp(-kt) +c 0.9983  0.02282 0.0198 

F(x)=a exp(-kt) +c exp(-k2t) 0.9975 a =2.157, b = 0.005964, k =0.9134, c = -0.2919 0.03085 0.02094 

F(x)=a exp(-kt) + c exp(-k1t) +d 0.9995 a =2.155, k =0.005375, k1 =0.9134, c =-0.2292, d =-
0.06012 

0.02445 0.004384 

F(x)=a exp(-k1t)+c exp(-k2t)+d 
exp(-k3t) 

0.9975 a =2.158, k1 =0.005965, b2 = 0.9134, b3 =0.2735, c 
=-0.402, d = 0.1097   

0.03236 0.02094 

F(x)=a exp(-kt) +(1-a) exp(-
ak1t) 

0.9763 a =2.134, k =0.00585, k1 = 0.9134 0.09278 0.198 

F(x)=a exp(-kt) + (1-a) exp(-gt) 0.9763 a =2.134, k =0.00585, g =0.9134   0.09278 0.198 

F(x)=a exp(-ktn) 0.9981 a = 1.898, k =0.001704, n = 1.208   0.02652 0.01617 

F(x)=exp(-ktn) 0.6957 k =1.629e-08, n =2.979    0.3207 6.581 

F(x)=a exp(-ktn) + (1-a) exp(-
gtn) 

0.9653 a =1.954, k =0.002078, g = 1.403, n =1.178   0.1148 0.29 

F(x)=a exp(-k tn) + c exp(-g tn) 0.9995 a =1.125, k=2.499e-05,  c = 0.7501,  g = 0.00024, n 
= 1.87   

0.00760
1 

0.001213 

F(x)=a exp(-ktn) + bt 0.9984 a =1.907, k = 0.002072, c = -3.828e-05,  n = 1.168   0.02442 0.01311 

F(x)=1+at+bt2 0.7265 a = -0.002029, k =7.124e-07   0.3084 2.282 

F(x)=a exp[-(kt)n] 0.9981 a =1.898, k = 0.0051, n = 1.208   o.02652 0.01617 

F(x)= exp[-(kt)n] 0.972 k = 0.003214,  n =2.116   0.9868 0.2337 

F(x)=a exp[-(kt)n] + b 0.9984 a =1.937, b = 0.00498, c =-0.02897, n = 1.16   0.02445 0.01316 
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Table 4. Statistical Results and Drying Constant of Mathematical Models at Different Temperature Drying (T=135 °C) 

T°C Model R 2 Constants RMSE SSE 

 
 
 
 
 
 
 
 
135 °C 
 
 
  

f(x) = exp(-kt) 0.9855 k =0.006706 0.07281 0.1007 

f(x) = a exp(-kt) 0.9977 a =2.366, b = 0.01029   0.02914 0.01528 

F(x)=a exp(-kt) +c 0.9886 a =2.083, b =0.008413, c = -0.05057   0.06703 0.07638 

F(x)=a exp(-k1t) + c 
exp(-k2t) 

0.9994 a =2.411, k = 0.01053, k1 =0.975, c =-0.5302 0.01536 0.003775 

F(x)=a exp(-k1t) +c 
exp(-k2t) +d 

0.9995 a =2.402, k =0.01029, k1 =0.975, c =-0.5089, d =-0.01262 0.001748 0.002727 

F(x)=a exp(-k1t) +c 
exp(-k2t) +d exp(-
k3t) 

0.9994 a = 2.411, k1 =0.01054, k2 =0.975, k3 = 0.5469, c =-0.2046, d = 
-0.3261 

0.01642 0.003775 

F(x)=a exp(-k1t) 
+(1-a) exp(-ak2t) 

0.8842 a = 2.411, k1 =0.01054, k2 = 0.975 0.2141 0.7795 

F(x)=a exp(-kt) +(1-
a) exp(-gt) 

0.8840 a =2.411, k =0.01054, g =0.9649 0.2141 0.7795 

F(x)=a exp(-ktn) 0.997 a =1.932, k =0.001844, n = 1.312   0.03431 0.02001 

F(x)=exp(-ktn) 0.7774 k =6.524e-07, n =2.718   0.2882 1.495 

F(x)=a exp(-ktn) 
+(1-a) exp(-gtn) 

0.8841 a =2.288, k =0.007153, g =0.9649, n =1.07 0.2206 0.7784 

F(x)=a exp(-ktn)+ c 
exp(-gtn) 

0.9995 a = 2.288, k = 0.007151, g = 0.975, c =-0.4077, n =1.07 0.001326 0.001638 

F(x)=a exp(-ktn) + bt 0.9769 a=0.02299, b=-0.001318, k=-5.648, n=-0.06798   0.09136 0.1753 

