
 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Neitzel et al. (2023). “Dialdehyde starch adhesive,” BioResources 18(1), 2155-2171.  2155 

 

A Dialdehyde Starch-Based Adhesive For Medium-
Density Fiberboards   
 

Nicolas Neitzel,a Reza Hosseinpourpia,a,b,* and Stergios Adamopoulos c,* 

 
Bio-based adhesives have gained considerable attention in the last years 
as more sustainable and healthier alternatives to the formaldehyde-based 
adhesives used today in wood-based panel manufacturing. In this study, 
dialdehyde starch (DAS) with various aldehyde contents was prepared by 
using sodium metaperiodate as an oxidizing agent. Characterizations 
were performed by employing Fourier-transform infrared spectroscopy, 
nuclear magnetic resonance, and thermal stability analysis. Different 
adhesive compositions were used for making medium-density fiberboard 
(MDF) panels. They were based on DAS (12 wt% based on fiber), 
emulsifiable diphenylmethane diisocyanate (eMDI, 2-4 wt% based on 
DAS), and microfibrillated cellulose (MFC, 0.5-1.0 wt% based on DAS). 
Fibers and the adhesive components were mixed with a combination of 
dry mixing and wet spraying. The physical and mechanical properties of 
MDF panels bonded with different DAS-based adhesives were compared 
with those of melamine urea-formaldehyde (MUF) adhesive and sole 
eMDI. The results showed that the MDF panels made with DAS-MFC-
eMDI of 99.52% bio-based content showed comparable properties to 
standard panels with a commercial MUF adhesive. It was implied that DAS 
in the presence of small amount of eMDI can create strong bonds with 
wood fibers, while an additional positive effect on bonding was due to the 
contact surface enlargement of MFC.  
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INTRODUCTION 
 

Urea-formaldehyde (UF), phenol-formaldehyde (PF), melamine-formaldehyde 

(MF), or their combinations, are the most common adhesives used today for the production 

of wood-based panels (Huang et al. 2022). Every year, the wood industry uses 

approximately 11 million tons of these adhesives worldwide (Pizzi et al. 2020). 

Formaldehyde, however, is harmful at higher concentrations and is classified as a "probable 

human carcinogen" (Chrobak et al. 2022). More restrictive regulations have been enacted 

during the last years on the emission of free formaldehyde from wood-based products. 

Although the formaldehyde emissions from wood panels have been reduced considerably 

by using formaldehyde scavengers, the development of formaldehyde-free wood adhesives 

from renewable polymers such as chitosan, lignin, soy protein, tannin, and starch has 

gained much attention recently (Ji and Guo 2018; Frihart and Lorenz 2019; Xi et al. 2020; 
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Chen et al. 2020; Bacigalupe and Escobar 2021; Janceva et al. 2022; Xi et al. 2022). 

Starch, as the main reserve and energy storage source of plants, is widely available 

in agricultural products. It is extensively used in many industrial sectors, such as food, 

textile, pharmaceutical, paper, and biofuel. However, the use of starch in the wood industry 

presents limitations, mainly related to viscosity issues, storage stability, and bonding 

capacity (Hosseinpourpia et al. 2022). Chemical modification of starch polymer 

(crosslinking, acid hydrolysis, oxidation, etherification, esterification, cationization, and 

polymer grafting) has been employed for improving the starch properties and make it a 

competitive biopolymer for wood bonding (Hemmilä et al. 2017; Hosseinpourpia et al. 

2018; Chen et al. 2021; Hosseinpourpia et al. 2021, 2022). 

Oxidation of starch is a well-known path to convert the hydroxyl groups in the 

glycosidic ring into carbonyl and carboxyl groups (Bobbitt 1956; Vanier et al. 2017). 

