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For classification of wood species with similar microstructure, 19 high-
value hardwood species of Papilionaceae, Ebenaceae, and 
Caesalpiniaceae were used as experimental objects. Images of 
transverse sections, radial sections, and tangential sections were 
collected by Micro CT. Local binary patterns (LBP) are often used for 
feature extraction. LBP deformed forms such as uniform LBP, rotation-
invariant LBP, and rotation-invariant uniform LBP were fused with Gray-
Level Co-Occurrence Matrix (GLCM) to form three fusion features. The 
fusion features were combined with support vector machine (SVM) or BP 
neural network to realize wood classification. The texture feature fusion 
method was found to be better than the single feature classification. 
Among them, the effect of uniform LBP and GLCM fusion was the best, 
and the classification accuracy combined with SVM was the highest. The 
evaluation of the classification of 19 kinds of hardwood mainly depended 
on transverse sections, and its accuracy was higher than that of the radial 
and tangential sections. Therefore, the classification results of transverse 
sections should be taken as the main evaluation basis for the classification 
of the 19 high-value hardwood species. 
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INTRODUCTION 
 

Wood has renewable and environmentally friendly advantages. It can be used as 

the raw material for flooring, furniture, buildings, and interior decoration. Its use is related 

to the species and features. Many high-value species with better quality are imported from 

abroad, so it is of great significance for wood to be classified correctly. Traditionally, 

experts slice the wood and use optical light microscopy to observe its transverse sections, 

radial sections, and tangential sections (Barmpoutis et al. 2018; Jahanbanifard et al. 2020). 

However, this method is cumbersome, time-consuming, and requires highly trained 

professionals. In this paper, micro computed tomography (micro CT) was used to collect 

high-resolution microscopic images. This is a more advanced method that allows faster 

collection of data. Large numbers of images on the three sectional planes are collected in 

a very short time. These abundant images are the premise of wood classification and 

identification by computer vision and machine learning. At present, the majority of species 

identification is completed by computer vision with digital images (Hu et al. 2019; Cao et 

al. 2021; Fabijańska et al. 2021), which is more efficient and accurate than the traditional 
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method (Kamal et al. 2017). 

Machine learning and pattern recognition have been applied to macroscopic and 

microscopic images recognition of wood, and the method of texture feature extraction is 

widely used in wood classification (Zhao et al. 2014). Local phase quantization and linear 

discriminant method were used to classify 77 commercial timber species, and the average 

success rate was approximately 88% (Rosa et al. 2017). Local binary patterns (LBP) 

combined with support vector machine (SVM) were used to classify 2240 microscopic 

images of 112 wood species, and the accuracy reached 98.6% (Martins et al. 2013). 

Rotation-invariant LBP and SVM were used to classify 46 Brazilian species, and the 

accuracy reached 97.67%. By using the fusion of classifiers, the accuracy rate was 

improved by 0.33% (Souza et al. 2020). Six texture feature extraction techniques and three 

classifiers were used to classify hardwood species images. The results showed that the 

reduced dimension texture feature uniform completed local binary pattern (DWTCLBPu2) 

combined with LDA classifier had the best classification accuracy (Yadava et al. 2015). A 

multi-resolution texture classification method based on anisotropic diffusion and local 

directional binary pattern (LDBP) was used to evaluate and compare four texture data sets, 

and the results showed its effectiveness (Hiremath et al. 2017).  

In addition to LBP, by using Gray Level Co-Occurrence Method (GLCM) and 

Euclidean distance method to identify the swietenia mahagoni wood defects, the optimal 

average accuracy reached 88.90% (Riana et al. 2021). The Improved-Basic Gray Level 

Aura Matrix (I-BGLAM) feature extraction method was proposed, and the back-

propagation neural network classifier was used to realize the automatic classification of 52 

kinds of wood (Zamri et al. 2016). The Lucy Richardson algorithm was used to enhance 

blurred images, the statistical feature extraction technology and SVM were used to identify 

20 tropical wood species, and the classification accuracy reached 89.3% (Rajagopal et al. 

2019). A new Gabor method for wood recognition was proposed, and the method was 

evaluated on the wood database of Zhejiang Agriculture and Forestry University (ZAFU), 

which show that the method had achieved progress relative to the state of the art (Wang et 

al. 2013). LBP and GLCM were used to extract features through X-ray tomography, and 

K-Nearest Neighbor (KNN) classifier was employed in order to classify six kinds of diffuse 

porous wood (Kobayashi et al. 2019). A method of combining Tamura and GLCM texture 

features was proposed, and BP neural network was used to classify the wood surface 

defects, thus improving the accuracy and robustness of recognition (Xie and Wang 2015). 

