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Techniques based on electrical resistance and near-infrared (NIR) 
spectroscopy were used to determine the moisture content (MC) of logging 
residues and sweet sorghum. The MC of biomass is a factor to be 
controlled that can affect the quality of final products. To accurately 
measure the moisture in fragmented materials, it is essential to increase 
the bulk density of the materials by compression. The low bulk density 
increased the error from the oven-drying MC and the variation between 
repeated measurements. The calculated correction factor made it possible 
to use a commercial wood moisture meter for biomass materials. Ordinary 
least squares regression models built with the electrical resistance data 
achieved coefficients of determination (R2) of 0.933 and 0.833 with root 
mean square errors (RMSE) of 0.505 and 0.891, respectively, for the MC 
predictions of logging residue and sweet sorghum. Partial least squares 
regression models combined with NIR spectroscopy achieved R2 of 0.942 
and 0.958 with RMSE of 1.318 and 3.681 for logging residue and sweet 
sorghum, respectively. In contrast to the electrical resistance-based 
models, the NIR-based models could predict the MC regardless of the bulk 
density of the materials. Data transformation by the second derivative and 
removal of outliers contributed to the improvement of the prediction of the 
NIR-based models. 
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INTRODUCTION 
 

 Lignocellulosic biomass is the most abundant natural renewable resource and has 

recently attracted attention as a substitute for petroleum resources owing to global warming 

and environmental pollution (Qian 2014). Accordingly, the market for biorefinery 

materials continues to increase with the transition from the petroleum to the biochemical 

industry (Costa and De Morais 2011; Erickson et al. 2012). In pursuing economical 

biorefining using lignocellulosic biomass, unused forest biomass left on site from logging 

offers great potential (Swinton et al. 2021). Logging residues, which mainly consist of 
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branches, twigs, and top parts of trees, account for approximately 36% of untapped 

potential feedstock (Langholtz et al. 2016). As a comprehensive strategy for ‘Net zero by 

2050’ (Bouckaert et al. 2021), the Korean government aims to promote the use of wood 

and forest biomass and is planning to increase the annual log production and collection rate 

of unused forest biomass (United Nations 2020). In this context, logging residues have 

great potential to become a stable biomass source in Korea in the future. 

While many studies have reported the development of high-value-added and high-

functional materials using biomass feedstocks (Takagaki et al. 2012; Kalyani and Anitha 

2013; Molino et al. 2016; Park et al. 2019; Hwang et al. 2021c; Cywar et al. 2022), studies 

on the precise moisture evaluation of biomass materials during storage have been relatively 

few (Samuelsson et al. 2006; Julrat and Trabelsi 2019). Fresh biomass contains large 

amounts of water (Ekefre et al. 2017; Eliasson et al. 2020), and the moisture content (MC) 

varies with plant species type and season (McKendry 2002; Filbakk et al. 2011). Moisture 

in biomass feedstocks causes high transportation costs, so they are often left at harvest sites 

or along roadsides to induce natural drying (Filbakk et al. 2011). High MC and ambient 

humidity during the storage of biomass feedstock can lead to microbial infections, such as 

fungi and bacteria (Suchomel et al. 2014; Krzyżaniak et al. 2016; Ashman et al. 2018; 

Gejdoš and Lieskovský 2021). As biomass deterioration can cause self-heating, decay, 

weight loss, and failure of the biorefinery process, moisture management of biomass 

materials by accurate MC evaluation is essential. The MC of biomass feedstock also affects 

the quality and yield of the final products. 

Electrical resistance is the most common approach for moisture measurement in 

wood (Brischke et al. 2008; Björngrim et al. 2016; Hwang et al. 2021a). Although the 

reliable range of moisture determination is limited, most portable commercial moisture 

meters for biomass are based on electrical resistance. Electrical methods must include 

control of wood species, internal stress, preservatives, and distance between electrodes for 

precise moisture determination of solid wood (Lahtela et al. 2014; Dietsch et al. 2015; 

Hwang et al. 2023). However, to measure biomass moisture, the compression of the fine 

material to create the charge travel path must be considered first (Govett et al. 2010).  

NIRS has been favored for predicting the physical and chemical properties of 

lignocellulosic materials, as it enables rapid and non-destructive analysis (Mitsui et al. 

2008; Eom et al. 2010; Inagaki et al. 2010; Via et al. 2014; Yang et al. 2015; Hwang et al. 

2016; Horikawa 2017; Hwang et al. 2021b). Because NIRS acquires data through contact 

between a material and a probe, it may have lower or even no material compression 

requirements than electrical methods. However, multiple measurements are recommended 

because this method measures a tiny spot. In addition, due to the nature of the production 

and collection of biomass feedstock, some foreign substances mixed in the material may 

create outliers. Because outliers deteriorate moisture prediction performance, research on 

controlling them is required. The high cost of building a NIRS system can be a barrier to 

its application. 

As part of a bioplastics development project, this study aims to develop techniques 

for rapid and precise determination of moisture in logging residues and sweet sorghum 

straws. Because both materials are representative lignocellulosic and herbaceous biomass 

available in large quantities in Korea, the project selected them as feedstock. The MC of 

materials is a factor that may affect the production of biomass-based monomers and 

plasticizers. This study investigated electrical and spectroscopic methods for moisture 

determination in biomass. The correction factors for measuring the biomass MC of an 
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electrical resistance-based commercial wood moisture meter were calculated, and MC 

prediction models were developed using the electrical resistance and near-infrared (NIR) 

spectral data acquired from the biomass feedstocks. Additionally, a technique for removing 

NIR spectral outliers caused by foreign substances mixed in the material was investigated. 

The technologies for precise moisture determination of biomass could contribute to 

preventing feedstock deterioration and maintaining consistent quality in the final product. 