Oxidized starch has a high activity and can participate in various further reactions (Wu et 

al. 2009; Zhang et al. 2015). A high-performance oxidized starch wood adhesive was 

prepared previously by Zhang and co-workers (Zhang et al. 2015), who used oxidized 

starch as a reactive backbone polymer for grafting an olefin monomer together with a 

silane-based crosslinker. The authors quoted a shear bond strength of 7.88 MPa in a dry 

state and 4.09 MPa in a wet state. Fiberboard panels prepared with oxidized starch in 

combination with polymeric diphenylmethane diisocyanate showed almost comparable 

mechanical properties as those with UF adhesive (Lubis et al. 2020). 

When efficient oxidizing agents such as periodate are used, the linkages between 

C2 and C3 in the glycosidic units of starch are cleaved and two aldehyde groups are formed 

(Wongsagon et al. 2005; Yu et al. 2010; Codou et al. 2015; Ziegler-Borowska et al. 2018). 

The obtained starch, so-called dialdehyde starch (DAS), has high reactivity and provides 

strong bonds with major applications in the paper and textile industries as a finishing agent 

(Sharma et al. 2020). The only study on DAS-based wood adhesives was made by Ye et 

al. (2018) and colleagues, who prepared particleboard panels with corn stalks. The authors 

claimed that the moduli of elasticity and rupture, as well as the water resistance, initially 

increased by increasing the DAS concentration from 0% to 20% and pressing temperature, 

and then decreased. However, more studies need to be conducted to accurately compare 

the DAS adhesive performance since neither control panels were prepared nor internal 

bond strength values were reported. In addition, the density of the corn stalk panels ranged 

from 0.9 to 1.2 g.cm-3, which is much higher than the density of commercially available 

particleboards in the European market of about 0.7 g.cm-3.  

Previous studies suggest that adhesive formulations based on DAS show good 

potential for wood bonding, while their improvement is necessary. Microfibrillated 

cellulose (MFC) has been used recently as a reinforcement agent in wood adhesives 

because of its high surface area, stiffness, and strength together with a relatively low 

density (Guigo et al. 2014). The partial replacement of UF and melamine urea-

formaldehyde (MUF) adhesive by MFC in single-layer particleboards showed a significant 

increase in internal bond strength, with almost no change in water related properties and 

static bending behaviour of panels (Karagiannidis et al. 2020). The cited authors showed 

that a UF adhesive with 5%, 10%, and 20% MFC for plywood panels led to a significant 

increase in static bending properties. However, a reduced formaldehyde content could not 

be confirmed even at the 20% MFC share. 

This study had a dual scope. The first was to prepare different DAS variants with 

various aldehyde contents and characterize them for their chemical and thermal properties 

by employing Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic 
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resonance (NMR), and thermogravimetric analysis (TGA). The second was to select an 

appropriate DAS polymer for preparing bio-based adhesives for manufacturing medium-

density fiberboard (MDF) panels. MFC served as a reinforcement agent, and an 

emulsifiable diphenylmethane diisocyanate (eMDI) was used as a crosslinker. MDF panels 

were tested according to European Standards (EN). 

 

 

EXPERIMENTAL 
 
Materials  

Native wheat starch (NWS) was kindly provided by Lantmännen AB (Stockholm, 

Sweden), a cooperative agricultural leader in Northern Europe. Sodium metaperiodate 

(NaIO4, ≥99.0%), sodium hydroxide (NaOH, ≥98 %), phenolphthalein indicator (0.5 

wt.%), acetone (≥99%), and hydrochloric acid (≥37%) were purchased from Sigma-

Aldrich (Stockholm, Sweden). Ethanol (≥99.5%) was ordered from VWR (Stockholm, 

Sweden). 

Microfibrillated cellulose (MFC) with a solid content of 1.9% was kindly supplied 

by FiberLean Technologies GmbH (Neuss, Germany). Fiberboard grade emulsifiable 

diphenylmethane diisocyanate (eMDI) was kindly delivered by Huntsman International 

LLC (Salt Lake City, USA). Thermo mechanical pulp (TMP) fibers were purchased from 

the Institut für Holztechnologie Dresden (IHD), Germany. Industrial grade melamine urea-

formaldehyde (MUF) and ammonium nitrate, as a hardener, with respective solid contents 

of 65% and 50%, were supplied by IKEA Industry AB (Hultsfred, Sweden).  