The above-cited scholars took transverse sections as the object, but the radial and 

tangential sections also provide a lot of information. Barmpoutis et al. (2018) proposed a 

new approach for automating wood species recognition through multidimensional texture 

analysis. The accuracy performance of transverse-section classification was 91.47% and 

84.2% for radial and tangential sections. Up to the present, there have been few studies on 

classification and recognition of high-value hardwood species from the transverse, radial, 

and tangential sections. In this paper, three-section images of 2 μm resolution were 

obtained by Micro CT, and 19 hardwood species with similar structure were classified and 

recognized.  In this work, LBP deformation forms uniform LBP, rotation-invariant LBP, 

and rotation-invariant uniform LBP were fused with GLCM features to form three fusion 

features. Compared with a single texture feature, three fusion features combined with SVM 

and BP neural network showed the highest accuracy and the best recognition effect. Among 

them, the uniform LBP and GLCM fusion method was the optimum. Combined with SVM 

and BP neural network, it achieved the best classification effect on the transverse, radial 

and tangential sections. 
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EXPERIMENTAL 
 
Materials 

The experimental materials were taken from the Specimens Museum of the 

Shandong Jianzhu University (Jinan China). A total of 19 kinds of hardwood with similar 

micro-structure were selected, and the samples were cut to 2.5 mm × 2.5 mm × 25 mm for 

scanning. The Bruker Kscan1272 was used for scanning, and the voltage and current values 

of the radiation source were set to 50 kV and 200 μA. A total of 3000 images were obtained 

from each sample, 1000 for transverse sections, 1000 for radial sections, and 1000 for 

tangential sections. The size was 2042 × 1640 pixels, and the resolution was 2 μm. Table 

1 shows the 19 high-value hardwood species. 

 
Table 1. Information Related to the High-value Hardwood Species under Study 

 

 
Dataset Construction 

A total of 300 images were randomly selected from the three sections of the 19 

wood species, 100 images for each section. The selected images were cut randomly into 

sub-images with size of 500 × 500 pixels, which were used to construct the three-section 

data sets. In sum, there were 5700 microscopic sub-images obtained, 1900 sub-images for 

each section. 

Table 2 shows the microscopic images of transverse, radial, and tangential sections. 

A variety of structures are seen in the microscopic images, such as vessel pores, axial 

parenchyma, wood rays, etc.  

No. Botanical name Category Producer Botanical family

1 Pterocarpus erinaceus Diffuse-porous Africa Papilionaceae

2 Pterocarpus indicus Diffuse-porous Indonesia Papilionaceae

3 Pterocarpus macrocarpus Diffuse-porous Myanmar Papilionaceae

4 Dalbergia cultrata Diffuse-porous Myanmar Papilionaceae

5 Dalbergia latifolia Diffuse-porous Indonesia Papilionaceae

6 Dalbergia louvelii R.Vig. Diffuse-porous Madagascar Papilionaceae

7 Dalbergia melanoxylon Diffuse-porous Tanzania Papilionaceae

8 Dalbergia stevensonii Standl. Semi-ring porous wood Mexico Papilionaceae

9 Dalbergia bariensis Pierre Diffuse-porous Laos Papilionaceae

10 Dalbergia cearensis Ducke Diffuse-porous Brazil Papilionaceae

11 Dalbergia cochinchinensis Pierre Diffuse-porous Laos Papilionaceae

12 Dalbergia frutescens Var.
Diffuse-porous/

Semi-ring porous wood
Myanmar Papilionaceae

13 Dalbergia oliveri Prain
Diffuse-porous/

Semi-ring porous wood
Myanmar Papilionaceae

14 Dalbergia retusa Hemsl. Diffuse-porous Nicaragua Papilionaceae

15 Diospyros ebenum J. Diffuse-porous Philippines Ebenaceae

16 Diospyros celebica Bakh Diffuse-porous Sulawesi Ebenaceae

17 Diospyros philippinensis A.DC. Diffuse-porous Philippines Ebenaceae

18 Millettia leucantha Diffuse-porous Myanmar Papilionaceae

19 Senna siamea (Lam.) Diffuse-porous Myanmar Caesalpiniaceae
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Table 2. The Three-Section Images of 19 High-Value Hardwood Species 