 

 

EXPERIMENTAL 
 

Samples and Humidification 
Logging residues and sweet sorghum (Sorghum bicolor var. dulciusculum) straw 

were used as the biomass material for moisture determination (Fig. 1). Specimens of 10 g 

of each of the materials were used in all experiments. Logging residues comprised 

comminuted amorphous woody fragments, also called hog fuel, and residues left at the site 

after timber harvesting operations. The bulk densities of both materials were lower than 

those of reported values (Jensen et al. 2006; Cardoso et al. 2013; Tang et al. 2014) due to 

their long particle size and origin, resulting in low biomass characteristics index (BCI) 

(Table 1). 

 

Fig. 1. Shapes of logging residue (a) and sweet sorghum samples (b) for moisture measurement 

 

Table 1. Details of Biomass Samples Tested 

Biomass Particle Size 
(mm) 

Bulk Density 
(g/cm3) 

Reference 
Bulk Density 

(g/cm3) 

MC (%) BCI 

Logging residue   4.8 to 103.9 0.125 0.18 to 0.211) 11.6 11,050 

Sweet sorghum 22.2 to 131.7 0.103 0.242) 11.0   9,167 

Notes: MC, moisture content; BCI, biomass characteristics index; 1) Jensen et al. 2006; 2) Cardoso 
et al. 2013 

 

For moisture level adjustment, the samples were conditioned stepwise in a climate 

chamber (HB-105MP. Hanbaek Scientific Co., Bucheon-si, Korea) at predefined 

temperatures and relative humidity (RH) values, as listed in Table 2. The climatic 

conditions tested corresponded to the equilibrium moisture content (EMC) range of 5.2 to 

24.3%. After all humidification cycles were completed, the MC of the samples was 

determined using the oven drying method. The oven drying method was used as the 

reference method for MC determination (Bergman 2010). 
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Table 2. Environmental Conditions and Corresponding Equilibrium Moisture 
Contents of Biomass 

 

Sample Compression for Data Acquisition 
The charge transport path may be incomplete in the logging residue and sweet 

sorghum samples because the narrow and elongated fragments were sparsely aggregated. 

This structure causes unstable electrical resistance. Hence, in this study, the moisture in the 

biomass was measured for materials compressed by a cylinder. A plunger compressed 10 

g of samples using a high-density polyethylene plate in a cylinder 45 mm in diameter. 

Moisture data were obtained using a wood moisture meter, megohmmeter, and NIR 

spectrometer when the bulk densities of the samples were 0.09, 0.11, 0.13, 0.16, 0.21, and 

0.32 g/cm3. For logging residue, because the bulk density of the raw material was 0.125 

g/cm3 (Table 1), it was compressed in the range of 0.13 to 0.32 g/cm3. In stepwise 

compression of both materials, the bulk density of the first stage is the uncompressed state. 

The data were acquired by drilling holes in the end section of the compression cylinder, 

after which electrodes and an NIR probe were inserted. All measurements were performed 

in a climate chamber to minimize moisture changes in the samples. As shown in Fig. 2, a 

commercial wood moisture meter, electrical resistance, and NIRS were employed for 

moisture measurement of the biomass materials. Moisture data of the samples were 

obtained from compressed materials using all the moisture determination methods when 

the samples reached a constant weight under each climatic condition.  

Fig. 2. Pipelines of approaches for moisture measurement in biomass materials. Notes: MC, 
moisture content; NIR, near-infrared; OLS, ordinary least squares; PLS, partial least squares 

 

Moisture Meter 
 An electrical resistance-based wood moisture meter (MC-460; Exotek Instruments, 

Fichtenberg, Germany) with a general-purpose 2-pin probe was used for MC measurement. 

The moisture meter was designed for moisture measurement in wood, boards, chips, 

cardboards, and pellets in the MC range of 3 to 140%; manual temperature compensation 

was also possible. Correction factors for the MC of logging residue and sweet sorghum 

determined by the moisture meter were calculated from the comparison between the MCs 

measured by the moisture meter and those measured by the oven-drying method. 

Equilibrium Moisture Content (%) 

RH (%) 
Temperature (°C) 

10 20 30 

25 5.5 5.4 5.2 

40 7.9 7.7 7.5 

60 11.2 11.0 10.6 

80 16.4 16.0 15.5 

95 24.3 23.9 23.4 
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Electrical Resistance Measures 
The electrical resistance of the biomass materials was measured using two 

electrodes insulated with polytetrafluoroethylene except at the tip. The distance between 

the electrodes was 25 mm. To maintain this distance, electrodes were fixed to a probe (26-

ES, Delmhorst Instrument Co., Towaco, NJ). Electrode penetration depth was adjusted for 

each bulk density to measure the MC at the center of the in-cylinder compressed samples. 

A super megohmmeter (SM-8220, HIOKI E. E. Corp., Nagano, Japan) was used to 

measure the electrical resistance of the samples. The megohmmeter passed a constant direct 

current voltage into the sample, measured the current at that time, and calculated the 

electrical resistance from the relationship between the voltage, current, and resistance. 

Regression equations for MC prediction were calculated for each temperature condition 

tested using simple linear regression on electrical resistance and oven-drying-based MC 

measurements. Additionally, ordinary least squares regression (OLSR) models using the 

relationship among MC, temperature, and electrical resistance were built for MC 

prediction. The OLSR models were built using Python 3.8 with open-source libraries. 

 

Multivariate Analysis with NIR Data 
Spectral dataset 

NIR spectra were acquired from the biomass samples using an NIR spectrometer 

(NIR Quest, Ocean Insight, Orlando, FL, USA) equipped with a fiber optic probe with a 

scan diameter of 5 mm in reflection mode. The spectrum had a wavelength of 870 to 2500 

nm with a spectral resolution of 6.6 nm and was the average of 16 scans. Because NIR 

characterizes shallow spots on the material surface, the spectra were measured three times 

at different points for each bulk density of the compressed material. Consequently, 180 

spectra for the logging residue dataset and 270 spectra for the sweet sorghum dataset were 

collected for all climatic conditions, resulting in a database consisting of 450 NIR spectra. 