  

Methods  
Synthesis and characterization of dialdehyde starch (DAS) 

A 5% of oven-dried native wheat starch NWS (40 °C, 48h, vacuum oven) was 

initially dispersed in distilled water using a magnetic stirrer. Then, NaIO4 (with 1:1.65 w/w 

wheat starch:NaIO4) was added to the mixture. The reaction bottle was wrapped with 

several layers of aluminium foil to avoid a light-induced decomposition of NaIO4, as 

described previously (Zhang et al. 2019). The reaction was then carried out at 35 °C for 

4 h (DAS-I) and 24 h (DAS-II). The reaction was quenched by adding acetone and 

centrifuged for 5 min at 5000 rpm. The precipitates were then further washed with water 

and centrifuged at 5000 rpm, first for 5 min and then for 10 min, which as followed by 

washing with ethanol and centrifugation for 10 min at 5000 rpm to remove the remaining 

unreacted oxidative agents. The oxidized starches DAS-I and DAS-II were dried in a 

vacuum oven at 35 °C for 48 h. The obtained dried samples were ground to a particle size 

of 0.2 mm using a hammer mill before further analysis. 

The aldehyde content of starch polymers before and after oxidation was determined 

according to Zhang et al. (2011). 

The chemical structure of starch polymers was analyzed by Fourier-transform 

infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The FTIR analysis 

was performed using a PerkinElmer Alpha FTIR Spectrometer, Bruker (Karlsruhe, 

Germany), with a versatile high-throughput crystal and wavelength ranging from 4000 to 

600 cm-1 at room temperature, accumulating 32 scans with a resolution of 4 cm-1.  

The NMR spectra of oxidized starches were obtained on a Bruker Avance III 600 

MHz spectrometer using a double-resonance 4 mm (1H&19F)/(15N-31P) CP-MAS probe and 

4 mm ZrO2 rotors. The 13C cross-polarization (CP) magic angle spinning (MAS) NMR 
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spectra were recorded at a spinning frequency of 12 KHz, using a contact time of 2 ms, a 

repetition delay of 10 s, and 4K scans. The experiments were performed at 298 K. 

The thermal stability of oxidized starches was analyzed by thermogravimetric 

measurements using a STARe System TGA 2 (Mettler-Toledo AG, Schwerzenbach, 

Switzerland). Measurements were performed in a dry nitrogen flow of 40 mL/min by 

increasing the temperature from 25 °C to 650 °C with a heat rate of 10 °C per minute. 

 

Production and evaluation of MDF panels 

DAS-I was selected for the production of MDF panels since it had comparable 

aldehyde content to DAS-II and a shorter oxidation process.  

MDF panels with a target density of 710 kg.m-3 were prepared by following typical 

laboratory procedures. Oven-dried TMP fibers (approximately 2.8% moisture content) 

were mixed with DAS-I using a dry mixing process in a glue blender (Lödige FM 130D, 

Paderborn, Germany) for 10 min. The other adhesive components, such as eMDI, MFC, 

and water were then wet-sprayed to the fiber-starch mixture and blended for a further 2 

min. For comparison, control panels were manufactured with 12% (w/w dry resin to dry 

fiber) MUF (65% solid content) and 4% (w/w dry to dry resin) ammonium nitrate (50% 

solid content) as a hardener. The adhesive compositions for the MDF panels are 

summarized in Table 1. Fiber mats, measuring 450 x 450 mm2, were formed manually and 

hot-pressed at 200 °C with a pressure level of 200 kg.cm-1 using an AKE press 

(Mariannelund, Sweden) to a target thickness of 8 mm. The pressing speed was set to 60 

s.mm-1 to avoid panel blasting, following a stepwise process: i) the pressure was halved to 