No 
Transverse 

Sections 
Radial 

Sections 
Tangential 
Sections 

No 
Transverse 

Sections 
Radial 

Sections 
Tangential 
Sections 

1 
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Feature Fusion 
The surface of wood is distributed with different structures, which constitute the 

texture of wood, and the texture distribution of different sections varies greatly. In this 

work, a method is proposed, namely a texture feature fusion for uniform LBP, rotation-

invariant LBP, and a rotation-invariant uniform LBP that is fused with GLCM. The fusion 

method is as follows: 

To reduce the LBP dimension and shorten the calculation, 90% texture modes and 

information of the microscopic images were grouped to construct Uniform LBP  (Ojala et 

al. 2002, 2013). The U value was limited to being no greater than 2, and calculation was 

carried out using Eq. 1: 
1

, 1 0 1
1

( ) ( ) ( ) ( )
c c

P
U 2

P R p c i i c
i

LBP s g g s g g s g g s g g
−

− −
=

= − − − + − − −
，

                 (1) 

To maintain the rotation of LBP , the circular neighborhood was rotated one circle 

clockwise to generate different binary codes. Take the minimum value in the codes as the 

Uniform LBP  to describe the invariant rotation feature. The 
,

U 2

P R
LBP ， formula is as follows. 

, ,
min{ ( , ), 0,1, 1}ri ri

P R P R
LBP ROR LBP i i P= = −                                              (2) 

Combining with the above process, the Uniform LBP  with invariant rotation 

feature is constructed, and the formula is as follows. 
1
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0

,

( ), ( ) 2

1

P

i c P Rriu
i

P R

s g g U LBP
LBP

P

−

=

 − 
= 
 +

                                                         (3) 

The radius P is equal to 8, and the feature dimensions of
,

U 2

P R
LBP ， , 

,

ri

P R
LBP , 2

,

riu

P R
LBP  are 

59, 36, and 10, respectively. 

Based on the GLCM, five features were obtained, including energy, contrast (CON), 

correlation (COR), entropy (ENT), and inverse difference moment (IDM). According to 

these features, feature data sets of 64, 41, and 15 dimensions were constructed for each 

image. Comparing with traditional LBP , this method is lightweight, and it reflects the IDM 

of texture images in gray distribution, the differences among textures, the similarity of 

rows’ and columns’ gray values, the complexity, and roughness of textures (Haralick 

1979). 

 

Transverse/Radial/

Tangential Section   

images        

Data set Feature fusion

64 features

41  features

15  features

Feature dimensionFeature extraction

GLCM

LBP
riu2

P,R

LBP
ri

P,R

LBP
u,2

P,R LBP
u,2

P,R +GLCM

LBP
ri

P,R +GLCM

LBP
riu2

P,R +GLCM

 
Fig. 1. Feature fusion 

 
In this paper, uniform LBP , rotation-invariant LBP , and rotation-invariant uniform 

LBP  were fused with GLCM  texture features, and are expressed as
,

+ri

P R
LBP GLCM ,
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2

,
+riu

P R
LBP GLCM ,

,
+U 2

P R
LBP GLCM， , as shown in Fig. 1. The method of texture feature fusion can 

integrate all kinds of information in the image and improve the classification accuracy 

(Yusof et al. 2010; Yan et al. 2021). 

 
Classification 

According to the three fused features, namely 
,

+ri

P R
LBP GLCM , 

,
+riu 2

P R
LBP GLCM， , and

,
+u 2

P R
LBP GLCM， , the BP neural network and SVM were used for classification. The data of 

training set and testing set were 70% and 30%, respectively. 

The BP neural network was set up as a three-layer network structure, including an 

input layer, a hidden layer, and an output layer. The number of features of each image in 

the input layer was 59, 36, 10, 64, 41, 15, the number of neurons in the hidden layer was 

5, 10, 15, 20, 25, 30, 35, 40, and the classification accuracy of 19 species was in the output 

layer. The input layer to hidden layer activation function was tanh, and the hidden layer to 

output layer activation function was Purelin. The training times were 1000 and the learning 

rate was 0.01, the error rate was 0.00001, the momentum parameter was 0.01, and the 

minimum performance gradient was 1e-6. The structure of BP neural network is shown in 

Fig. 2. 