From the full wavelength range of 870 to 2500 nm, noisy and non-informative 

regions were eliminated so that all spectra had a wavelength ranging from 1250 to 2300 

nm. Subsequently, the original spectra were transformed into second derivative spectra 

using a Savitzky–Golay filter (Savitzky and Golay 1964) with 11 points and a quintic 

polynomial. Such spectral selection and transformation may improve model performance 

by increasing data precision (Hwang et al. 2016; 2021b). 

 

Clustering 

Principal component analysis (PCA) was performed to analyze the spectral changes 

in logging residues and sweet sorghum induced by moisture and bulk density variations. 

PCA transformed the 1250 to 2300-nm NIR spectra, as a 165-dimensional spectral vector, 

into 6 principal components (6-dimensional vector). Variations in data due to moisture 

changes were analyzed using principal component (PC) score plots and loadings. 

Density-based spatial clustering of applications with noise (DBSCAN) (Ester et al. 

1996; Zhang et al. 2004) was employed to detect outliers from the data points projected 

onto the PC orthogonal coordinate system. The DBSCAN clustering parameters epsilon 

(esp) and the minimum number of samples (min_samples) were empirically selected as 0.1 

and 3, respectively. The parameter ‘esp’ is the distance of influence of data points to 

determine valid neighbors, and ‘min_samples’ is the minimum number of data points 

required to create a cluster. Three or more consecutive points within a distance of 0.1 from 

a data point are considered a cluster. 
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Moisture prediction model 

Partial least squares regression (PLSR) models (Abdi 2010) were built to predict 

the MC of the biomass materials. The models used the 165-dimensional NIR spectra as the 

input variables and MC as the output variable. The model was verified using k-fold cross 

validation (Fig. 3). Data folds were created for each bulk density, resulting in four-fold 

data for logging residue and six-fold data for sweet sorghum. In other words, the datasets 

were divided into calibration and prediction sets at a ratio of 1:3 for logging residue and 

1:5 for sweet sorghum. This data partitioning was intended to independently generate 

calibration and prediction sets by bulk density. The coefficient of determination (R2) and 

root-mean-square error (RMSE) were used as performance metrics for the PLSR models. 
 

R2 = 1 − (∑ (𝑀𝑖 − �̂�𝑖)
2

𝑖 / ∑ (𝑀𝑖 − 𝜇)2
𝑖 )     (1) 

 

RMSE = √
1

𝑛
∑ (�̂�𝑖 − 𝑀𝑖)2𝑛

𝑖=1        (2) 

 

where 𝑀𝑖 and �̂�𝑖 are the measured and predicted MCs of the ith observation, respectively. 

The parameter µ is the overall mean and n is the total number of observations. All processes 

were performed using Python 3.8, including data preprocessing, clustering, and prediction 

model construction. 

 

 

Fig. 3. Schematic diagram of k-fold cross-validation to build models for measuring moisture content 
of biomass materials 
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RESULTS AND DISCUSSION 
 

Moisture Meter 
Moisture meters are sensitive to material or product characteristics and 

environmental conditions. Generally, commercial moisture meters establish standard 

models for selected species and apply correction factors for other species (Gillis et al. 2001). 

The correction factors manufacturers provide are inevitably limited, even more so in 

different countries and climate zones. Suppose that the wood species or material to be 

measured is not listed in the moisture meter. In that case, the user often selects the one most 

similar to the target species, which inevitably entails errors. The calculation of the 

correction factor is to improve the accuracy of the moisture meter for a specific target. 

Figure 4 presents the MCs of the biomass measured using a moisture meter and 

oven-drying.  
 

 

 
 

Fig. 4. Relation of moisture content (MC) measured by oven-drying method and moisture meter. 
MC of biomass measured by oven-drying method (a), root mean square errors of moisture meter 
MC for oven-drying MC (b), and relation of oven-drying MC and moisture meter MC for logging 
residue (c) and sweet sorghum (d) 
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The relationship between the biomass MCs measured using the oven-drying method 

and the EMCs in the climate chamber differed depending on the material (Fig. 4a). The 

logging residue MCs were slightly lower than that of the in-chamber EMCs and showed a 

linear relationship. Contrastingly, the MC of sweet sorghum was higher than the EMC of 

the chamber and had an exponential regression line due to sweet sorghum absorbing 

excessive moisture above the fiber saturation point (FSP) during humidification at 95% 

RH. The high MC of sweet sorghum is attributed to its high proportion of hydrophilic 

components. Compared with wood, sweet sorghum has a low content of lignin 

(hydrophobic component) and a high hemicellulose content (hydrophilic component) 

(Fajardo et al. 2015). 

Increasing the bulk density of the materials decreased the RMSEs between the MCs 

and oven-drying MCs (Fig. 4b), which suggests that creating a material with a high bulk 

density is advantageous for reliable moisture determination. The importance of material 

compression can also be seen in that the MCs approach oven-drying MCs at higher bulk 

densities (Figs. 4c and 4d). The correction factors and RMSEs of the moisture meter MC 

at a bulk density of 0.32 g/cm3 for the oven-drying MCs are listed in Table 3. The RMSEs 

of the correction factors, 1.46 MC – 0.51 for logging residue and 1.19 MC – 1.42 for sweet 

sorghum, were reduced from 4.64 to 1.58 and from 5.33 to 3.96, respectively. The tested 

moisture meter achieved a relatively low RMSE for logging residues, probably because the 

device was originally designed for woody materials. By applying a correction factor to the 

MC measured by the moisture meter, the trend line of the corrected MC for both materials 

moved very close to the line of the reference MC by oven drying (Fig. 5). The correction 

factor enabled the use of a moisture meter for herbaceous biomass, i.e., sweet sorghum. 