100 kg.cm-1 after 160 sec; ii) the pressure was reduced to zero for a further 160 sec; iii) the 

hot press was held closed with no pressure for another 160 sec; and iv) the press was 

opened. After hot pressing, all MDF panels were cooled down at room temperature, and 

then they were cut into various test pieces according to the respective EN standards for 

testing physical and mechanical properties. Prior to physical and mechanical evaluations, 

all samples were conditioned in a climate chamber at 20 °C/65% relative humidity (RH) 

for 14 days.   

 

Table 1. Production Parameters of MDF Panels using Different DAS-based 
Adhesive Systems 

* hardener to dry resin 4% 
 

  

Panel 
Code 

MUF* DAS I eMDI MFC Water 

based on fiber 
(%) 

based on fiber 
(%) 

based on DAS 
(%) 

based on DAS 
(%) 

(g) 

Control1 12 -         - - - 

Control2 - - 2 - 400 

Control3 - - 4 - 400 

A1 - 12 - - 400 

A2 - 12 - 0.5 400 

A3 - 12 - 1 400 

B1 - 12 2 - 400 

B2 - 12 2 0.5 400 

B3 - 12 2 1 400 

C1 - 12 4 - 400 

C2 - 12 4 0.5 400 

C3 - 12 4 1 400 
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The physical and mechanical properties of MDF panels prepared with DAS-based 

adhesive systems were evaluated according to respective European Standards (EN). The 

bending properties, moduli of elasticity (MOE) and rupture (MOR), were tested with an 

MTS-10kN EXCEED Model E43 (Minnesota, USA) testing machine on rectangular 

samples of 210 × 50 mm2 following EN 310:1993 (European Committee for 

Standardization, 1993c) (n = 4). Internal bond (IB) strength was determined on square 

samples of 50 × 50 mm2 according to EN 319:1993 (European Committee for 

Standardization, 1993b) (n = 10). The vertical density profile of all IB samples were 

analyzed before the destructive test with a GreCon DAX 6000 (Alfeld, Germany), and the 

average results were reported. The X-ray-based scanning of the samples reflects the density 

alteration throughout the panel thickness. The thickness swelling (TS) and water uptake 

(WA) of the MDF panels were evaluated on 50 x 50 mm2 square samples immersed in 

water at room temperature for 2 and 24 h according to EN 317:1993 (European Committee 

for Standardization, 1993a) (n = 10). 

 

Statistical analysis 

 One-way analysis of variance (ANOVA) was performed by means of Origin Lab 

software (2021b SR2, Northampton, USA). The statistical differences between the values 

were evaluated by Tukey’s honestly significant difference at an error probability of α = 

0.05. 

 

 
RESULTS AND DISCUSSION 
 
Characterization of DAS 

The oxidation of starch with sodium metaperiodate (NaIO4) cleaves the α-(1→4)-

glycosidic linkages of the C2-C3 and converts the hydroxyl groups into aldehyde groups 

(Fig. 1). 

 

 
Fig. 1. The reaction equation of oxidation of starch with NaIO4 

 

The aldehyde group content of unmodified and modified wheat starch was 

determined with the alkaline titration method (Zhang et al. 2011). A negligible aldehyde 

content of 1% was detected in native wheat starch (NWS), which could be related to 

measurement tolerances. The periodate oxidation of NWS substantially increased the 

aldehyde content, which ranged from 78.1 to 83.3%, depending on the oxidation 

parameters. Similar results were reported previously for the periodate oxidation of 

microcrystalline cellulose (Zhang et al. 2019). However, the differences in the aldehyde 

content between the DAS-I and DAS-II samples were statistically insignificant. A high 

degree of oxidation destroys the starch granules and turns them into a more crosslinked 

structure (Yu et al. 2010), which might be less desirable for adhesive applications. 
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Table 2. Oxidation Parameters and Aldehyde Group Content of Native Wheat 
Starch (NWS) and Dialdehyde Starch (DAS) 