The SVM was based on LIBSVM software package, and the Radial Basis Function 

(RBF) was applied. The value range of penalty factor C and kernel parameter g was 2-10-

210 (Chih and Lin 2011). The number of features of each image imported was 59, 36, 10, 

64, 41, and 15. These numbers were randomly arranged, and 5-fold cross validation was 

used to determine the optimal values of C and g. Then the classification accuracy for the 

19 species was output. 

 
Fig. 2. Classification structure of BP neural network and SVM 

 
  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Yang et al. (2023). “Image classification of hardwood,” BioResources 18(2), 3373-3386.  3379 

RESULTS AND DISCUSSION 
 
BP Neural Network 

During the classification by BP neural network, the number of neurons in the 

hidden layer affects the classification accuracy. Table 3 shows the maximum classification 

accuracy and time point corresponding to the number of optimal hidden-layer neurons with 

different features. The increase of feature dimension leads to more time required for 

classification. In the classification of single feature, the accuracy of 
,

ri

P R
LBP  in transverse, 

radial, and tangential sections was 94.73%, 86.77%, and 86.39%. The accuracy of 
,

riu 2

P R
LBP ，  

in three-section was 93.50%, 86.28%, and 85.96%. The accuracy of 
,

u 2

P R
LBP ，  in three-section 

was 95.78%, 88.19%, and 88.05%. In the classification of single feature, the training time 

used by 
,

riu 2

P R
LBP ，  was shorter, but the accuracy was low. 

,

u 2

P R
LBP ，  exhibited the highest 

classification accuracy in transverse, radial, and tangential sections, and the classification 

effect was relatively good. 

After feature fusion of the classification of transverse, radial, and tangential 

sections, the accuracy of 
,

+ri

P R
LBP GLCM  increased by 0.7%, 3.75%, and 1.68% in comparison 

to 
,

ri

P R
LBP , the accuracy of 

,
+riu 2

P R
LBP GLCM， increased by 1.23%, 3.19%, and 0.88% in 

comparison to 2

,

riu

P R
LBP  , and the accuracy of 

,
+u 2

P R
LBP GLCM，  increased by 1.58%, 3.21%, and 

2.03% in comparison to 
,

u 2

P R
LBP ， , respectively. These findings indicate that the classification 

result of 
,

+u 2

P R
LBP GLCM，  was the best, and the classification accuracy for the three-section set 

of images was able to reach over 90%. 

 
Table 3. Classification Results of BP Neural Network 

Section Feature 
Hidden 
Neuron 

Accuracy 
(%) 

Time 
(s) 

Feature 
Fusion 

Hidden 
Neuron 

Accuracy 
(%) 

Time 
(s) 

 Transverse 

,

ri

P R
LBP  35 94.73 80 ,

+ri

P R
LBP GLCM  35 95.43 135 

,

riu 2

P R
LBP ，

 20 93.50 15 ,
+riu 2

P R
LBP GLCM，  40 94.73 203 

,

u 2

P R
LBP ，

 25 95.78 152 ,
+u 2

P R
LBP GLCM，  20 97.36 83 

Radial 

,

ri

P R
LBP  40 86.77 78 ,

+ri

P R
LBP GLCM  30 90.52 127 

,

riu 2

P R
LBP ，

 35 86.28 56 ,
+riu 2

P R
LBP GLCM，  25 89.47 35 

,

u 2

P R
LBP ，

 30 88.19 89 ,
+u 2

P R
LBP GLCM，  30 91.40 224 

Tangential 

,

ri

P R
LBP  30 86.39 75 ,

+ri

P R
LBP GLCM  40 88.07 251 

,

riu 2

P R
LBP ，

 35 85.96 54 ,
+riu 2

P R
LBP GLCM，  40 86.84 135 

,

u 2

P R
LBP ，

 40 88.05 93 ,
+u 2

P R
LBP GLCM，  30 90.08 213 

 

As shown in Fig. 3, the accuracy of transverse sections classification using the 

above 6 feature classification methods were much higher than that of radial and tangential 

sections. Therefore, the classification results of transverse sections should be considered in 

the process of tree species classification. The results of wood species classification on the 

three sections showed that the accuracy of the
,

riu 2

P R
LBP ，  method was the lowest, and the 

accuracy of the 
,

+u 2

P R
LBP GLCM，  combination after feature fusion was the highest. After feature 
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fusion, the classification accuracy of
,

+ri

P R
LBP GLCM ,

,
+riu 2

P R
LBP GLCM， , 

,
+u 2

P R
LBP GLCM， was 

generally higher than that of single feature such as 
,

ri

P R
LBP ,

,

riu 2

P R
LBP ， , 

,

u 2

P R
LBP ， . As the increase 

of feature dimension can improve the classification accuracy, the results considering both 

classification accuracy and time point after extension of time showed that, for the 19 kinds 

of high-value hardwood species and 6 feature classification methods, 
,

+u 2

P R
LBP GLCM，  

performed the best in accuracy and time. 