F(x)=1+at+bt2 0.9531 a = -0.004318, b =4.627e-06  0.1323 0.3149 

F(x)=a exp[-(kt)n] 0.997 a =1.932, k =0.008252, n =1.312   0.03431 0.02001 

F(x)= exp[-(kt)n] 0.7775 k =0.005315, n =2.791 0.2882 1.495 

F(x)=aexp[-(kt)n] + b 0.9972 a =1.913, k = 0.008354, c =0.01465, n =1.344   0.03409 0.0186 
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Table 5. Evaluation the Performance of Neural Network using Statistical 
Parameters 

MAPE MSE R Parameter Factor 

 0.00006 0.99985 training  

 0.000049 0.99944 validation MR 

 0.000243 0.99915 testing  

2.61  0.99969 All data  

 

Figure 6 shows R values for MR for training (0.99985), validation (0.99944), and 

testing (0.99915) data in the ANN model. The ANN uses the ability of machine learning 

algorithms, based on which the ANN can improve its functionality based on previous 

training and experiences.  

 

 
Fig. 6. Regression plots of the developed ANN model for (a) the training data set, (b) the 
validation data set, (c) the testing data set, and (d) All data 
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If the training is correct, the designed and selected algorithm can estimate the 

correct answer for new observations. In the case of changing data, the produced program 

can also adapt itself to new conditions. The ANN is distinguished from other modeling 

methods and yields better results than other modeling methods due to its better 

generalizability and adaptability. The fit of real data against predicted data with the ANN 

suggests that the values of MR predicted by the ANN model better match the real data (Fig. 

7). The drying process of solid materials and other lignocellulosic materials was predicted 

using the ANN in many studies, all of which used statistical parameters, such as MAPE, 

MSE, and R2, as the main indexes for comparing experimental and predicted data.  

 

 
Fig. 7.  Comparison of measured and predicted data with ANN model 
 

The results from these studies correspond to those of other research (Celma et al. 

2008; Sadeghi et al. 2019; Saxena et al. 2022). The main obstacle in training ANNs is 

overfitting. This obstacle occurs when the ANN functions properly on training data and no 

other data series. Figure 8 shows the efficiency of prediction for the ANN based on epochs. 

The calculation is stopped in the ANN when the error resulting from validation data 

remains unchanged for six consecutive epochs. As shown in Fig. 8, predicting MR has 

continued for 11 epochs, but predicting and processing data have stopped as the error has 

remained unchanged for six consecutive epochs (after the latter 11 epochs). Thus, the 

network was trained, validated, and tested appropriately so that an adequate convergence 

exists between the prediction ability of training, validation, and testing data based on MSE 

in the 11th epoch for predicting MR. Before proposing the ANN models as best model for 

the drying of bagasse particles, it is important to note that findings in current work 

demonstrated that selected ANN model and a number of semi-empirical models such as 

Midilli et al., Logarithmic, Henderson and Pabis, Modified Midilli et al.-III, Modified page 

II and Modified Page-IV models could precisely predicted the moisture of bagasse particle 

with determination coefficient higher than 0.999. Therefore, the models with the less than 

3 parameters provided good agreement and can be considered a promising tool to predict 

drying kinetic of bagasse particles. Sadeghi et al (2019) listed 100 models, including feed-

forward neural networks that could be used for thin-layer modeling and reported that the 

most of the drying curves can be described by models with only two adjustable parameters. 
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Fig. 8. Neural network performance by period (epoch) for training, validation, and testing data 

 

 

CONCLUSIONS 
 
1. This study showed that an increase in the temperature elevated the drying rate, thereby 

reducing the total time of drying. The drying curves of bagasse particles also showed 

that the whole drying period occurred with a falling rate, and no constant drying rate 

was observed in bagasse particles. 

2. The Hii et al. model better matched the experimental data than the other thin drying 

layer models according to three statistical parameters of R2, SSE, and RMSE.  

3. The ANN yielded more adequate results than all the other mathematical models. A 

careful inspection of the results of this study revealed that the selected ANN topology 

and a number of thin drying layer models could precisely predicted the drying process 

of bagasse particle with determination coefficient higher than 0.99. Therefore, it should 

be emphasized that it not necessary to use and test all the models have been applied for 

describe the drying kinetics of bagasse particles.  

4. A simple model like the Henderson & Pabis model with two parameters (a and k) and 

acceptable accuracy can be more useful than complex models or models that have more 

than two parameters for modeling lignocellulosic materials. 
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