 
Table 3. Correction Factors for Moisture Contents Measured by Moisture Meter 
Tested 

Notes: RMSE, root mean square error; MC, moisture content measured by a moisture meter 
 

Fig. 5. Relation of oven-drying moisture content (MC), moisture meter MC, and moisture meter MC 
with correction factor applied: (a) Logging residue; (b) Sweet sorghum. Moisture meter MCs are 
measured at a bulk density at 0.32 g/cm3. 

Biomass Correction Factor RMSE 

Original MC Corrected MC 

Logging residue 1.46 MC – 0.51 4.64 1.58 

Sweet sorghum 1.19 MC – 1.42 5.33 3.96 
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Electrical Resistance 
Figure 6 shows the electrical resistance of logging residues and sweet sorghum 

straw measured using the 2-pin method. An increase in MC resulted in a decrease in 

electrical resistance, and an increase in bulk density at a specific MC also caused a decrease 

in electrical resistance (Figs. 6a and 6b). As with the MC measurements, the increase in 

bulk density contributed to the creation of continuous paths for charge travel. 

 

 
 
Fig. 6. Changes in electrical resistance with increasing bulk densities of logging residues (a) and 
sweet sorghum (b) at a temperature of 10°C, and relationship between moisture content and 
electrical resistance of logging residues (c) and sweet sorghum (d). Note: R, resistance to electricity 

 

Table 4. Simple Linear Regression Equations between Electrical Resistance and 
Moisture Content below the Fiber Saturation Point 

Biomass Temperature Regression Equation R2 

Logging residue 

10°C log R (㏁) = 14.765 − 10.316 log M 0.984 

20°C log R (㏁) =   9.843 − 14.009 log M 0.962 

30°C log R (㏁) = 10.104 − 14.098 log M 0.989 

Sweet sorghum 

10°C log R (㏁) = 17.611 − 13.106 log M 0.986 

20°C log R (㏁) = 15.944 − 12.253 log M 0.965 

30°C log R (㏁) = 15.613 − 11.967 log M 0.956 

Notes: R, electrical resistance; M, moisture content (%); R2, coefficient of determination 
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On a logarithmic scale, the relationship between the electrical resistance and MC 

was linear, with high coefficients of determination (Figs. 6c and 6d, Table 4). However, 

the linear relationship was valid only below the FSP. For sweet sorghum, MC was higher 

than FSP due to excessive moisture absorption at 95% RH. Therefore, a linear relationship 

could not be established, suggesting that separate models below and above the FSP are 

required for sophisticated moisture determination based on the electrical resistance. 

Table 5 shows the prediction results of the ordinary least square regression models 

for the relationship among electrical resistance, MC, and temperature. The model 

prediction for logging residue achieved high performance, with an R2 of 0.933 and RMSE 

of 0.505, whereas that for sweet sorghum was inferior, with an R2 of 0.483 and RMSE of 

1.657. However, in the limited MC range below the FSP, the model produced significantly 

improved performance, with R2 and RMSE values of 0.833 and 0.891, respectively, 

suggesting that controlling the material’s bulk density and MC range is essential for 

precisely determining the MC of biomass materials using electrical resistance-based 

methods. 

 

Table 5. Ordinary Least Squares Regression Models Prediction Results for 
Moisture Content Determination of Biomass 

Notes: R, electrical resistance; M, moisture content (%); T, temperature (°C); R2, coefficient of 
determination; RMSE, root mean square error 
 

Multivariate Analysis 
NIR spectral characteristics 

Figures 7a and 7b show the second-derivative NIR spectra of logging residues and 

sweet sorghum straw in the 1300 to 2300 nm region. The 1437 and 1927 nm bands, with 

the two most prominent peaks in both materials, were assigned to water. The high 

humidification RH shifted the water peaks to the low-wavelength regions. The band shift 

is attributable to changes in the mobility and binding force of water molecules due to 

changes in the water content (Padalkar et al. 2013).  

The spectral band at 1437 nm is rarely used for qualitative analysis but it may be 

helpful for quantitative purposes (Schwanninger et al. 2011). The increase in bulk density 

decreased the Euclidean distance between the spectra measured in triplicate (Figs. 7c and 

7d). Hence, measuring the NIR spectra at bulk densities of 0.21 g/cm3 or higher is desirable 

for both materials to obtain consistent NIR data. 

Biomass MC Range 
(%) 

Regression Equation Calibration Prediction 

R2 RMSE R2 RMSE 

Logging 
residue 

5.4 to 22.0 log R (㏁) = 8.202 – 0.334 M – 0.012 T 0.941 0.460 0.933 0.505 

Sweet 
sorghum 

7.2 to 62.5 log R (㏁) = 4.340 – 0.092 M + 0.005 T 0.522 1.578 0.483 1.657 

7.2 to 22.1 log R (㏁) = 8.737 – 0.390 M – 0.035 T 0.902 0.669 0.833 0.891 
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Fig. 7. Second-derivative near-infrared spectra of logging residue (a) and sorghum (b) samples 
compressed to a bulk density of 0.32 g/cm3 at 20 °C, and Euclidean distances between spectra 
measured in triplicate at each density of logging residues (c) and sweet sorghum (d) 

 

PCA and outliers 

The clustering results of DBSCAN on the second-derivative NIR spectra of 

biomass materials were projected onto PC score plots (Fig. 8).  