Mean ± SD values in the same column followed by different superscript letters are significantly 
different (p≤0.05) 

 

The changes in the chemical structure of NWS due to periodate oxidation were 

analyzed by means of FTIR and 13C-NMR spectroscopies. The FTIR spectra (Fig. 2a) 

illustrated three characteristic peaks in NWS at 990, 1075, and 1150 cm-1 that are attributed 

to C-O bond stretching (Zhang et al. 2013; Xiong et al. 2017). These peaks disappeared 

after oxidation in the DAS samples. The absorption peaks at 1640 and 3290 cm-1 could be 

related to the trapped moisture content in the non-crystalline region of the starch structure 

or intermolecular hydrogen bonds (Xiong et al. 2017). The peak at 2960 cm-1 is assigned 

to the stretching of CH groups (Hosseinpourpia et al. 2021). However, after oxidation, this 

peak was slightly shifted to 2880 cm-1 in the bands between 2800 and 3000 cm-1. The DAS 

samples illustrated a new stretching vibration at 1740 cm-1 that is related to the carbonyl 

groups (Yu et al. 2010) and peaks at 875 cm-1, which indicates the hemiacetal bonds 

between the dialdehyde groups and their adjacent hydroxyl groups. A typical band residing 

in the spectra of starch and its derivative is the absorption at 1640.9 cm-1, which is attributed 

to H2O bending vibration (Kilicarislan Ozkan et al. 2019). 

 

 

Fig. 2. FTIR (a) and 13C-NMR (b) of Native Wheat Starch (NWS) and Dialdehyde Starch (DAS) 

 

Figure 2b illustrates the 13C-NMR analysis of NWS and DAS samples. The signals 

at 62.0 and 72.2 ppm were assigned to the C4 and C1, 3, 6. Carbons C2 and C5 were 

respectively assigned to 81.9 and 101.3 ppm (Hosseinpourpia et al. 2021). After the 

periodate oxidation, the peaks of DAS became broader. With an increasing degree of 

Sample code Temperature (°C) Time (h) Aldehyde Content (%) 

NWS - - 1.00 ± 0.16a 

DAS-I 35 4 78.09 ± 3.97b 

DAS-II 35 24 83.33 ± 5.13b 
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oxidation, the peaks of DAS progressively overlapped and became less sharp. The 

broadness of the carbon peaks is a demonstration of the self-associating behavior of the 

DAS macromolecule (Koshani et al. 2021). The appearance of new peaks at 93 and 95 ppm 

in DAS samples could be related to the formation of aldehyde groups at C2 and C5 of the 

anhydroglucose units. The absence of peaks between 190 and 200 ppm indicates that the 

aldehydes generated were present in solution in their hemiacetal form rather than as -CHO 

groups (Chen et al. 2021). The FTIR and 13C-NMR results confirmed the changes in the 

chemical structure of NWS polymers by periodate oxidation. 

The thermal degradation performance of NWS and DAS samples were evaluated 

by thermogravimetric (TG) and first derivative thermogravimetric (DTG) analyses (Fig. 

3). The NWS and DAS began to lose weight at temperatures below 150 °C, which is due 

to the evaporation of bound water (Hosseinpourpia et al. 2021). As indicated by the DTG 

curve, an apparent mass loss was observed in the NWS by losing about 29.5% of initial 

weight at 325 °C, while the DAS samples exhibited more gradual decomposition behavior 

with maximum degradation peaks at 248 °C and a shoulder-like peak at 305 °C. At 248 °C, 

the DAS samples had lost around 22% of their initial weight. The lower thermal stability 

of DAS could be attributed to the average molecular weight reduction and the lower 

thermal stability of the opened anhydroglucose units during dialdehyde group formations 

(Zhang et al. 2011). However, since a temperature of 220 °C is usually not exceeded during 

the production of MDF panels, the lower thermal stability does not affect the process.  