 

 
 

Fig. 3. Classification results of the three sections (transverse, radial, and tangential)  
by BP neural network 

 
Support Vector Machine (SVM) 

The classification results of 19 high-value hardwood by SVM classifier are shown 

in Table 4. In the classification of single feature, the accuracy of 
,

ri

P R
LBP  in transverse, 

radial, and tangential sections was 94.92%, 90.52%, and 90.05%, respectively. The 

accuracy of 
,

riu 2

P R
LBP ，  in the three sections was 93.68%, 90.70%, and 89.82%, respectively. 

The accuracy of 
,

u 2

P R
LBP ，  in the three sections was 95.27%, 91.40%, and 91.40%, 

respectively. In the classification of single feature, the training time used by 
,

riu 2

P R
LBP ，  was 

shorter, but the accuracy rate was low. 
,

u 2

P R
LBP ，  achieved the highest classification accuracy 

in transverse, radial, and tangential sections, and the classification effect was relatively 

good.  

After feature fusion of the three sections, the classification accuracies of 

,
+ri

P R
LBP GLCM were increased by 1.04%, 0.70%, and 1.17% compared to 

,

ri

P R
LBP , and the 

accuracies of 
,

+riu 2

P R
LBP GLCM，  were increased by 0.88%, 1.05%, and 0.7% compared to 

,

riu 2

P R
LBP ， , and the accuracies of 

,
+u 2

P R
LBP GLCM，  were increased by 2.27%, 0.88%, and 0.17% 

compared to 
,

u 2

P R
LBP ， . This shows that the accuracy of the three sections by 

,
+u 2

P R
LBP GLCM，  

were all about to reach 91%. The result shows that the classification result of 
,

+u 2

P R
LBP GLCM，  

was the best and can be used as the main reference for wood classification. 
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Table 4. Classification Results by SVM 

Section Feature Accuracy (%) Time (s) Feature Fusion Accuracy (%) Time (s) 

 Transverse 

,

ri

P R
LBP  94.92 3906 ,

+ri

P R
LBP GLCM  95.96 4097 

,

riu 2

P R
LBP ，

 93.68 1674 ,
+riu 2

P R
LBP GLCM，  94.56 2044 

,

u 2

P R
LBP ，

 95.27 4586 ,
+u 2

P R
LBP GLCM，  97.54 4834 

Radial 

,

ri

P R
LBP  90.52 3958 ,

+ri

P R
LBP GLCM  91.22 4226 

,

riu 2

P R
LBP ，

 90.70 1582 ,
+riu 2

P R
LBP GLCM，  91.75 2264 

,

u 2

P R
LBP ，

 91.40 4597 ,
+u 2

P R
LBP GLCM，  92.28 5339 

Tangential 

,

ri

P R
LBP  90.05 3851 ,

+ri

P R
LBP GLCM  91.22 3947 

,

riu 2

P R
LBP ，

 89.82 1698 ,
+riu 2

P R
LBP GLCM，  90.52 2114 

,

u 2

P R
LBP ，

 91.40 4912 ,
+u 2

P R
LBP GLCM，  91.57 4990 

 

Figure 4 shows that the classification accuracy of transverse sections was higher 

than that of radial and tangential sections by using the above 6 feature classification 

methods. Pan et al. (2021) concluded that GLCM  incorporated with near-infrared (NIR) 

spectral features can rapidly identify wood, and that transverse sections contain more 

distinguishable wood features than the tangential and radial sections. 

The results of wood species classification on the three sections showed that the 

accuracy of the
,

riu 2

P R
LBP ， method was the lowest, and the accuracy of 

,
+u 2

P R
LBP GLCM， method 

after feature fusion was the highest. The classification accuracy after feature fusion was 

generally higher than that of single feature. The results considering both classification 

accuracy and time point showed that
,

+u 2

P R
LBP GLCM，  performed the best for the 6 features of 

19 kinds of high-value hardwood. 