 

 
 

Fig. 8. Pair plots of principal component (PC) scores projected clustering by DBSCAN on near-
infrared data with outliers of logging residues (a) and sweet sorghum (b). The percentage values 
in parentheses of the axis titles are the explained variance of the PC 
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DBSCAN identified four data points from the NIR spectra of logging residues 

measured at 20 °C and two from sweet sorghum at 10 °C as outliers. The generation of 

outliers was attributed to poor scans due to incomplete contact between the NIR probe and 

the sample at low bulk densities. In the score plots, the outliers did not belong to a cluster 

and were spatially located far from the other clusters. Although not exactly consistent with 

the predefined RH conditions, the clusters were formed based on the moisture level. The 

effectiveness of DBSCAN for outlier detection on NIR data was verified by comparing the 

performance of models built with datasets with and without outliers for MC prediction. 

The comparison is discussed in the subsection on the prediction model. 

Figure 9 shows the score plots for the two PCs and the loadings of the first PCs of 

the logging residue and sweet sorghum. In the score plots, data points were arranged for 

each RH condition along PC1 for both materials; the higher the MC, the higher the PC1 

score. In the sweet sorghum score, the data points were grouped by temperature under 

humidification with a specific RH. The loading plots for the first PCs of logging residue 

and sweet sorghum suggest that the 1437 and 1927 nm bands reveal the moisture level of 

the materials. The band at 2087 nm, representing the O–H stretching vibration of cellulose 

and hemicellulose (Schimleck et al. 1997), also had a moderate contribution. 

 

 
 

Fig. 9. Principal component analysis (PCA) score plots on two PCs in second-derivative NIR 
spectra of logging residues (a) and sweet sorghum (b) and loadings of the first PC for both 
materials. Percentages in parentheses (a and b) are scores of explained variance for each PC 
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Prediction models for NIR data 

PLSR models built with the NIR spectra of logging residues and sweet sorghum 

were built for MC prediction. The scatter plots of the MC measured by the oven-drying 

method and the MC predicted by the PLSR model are presented in Fig. 10. Outliers in the 

dataset significantly deteriorated the prediction ability of the model. In the MC prediction 

of a model built with NIR data with outliers, several data points (i.e., outliers) were far 

from the calibration line (Fig. 10a). In contrast, the prediction of a model built with data 

without outliers was similar to that of the calibration, with high R2 and low RMSE values 

(Fig. 10b). These results imply the need for data preprocessing, such as outlier removal in 

building predictive models using NIR data and indicate that DBSCAN is an effective 

technique for detecting outliers in the NIR spectra. 

 
 

 
 

Fig. 10. Scatter plots of prediction results at a temperature of 10°C for moisture prediction models 
built with near-infrared data with outliers (a) and without outliers (b) in sweet sorghum. Notes: R2

C, 
coefficient of determination for calibration; RMSEC, root mean square error of calibration; R2

P, 
coefficient of determination for prediction; RMSEP, root mean square error for prediction 

 

Spectral data processing using the second-derivative transform improved the 

predictions of the PLSR models. In all cases tested, models built with the second-derivative 

NIR spectra achieved higher R2 and lower RMSE values with equal or lower PLS factors 

than those built with the original NIR spectra (Table 6). The best MC prediction 

performance was achieved by models built with the second derivative NIR spectra 

measured at 30 °C for both materials, with R2 and RMSE for logging residue of 0.973 and 

0.981, respectively, and 0.978 and 3.048 for sweet sorghum, respectively. 

The models built using the total NIR data measured at all temperatures also showed 

good prediction performance for both materials. The model built with the total NIR data of 

logging residue achieved an R2 of 0.942 and RMSE of 1.328, which were better than those 

for the model built with data measured at 10 and 20°C. The R2 and RMSE values of the 

model built with the total data of sweet sorghum were 0.958 and 3.681, respectively. These 

results suggest that PLSR models can predict the MC of biomass materials with high 

precision within a temperature range of 10 to 30 °C, regardless of the band shift caused by 
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temperature fluctuations (Thygesen and Lundqvist 2000). The construction of PLSR 

models with NIR spectra is a promising approach for determining the MCs of logging 

residue and sweet sorghum, irrespective of the change in moisture state within the 

temperature fluctuations tested. In addition, the models were established through k-fold 

cross-validation with datasets separated by the bulk density of the materials. This means 

that MC prediction is possible regardless of the bulk density of materials, in contrast to 

electrical resistance-based models. The NIR-based method that does not require material 

compaction is likely more promising for industrial applications as it allows online or inline 

measurements without disrupting the process flow. Because the prediction models 

determine local MCs, multi-point measurements are desirable for a more reliable 

evaluation. Additionally, the model predictions are valid within the MC range tested in this 

study. Hence, data and model updates should be preceded to determine the MC outside the 

range. 

 
Table 6. Performance of PLS Regression Models Built with Near-Infrared 
Spectra for Predicting Moisture Content of Biomass 

Note: PLS, partial least squares; R2, coefficient of determination; RMSE, root mean square error 
 

 

CONCLUSIONS 
 

1. As the loose agglomeration of biomass fragments impedes the continuity of the charge 

transfer path, it was desirable to increase bulk density through material compression 

for precise moisture determination when using the electrical resistance method. 

2. The calculated correction factor reduced the root-mean-squared error (RMSE) of the 

commercial moisture meter for logging residues and sweet sorghum. The electrical 

resistance-based ordinary least squares regression (OLSR) models achieved better 

predictions for logging residues than sweet sorghum, and the performance of the 

models for both materials was valid below the fiber saturation point (FSP). 