 

 
 

Fig. 3. TGA (a) and DTG (b) Curves of Native Wheat Starch (NWS) and Dialdehyde Starch (DAS) 
Samples 

 

Due to the marginal differences between the DAS samples, DAS-I was selected as 

having a shorter oxidation process than DAS-II for further application in adhesive systems 

for MDF panel manufacturing.  

 

Performance of MDF panels prepared with DAS-based adhesives 

After hot-pressing, the MDF panels with DAS-based adhesives had a very 

homogeneous appearance across all samples (Fig. 4). 
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The average density of the MDF panels ranged from 656 to 688 kg.m-³ (Fig. 5). The 

vertical density profiles showed a “U” shape in the panels with DAS-based adhesive 

systems as well in eMDI bonded panels. As explained previously, this could be related to 

the initial mat moisture content press cycle, which results in higher density on the panel 

edges. During the hot-pressing, the moisture departure from the fibers at the core of the 

board structure is slower than at the edges due to the uneven consolidation pressure at the 

edges and core parts, leading to higher density in the edges than in the core part (Diop et 

al. 2017). The control panels with MUF adhesive (Fig. 5a) illustrated a gradual density 

increment on the edges and lower density differences between the edges and the core parts 

as compared with the panels manufactured with DAS-based and eMDI adhesives. This 

might be explained by the lower mat moisture content of MUF panels than those with the 

other adhesive systems.  

 

 
 

Fig. 4. MDF Samples with Homogeneous Appearance. See Table 1 for Panel Codes  

 

 
 

Fig. 5. Density Profiles of DAS-eMDI-MFC bonded MDF Panels. See Table 1 for Panel Codes 
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The moduli of rupture (MOR) and elasticity (MOE) of MDF panels as a function 

of various adhesive formulations are shown in Figs. 6a and b. The control panels with MUF 

adhesive (Control1) exhibited respective MOR and MOE values of 23.9 and 2070 Nmm-2, 

while the other control panels with 2 and 4% eMDI (Control2 and Control3) exhibited 

considerably lower MOR and MOE values, i.e., the MOR values of  Control2 and Control3 

were 15.1 and 15.0 Nmm-2, and MOE values were 2020 and 2100 Nmm-2, respectively. 

This should be due to the very low adhesive content of less than 1% wt in those panels.  

 

 
Fig. 6. MOR (a) and MOE (b) of the MDF Panels bonded with DAS-based Adhesive Systems in 
Comparison to Control Panels with MUF or eMDI Adhesives. Ratios (wt%) of DAS, eMDI and MFC 
are given in the table below the figures. Values in the same column followed by different superscript 
letters were significantly different (p≤0.05). 

 

Likewise, the MDF panels prepared with sole DAS and a combination of DAS and 

MFC exhibited low bending properties, i.e., the lowest MOR and MOE values obtained in 

the panels with DAS and 1% MFC (A3). The bending properties slightly decreased with 

increasing of the MFC content to DAS; however, the differences were not statistically 

significant. The bending properties were however considerably improved by adding the 

eMDI crosslinker, where the panels contained DAS, 1% MFC and 4% eMDI (C3) and 
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exhibited the maximum MOR and MOE values of 30.4 and 3110 N.mm-2, respectively. In 

general, the bending properties of the panels increased by increasing the MFC content in 

the presence of eMDI crosslinker, and except for the C3 panels, the mean values were 

statistically insignificant. When referring to EN 622-3:2004 (European Committee for 

Standardization, 2004) standard, all MDF panels, except for Control2 and Control3, 

surpassed the respective minimum MOR of 15 Nmm-2 for general interior applications.   