Biomass Data NIR Spectrum PLS 
Factor 

Calibration Prediction 

R2 RMSE R2 RMSE 

Logging residue Total Original 8 0.905 1.709 0.875 1.958 

2nd derivative 7 0.959 1.124 0.942 1.328 

10 °C Original 4 0.917 1.469 0.886 1.725 

2nd derivative 4 0.956 1.072 0.923 1.419 

20 °C Original 4 0.873 1.923 0.808 2.364 

2nd derivative 3 0.946 1.252 0.929 1.436 

30 °C Original 6 0.951 1.321 0.927 1.618 

2nd derivative 4 0.984 0.746 0.973 0.981 

Sweet sorghum Total Original 6 0.955 3.786 0.948 4.094 

2nd derivative 6 0.968 3.177 0.958 3.681 

10 °C Original 5 0.972 2.161 0.924 3.578 

2nd derivative 3 0.966 2.405 0.957 3.687 

20 °C Original 7 0.981 2.572 0.969 3.331 

2nd derivative 4 0.985 2.290 0.972 3.182 

30 °C Original 6 0.979 2.981 0.970 3.569 

2nd derivative 6 0.986 2.441 0.978 3.048 
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3. The near infrared (NIR) spectra were stabilized at relatively sparse agglomeration of 

sample fragments, and the NIR-based models could predict the moisture content (MC) 

regardless of the bulk density of the materials. 

4. Data preprocessing by second derivative transformation and outlier removal on the 

NIR data improved the prediction performance of the models. 

 

 

ACKNOWLEDGEMENTS 

 

This research was supported by the Nano Material Technology Development 

Program through the National Research Foundation of Korea (NRF) funded by the 

Ministry of Science and ICT (grant number:2021M3H4A3A02086904). We would like to 

thank Editage (www.editage.co.kr) for English language editing. 

 

 

REFERENCES CITED 
 

Abdi, H. (2010). “Partial least squares regression and projection on latent structure 

regression (PLS regression),” Wiley Interdisciplinary Reviews: Computational 

Statistics 2(1), 97-106. DOI: 10.1002/wics.51 

Ashman, J. M., Jones, J. M., and Williams, A. (2018). “Some characteristics of the self-

heating of the large scale storage of biomass,” Fuel Processing Technology 174, 1-8. 

DOI: 10.1016/j.fuproc.2018.02.004 

Bergman, R. (2010). “Drying and control of moisture content and dimensional changes,” 

in: Wood Handbook: Wood as an Engineering Material, Forest Products Laboratory, 

Forest Service, United States Department of Agriculture, Madison, WI, USA. 

Björngrim, N., Hagman, O., and Wang, X. A. (2016). “Moisture content monitoring of a 

timber footbridge,” BioResources 11(2), 3904-3913. DOI: 

10.15376/biores.11.2.3904-3913 

Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., 

D’Ambrosio, D., and Spencer, T. (2021). Net Zero by 2050: A Road Map for the 

Global Energy Sector, International Energy Agency, Paris, France. 

Brischke, C., Rapp, A. O., and Bayerbach, R. (2008). “Measurement system for long-

term recording of wood moisture content with internal conductively glued 

electrodes,” Building and Environment 43(10), 1566-1574. DOI: 

10.1016/j.buildenv.2007.10.002 

Cardoso, C. R., Oliveira, T. J. P., Santana Junior, J. A., and Ataíde, C. H. (2013). 

“Physical characterization of sweet sorghum bagasse, tobacco residue, soy hull and 

fiber sorghum bagasse particles: Density, particle size and shape distributions,” 

Powder Technology 245, 105-114. DOI: 10.1016/j.powtec.2013.04.029 

Chang, Y. S., Yang, S. Y., Chung, H., Kang, K. Y., Choi, J. W., Choi, I. G., and Yeo, H. 

(2015). “Development of moisture content prediction model for Larix kaempferi 

sawdust using near infrared spectroscopy,” Journal of the Korean Wood Science and 

Technology 43(3), 304-310. DOI: 10.5658/WOOD.2015.43.3.304 

Costa, J. A. V., and De Morais, M. G. (2011). “The role of biochemical engineering in 

the production of biofuels from microalgae,” Bioresource Technology 102(1), 2-9. 



  

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Hwang et al. (2023). “Moisture of biomass feedstocks,” BioResources 18(1), 2064-2082.  2079 

 

DOI: 10.1016/j.biortech.2010.06.014 

Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T., and Chen, E. Y. -X. (2022). 

“Bio-based polymers with performance-advantaged properties,” Nature Reviews 

Materials 7(2), 83-103. DOI: 10.1038/s41578-021-00363-3 

Dietsch, P., Franke, S., Franke, B., Gamper, A., and Winter, S. (2015). “Methods to 

determine wood moisture content and their applicability in monitoring concepts,” 

Journal of Civil Structural Health Monitoring 5(2), 115-127. DOI: 10.1007/s13349-

014-0082-7 

Ekefre, D. E., Mahapatra, A. K., Latimore Jr, M., Bellmer, D. D., Jena, U., Whitehead, G. 

J., and Williams, A. L. (2017). “Evaluation of three cultivars of sweet sorghum as 

feedstocks for ethanol production in the Southeast United States,” Heliyon 3(12), 

article e00490. DOI: 10.1016/j.heliyon.2017.e00490 

Eliasson, L., Anerud, E., Grönlund, Ö., and von Hofsten, H. (2020). “Managing moisture 

content during storage of logging residues at landings – Effects of coverage 

strategies,” Renewable Energy 145, 2510-2515. DOI: 10.1016/j.renene.2019.07.159 

Eom, C. D., Han, Y. J., Chang, Y. S., Park, J. H., Choi, J. W., Choi, I. G., and Yeo, H. 

(2010). “Evaluation of surface moisture content of Liriodendron tulipifera wood in 

the hygroscopic range using NIR spectroscopy,” Journal of the Korean Wood Science 

and Technology 38(6), 526-531. DOI: 10.5658/WOOD.2010.38.6.526 

Erickson, B., Nelson, P., and Winters, P. (2012). “Perspective on opportunities in 

industrial biotechnology in renewable chemicals,” Biotechnology Journal 7(2), 176-

185. DOI: 10.1002/biot.201100069 

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). “A density-based algorithm for 

discovering clusters in large spatial databases with noise,” in: Proceedings of the 

Second International Conference on Knowledge Discovery and Data Mining, 

Portland, OR, USA, 2–4 August 1996. 