The internal bond (IB) strengths of the MDF samples are presented in Fig. 7. The 

MDF panels bonded with sole eMDI crosslinker (Control2 and Control3) showed the 

lowest IB values of 0.14 and 0.13 N. mm-2. Obviously, the small amount of eMDI was not 

sufficient to induce higher internal bond strength due to its relation to a large surface area 

of wood fibers in MDF. Like bending properties, the IB strength of the panels that 

contained eMDI crosslinker increased with increasing the MFC loading level. The 

maximum IB value of 0.92 N. mm-2 was shown by the panels prepared with DAS, 1%-

MFC and 4%-eMDI (C3), which was identical to the IB of 0.91 N. mm-2 in the control 

panels with MUF (Control1). The minimum IB level for MDF for general interior purposes 

was 0.10 Nmm-2 (EN 622-3:2004). The requirement was met by all test panels. Even the 

higher requirement for MDF for use in wet areas and for load-bearing purposes of 0.40 

Nmm-2 was achieved by several laboratory MDF panels. 

 

 
 

Fig. 7. Internal Bond (IB) Strength of MDF Panels bonded with DAS-based Adhesive Systems in 
Comparison to Control Panels with MUF or eMDI Adhesives. Ratios (wt%) of DAS, eMDI and MFC 
are given in the table below the figures. Values in the same column followed by different superscript 
letters were significantly different (p≤0.05). 

 

The bonding mechanism in the MDF panels using DAS-based adhesive systems 

might be explained by different assumptions, as explained in Fig. 8.  

In the formulations containing DAS and MFC (A1, A2, and A3), the bonding was 

likely to occur through the formation of hemi- or full-acetal linkages between aldehyde 

groups on DAS and hydroxyl groups of wood fibers and MFC (Fig. 8ζ, ε) (Ye et al. 2018). 

The application of MFC was supposed to improve the bonding between the fibers mainly 

due to its high aspect ratio. This effect, together with the acetal linkages may however be 

influenced by the thermo-chemical reactions during panel pressing. Under hot-pressing 

conditions and in the presence of water, hydronium ions (H3O+) could be formed in situ by 

water autohydrolysis. This, together with acetic acid from acetyl substituents of 
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hemicelluloses in wood fiber, may hydrolyze the acetal linkages and result in strength 

reduction of the panels (Mussatto 2016; Diop et al. 2017). Moreover, similar to other 

dialdehyde molecules, such as glyoxal, the two aldehyde groups in DAS are very close to 

each other, and that could possibly hinder the mobility of the crosslinked products during 

load application (Rojas and Azevedo 2011; Hosseinpourpia et al. 2019). 

The substantial improvement in the panel properties by adding small amounts of 

eMDI could be due to the formation of polyurethane (Fig. 8γ) and polyurea linkages 

between wood fibers, DAS, MFC, and eMDI. Moreover, isocyanate-based crosslinkers are 

generally known for their outstanding bonding strength in wood-based panels 

(Papadopoulos et al. 2002). The NCO groups in eMDI have higher reactivity than the COH 

(in DAS) and OH (in wood fibers and MFC) groups (Sonnenschein 2021) and thus could 

form a stable polyurethane bond on the surface of the fibers (Fig. 8δ). In contrast, polyurea 

linkages likely occurred in the panels made with sole eMDI (Fig. 8θ). The NCO groups 

may also react with water and form amine groups (Fig. 8α). As has been seen in other 

adhesive systems, the addition of MFC also improved the bonding by building strong three-

dimensional networks mainly due to its high aspect ratio and mechanical characteristics 

(Diop et al. 2017). Heon Kwon et al. (2015) demonstrated that a share of 3% MFC in an 

industrial UF adhesive enhanced the tensile shear strength of adhesive bond lines because 

the MFC accumulated in the glue line and built a three-dimensional network. At the same 

time, the addition of MFC reduced the brittleness of the UF adhesive. Rigg-Aguilar et al. 

(2020) were able to increase the shear strength of UF bond lines by 31% while adding 1% 

micro- and nanofibrillated cellulose. It was also mentioned that the thermal stability of the 

adhesive system was improved and the viscosity was reduced due to the high water content 

of the produced micro- and nanofibrillated cellulose gel. 