Fajardo, A. R., Pereira, A. G. B., and Muniz, E. C. (2015). “Hydrogels nanocomposites 

based on crystals, whiskers and fibrils derived from biopolymers,” in: Eco-Friendly 

Polymer Nanocomposites. Springer, New Delhi, India. DOI: 10.1007/978-81-322-

2473-0_2 

Filbakk, T., Høibø, O., and Nurmi, J. (2011). “Modelling natural drying efficiency in 

covered and uncovered piles of whole broadleaf trees for energy use,” Biomass and 

Bioenergy 35(1), 454-463. DOI: 10.1016/j.biombioe.2010.09.003 

Gejdoš, M., and Lieskovský, M. (2021). “Wood chip storage in small scale piles as a tool 

to eliminate selected risks,” Forests 12(3), article 289. DOI: 10.3390/f12030289 

Gillis, C. M., Stephens, W. C., and Peralta, P. N. (2001). “Moisture meter correction 

factors for four Brazilian wood species,” Forest Products Journal 51(4). 83-86. 

Govett, R., Mace, T., and Bowe, S. (2010). “A practical guide for the determination of 

moisture content of woody biomass,” International Tropical Timber Organization, 

(http://www.tropicaltimber.info/wp-content/uploads/2015/06/A-Practical-Guide-for-

Determination-of-Moisture-Content-of-Woody-Biomass-2010GovettR.University-of-

WisconsinStevens-Point20-pp.pdf.) Accessed 11 Jan 2023. 

Horikawa, Y. (2017). “Assessment of cellulose structural variety from different origins 

using near infrared spectroscopy,” Cellulose 24(12), 5313-5325. DOI: 

10.1007/s10570-017-1518-0 

Hwang, S. W, Horikawa, Y., Lee, W. H., Sugiyama, J. (2016). “Identification of Pinus 

species related to historic architecture in Korea using NIR chemometric approaches,” 



  

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Hwang et al. (2023). “Moisture of biomass feedstocks,” BioResources 18(1), 2064-2082.  2080 

 

Journal Wood Science 62(2), 156-167. DOI: 10.1007/s10086-016-1540-0 

Hwang, S. W., Hwang, S. Y., Lee, T., Ahn, K. S., Pang, S. J., Park, J., Oh, J. K., Kwak, 

H. W., and Yeo, H. (2021a). “Investigation of electrical characteristics using various 

electrodes for evaluating the moisture content in wood,” BioResources 16(4), 7040-

7055. DOI: 10.15376/biores.16.4.7040-7055 

Hwang, S. W., Hwang, U. T., Jo, K., Lee, T., Park, J., Kim, J. C., Kwak, H. W., Choi, I. 

G., and Yeo, H. (2021b). “NIR-chemometric approaches for evaluating carbonization 

characteristics of hydrothermally carbonized lignin. Scientific Reports 11(1), article 

16979. DOI: 10.1038/s41598-021-96461-x 

Hwang, U. T., Bae, J., Lee, T., Hwang, S. Y., Kim, J. C., Park, J., Choi, I. G., Kwak, H. 

W., Hwang, S. W., and Yeo, H. (2021c). “Analysis of carbonization behavior of 

hydrochar produced by hydrothermal carbonization of lignin and development of a 

prediction model for carbonization degree using near-infrared spectroscopy,” Journal 

of the Korean Wood Science and Technology 49(3), 213-225. DOI: 

10.5658/WOOD.2021.49.3.213 

Hwang, S. W., Chung, H., Lee, T., Ahn, K. S., Pang, S. J., Kim, J. Y., Bang, J., Jung, M., 

Oh, J. K., Kwak, H. W., and Yeo, H. (2023). “Dimensional behavior of nail-

laminated timber-concrete composite caused by changes in ambient air, and 

correlation among temperature, relative humidity, and strain,” BioResources 18(1), 

1637-1652. DOI: 10.15376/biores.18.1.1637-1652 

Inagaki, T., Siesler, H. W., Mitsui, K., and Tsuchikawa, S. (2010). “Difference of the 

crystal structure of cellulose in wood after hydrothermal and aging degradation: A 

NIR spectroscopy and XRD study,” Biomacromolecules 11(9), 2300-2305. DOI: 

10.1021/bm100403y 

Jensen, P. D., Hartmann, H., Böhm, T., Temmerman, M., Rabier, F., and Morsing, M. 

(2006). “Moisture content determination in solid biofuels by dielectric and NIR 

reflection methods,” Biomass and Bioenergy 30(11), 935-943. DOI: 

10.1016/j.biombioe.2006.06.005 

Julrat, S., and Trabelsi, S. (2019). “In-line microwave reflection measurement technique 

for determining moisture content of biomass material,” Biosystems Engineering 188, 

24-30. DOI: 10.1016/j.biosystemseng.2019.09.013 

Kalyani, P., and Anitha, A. (2013). “Biomass carbon & its prospects in electrochemical 

energy systems,” International Journal of Hydrogen Energy 38(10), 4034-4045. DOI: 

10.1016/j.ijhydene.2013.01.048 

Krzyżaniak, M., Stolarski, M. J., Niksa, D., Tworkowski, J., and Szczukowski, S. (2016). 

“Effect of storage methods on willow chips quality,” Biomass and Bioenergy 92, 61-

69. DOI: 10.1016/j.biombioe.2016.06.007 

Lahtela, V., Hämäläinen, K., and Kärki, T. (2014). “The effects of preservatives on the 

properties of wood after modification – A review,” Baltic forestry 20(1), 189-203. 

Langholtz, M. H., Stokes, B. J., and Eaton, L. M. (2016). 2016 Billion-Ton Report: 

Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1 Economic 

Availability of Feedstock, Oak Ridge National Laboratory, Oak Ridge, TN, USA. 