 

 
Fig. 8. Proposed Bonding Mechanisms of DAS-eMDI-MFC and Wood Fibers in MDF Panels (α: 
eMDI-water bonding, β: eMDI-DAS bonding at aldehyde group, γ: eMDI-DAS bonding at OH-group, 
δ: eMDI- wood fiber bonding, ε: DAS-MFC bonding, ζ: DAS-wood fiber bonding, η: eMDI-MFC 
bonding, θ: eMDI-eMDI bonding) 

 

The water-related properties, i.e. water absorption (WA) and thickness swelling 

(TS), of the MDF panels after 2 and 24h immersion and associated statistical analysis 

(ANOVA and Tukey’s HSD test, α = 0.05) are shown in Fig. 9. The respective TS (24 h) 

values of C2, C3, and B3 panels were 24.0%, 24.3%, and 25.2%, which were statistically 

insignificant to the value of the MUF control panel (Control1), i.e. TS= 22.9%. In contrast 
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to most bio-based wood adhesives, the DAS-based adhesive systems showed outstanding 

water resistance with comparable TS value to the MUF control panel. As expected, the 

highest TS values were obtained in the panels bonded with DAS and MFC, and also with 

sole eMDI. Increasing the MFC content slightly reduced the TS mean values, although the 

differences were not statistically significant. A similar trend was observed for the WA 

values of the panels bonded with different adhesive systems. The WA in MDF panels is 

mainly related to the ability of fibers to absorb water, the resistance of the adhesive to 

water, and available voids (Gillah et al. 2000). As explained above, the DAS-based 

adhesive in the presence of MFC and eMDI seemed to provide stable bonds among the 

wood fibers, while MFC may play an additional role in the panels due to its high contact 

area by filling the voids between the fibers and forming a three-dimensional network. Thus 

the available space for water molecules to be held is reduced (Chen et al. 2019). 

 

 
Fig. 9. TS (a) and WA (b) (2h and 24h) of MDF panels bonded with DAS-based adhesive systems 
in comparison to control panels with MUF or eMDI adhesives. Ratios (wt%) of DAS, eMDI and MFC 
are given in the table below the figures. Values in the same column followed by different superscript 
letters were significantly different (p≤0.05). 
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CONCLUSIONS 
 

1. The dialdehyde starch (DAS) produced in this study was successfully tested as the basis 

for a formaldehyde-free adhesive system in combination with microfibrillated cellulose 

(MFC) and emulsifiable diphenylmethane diisocyanate (eMDI) in MDF panels. It was 

found that at this specific ratio of starch:NaIO4, a high aldehyde content was achieved, 

and it was not substantially influenced by the oxidation time.  

2. An adhesive system made with DAS and small amounts of eMDI in MDF panels 

achieved similar mechanical properties as in panels with a DAS-MFC adhesive. The 

thickness swelling also decreased noticeably. The combination of DAS, eMDI, and 

MFC can provide a 99.5% bio-based adhesive that can create strong and water resistant 

MDF panels. The values were comparable to control MDF panels produced with 

commercial MUF. It can be assumed that the unique performance of this particular 

adhesive is due to the formation of polyurethane and polyurea linkages between wood 

fibers and adhesive components, and the contact surface enlargement of MFC.  

3. The approach for using DAS in combination with very small amounts of MFC and 

eMDI showed great potential as close to 100% bio-based adhesive for MDF panels. 

However, there are still a few points for future consideration and research. For example, 

alternative oxidative agents to sodium metaperiodate should be searched, since it is an 

expensive chemical and involves potential handling risks. The application of such an 

adhesive system should also be adjusted to current industrial manufacturing processes 

of MDF in terms of favorable mixing methods and press factor levels. The proposed 

dry mixing process of DAS with wood fibers and the long pressing times are not viable 

and economically attractive in the industry. 
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