DOI: 10.2172/1271651 

McKendry, P. (2002). “Energy production from biomass (part 1): Overview of biomass,” 

Bioresource Technology 83(1), 37-46. DOI: 10.1016/S0960-8524(01)00118-3 

 

 



  

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Hwang et al. (2023). “Moisture of biomass feedstocks,” BioResources 18(1), 2064-2082.  2081 

 

Mitsui, K., Inagaki, T., and Tsuchikawa, S. (2008). “Monitoring of hydroxyl groups in 

wood during heat treatment using NIR spectroscopy,” Biomacromolecules 9(1), 286-

288. DOI: 10.1021/bm7008069 

Molino, A., Chianese, S., and Musmarra, D. (2016). “Biomass gasification technology: 

The state of the art overview,” Journal of Energy Chemistry 25(1), 10-25. DOI: 

10.1016/j.jechem.2015.11.005 

Padalkar, M. V., Spencer, R. G., and Pleshko, N. (2013). “Near infrared spectroscopic 

evaluation of water in hyaline cartilage,” Annals of Biomedical Engineering 41(11), 

2426-2436. DOI: 10.1007/s10439-013-0844-0 

Park, S. A., Jeon, H., Kim, H., Shin, S. H., Choy, S., Hwang, D. S., Koo, J. M., Jegal, J., 

Hwang, S. Y., Park, J., and Oh, D. X. (2019). “Sustainable and recyclable super 

engineering thermoplastic from biorenewable monomer,” Nature Communications 

10(1), article 2601. DOI: 10.1038/s41467-019-10582-6 

Qian, E. W. (2014) “Pretreatment and saccharification of lignocellulosic biomass,” in: 

Research Approaches to Sustainable Biomass Systems, Academic Press, Cambridge, 

MA, USA. 

Samuelsson, R., Burvall, J., and Jirjis, R. (2006). “Comparison of different methods for 

the determination of moisture content in biomass,” Biomass and Bioenergy 30(11), 

929-934. DOI: 10.1016/j.biombioe.2006.06.004 

Savitzky, A., and Golay, M. J. E. (1964). “Smoothing and differentiation of data by 

simplified least squares procedures,” Analytical Chemistry 36(8), 1627-1639. DOI: 

10.1021/ac60214a047 

Schimleck, L. R., Wright, P. J., Michell, A. J., and Wallis, A. A. (1997). “Near-infrared 

spectra and chemical compositions of E. globulus and E. nitens plantation woods,” 

Appita Journal 50(1), 40-46. 

Schwanninger, M., Rodrigues, J. C., and Fackler, K. (2011). “A review of band 

assignments in near infrared spectra of wood and wood components,” Journal of 

Near Infrared Spectroscopy 19(5), 287-308. DOI: 10.1255/jnirs.955 

Suchomel, J., Belanová, K., Gejdoš, M., Němec, M., Danihelová, A., and Mašková, Z. 

(2014). “Analysis of fungi in wood chip storage piles,” BioResources 9(3), 4410-

4420. DOI: 10.15376/biores.9.3.4410-4420 

Swinton, S. M., Dulys, F., and Klammer, S. S. H. (2021). “Why biomass residue is not as 

plentiful as it looks: case study on economic supply of logging residues,” Applied 

Economic Perspectives and Policy 43(3), 1003-1025. DOI: 10.1002/aepp.13067 

Takagaki, A., Nishimura, S., and Ebitani, K. (2012). “Catalytic transformations of 

biomass-derived materials into value-added chemicals,” Catalysis Surveys from Asia 

16(3), 164-182. DOI: 10.1007/s10563-012-9142-3 

Tang, J. P., Lam, H. L., Aziz, M. K. A., and Morad, N. A. (2014). “Biomass 

characteristics index: A numerical approach in palm bio-energy estimation,” 

Computer Aided Chemical Engineering 33, 1093-1098. DOI: 10.1016/B978-0-444-

63455-9.50017-9 

Thygesen, L. G., and Lundqvist, S. O. (2000). “NIR measurement of moisture content in 

wood under unstable temperature conditions. Part 1. Thermal effects in near infrared 

spectra of wood,” Journal of Near Infrared Spectroscopy 8(3), 183-189. DOI: 

10.1255/jnirs.277 

United Nations. (2020). 2050 Carbon Neutral Strategy of the Republic of Korea. 

https://unfccc.int/documents/267683. Accessed 18 Aug 2022 



  

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Hwang et al. (2023). “Moisture of biomass feedstocks,” BioResources 18(1), 2064-2082.  2082 

 

Via, B. K., Zhou, C., Acquah, G., Jiang, W., and Eckhardt, L. (2014). “Near infrared 

spectroscopy calibration for wood chemistry: Which chemometric technique is best 

for prediction and interpretation?” Sensors 14(8), 13532-13547. DOI: 

10.3390/s140813532 

Yang, S. Y., Han, Y., Park, J. H., Chung, H., Eom, C. D., and Yeo, H. (2015). “Moisture 

content prediction model development for major domestic wood species using near 

infrared spectroscopy,” Journal of the Korean Wood Science and Technology 43(3), 

311-319. DOI: 10.5658/WOOD.2015.43.3.311 

Zhang, M. H., Luypaert, J., Fernández Pierna, J. A., Xu, Q. S., and Massart, D. L. (2004). 

“Determination of total antioxidant capacity in green tea by near-infrared 

spectroscopy and multivariate calibration,” Talanta 62(1), 25-35. DOI: 

10.1016/S0039-9140(03)00397-7 

 

Article submitted: December 8, 2022; Peer review completed: January 7, 2023; Revised 

version received and accepted: January 20, 2023; Published: January 30, 2023. 

DOI: 10.15376/biores.18.1.2064-2082 