 

  
Fig. 4. Classification results of three sections (transverse, radial, and tangential) by SVM 
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Based on the work carried out, it can be concluded that the classification accuracy 

after feature fusion was the highest, which is consistent with the other researchers. For 

example, Nasir et al. (2019) classified the thermally modified wood samples, indicating 

that the fusion of all signal domain features showed the best classification performance. 

Wang and Zhao (2021) used spectral features and texture features to classify 50 kinds of 

wood transverse sections. Thus, the feature fusion method is better than a single texture 

feature or spectral feature, and the accuracy reached 99.16%. 

 
Confusion Matrix and Evaluation Metrics 

Compared with BP neural network, the proposed feature fusion method combined 

with SVM achieved higher classification accuracy. Among the feature fusion methods, 

,
+U 2

P R
LBP GLCM， had the best effect. The best accuracy performances of transverse sections, 

radial, and tangential sections were 97.54%, 92.28%, and 91.57%, respectively. The 

confusion matrix of three sections were drawn, as shown in Fig. 5. 

As shown in Fig. 5(a), most of the transverse sections classifications of 19 high-

value hardwood species were correct, and the accuracy rate was more than 94%. Only the 

thirteenth species (Dalbergia oliveri Prain) had a low accuracy rate of 90%. Three species 

in the thirteenth species (D. oliveri Prain) were classified mistakenly to the third species 

(Pterocarpus macrocarpus). The axial parenchyma of both D. oliveri Prain and P. 

macrocarpus were of zonal distribution, and the microstructures were very similar. 

As shown in Fig. 5(b), most of the radial-section classifications of 19 high-value 

hardwood species were correct, and the accuracy rate was more than 85%. Only the 4th 

(Dalbergia cultrate) and 14th species (Dalbergia retusa Hemsl) got lower accuracy rates 

of 84% and 81%. Some of the species in the fourth were mistakenly classified into the 9th 

(Dalbergia bariensis Pierre), the 11th (Dalbergia cochinchinensis Pierre), the 14th 

(Dalbergia retusa Hemsl), and the 19th (Senna siamea (Lam.)). Some of the species in the 

14th were mistakenly classified into the 4th (Dalbergia cultrata), the 7th (Dalbergia 

melanoxylon), the 16th (Diospyros celebica Bakh), and the 19th (Senna siamea (Lam.)) The 

reason is that Dalbergia cultrate, Dalbergia melanoxylon, Dalbergia bariensis Pierre, 

Dalbergia cochinchinensis Pierre and Dalbergia retusa Hemsl are all belong to Dalbergia 

and have much similarity in microstructure. 

 

 
(a)                             (b)                            (c) 

 

Fig. 5. The confusion matrix for sections: (a) Transverse sections in the first panel; 
(b) Radial sections in the second panel; (c) Tangential sections in the third panel 

 

As shown in Fig. 5(c), most of the tangential-section classifications of 19 high-

value hardwood species were correct, and the accuracy was more than 80%. Only the 4th 
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(Dalbergia cultrate) and 9th species (Dalbergia bariensis Pierre) got lower accuracy rates 

of 74% and 73%. Some species in the 4th (Dalbergia cultrata) were mistakenly classified 

into the 9th (Dalbergia bariensis Pierre), the 11th (Dalbergia cochinchinensis Pierre), the 

16th (Diospyros celebica Bakh), and the 19th (Senna siamea (Lam.)). Some of the species 

in the 9th (Dalbergia cultrata) were mistakenly classified into the 1st (Pterocarpus 

erinaceus), the 3rd (Pterocarpus macrocarpus), the 4th (Dalbergia cultrata), the 11th 

(Dalbergia cochinchinensis Pierre), and the 16th (Diospyros celebica Bakh). The reason is 

that the ray cell and vessel distributions of these species have much similarity. 

The PREC (Precision), REC (Recall), and SPEC (Specificity) parameters were used 

to evaluate the classification performance. 
PREC=TP/(TP+FP); 

REC=TP/(TP+FN); 

SPEC=TN/(TN+FP). 

TP indicates that the real sample and the predicted sample are both positive. TN 

indicates that the real sample and the predicted sample are both negative. FN indicates that 

the real sample is positive and the predicted sample is negative. FP indicates that the real 

sample is negative and the predicted sample is positive. 

Table 5 shows the evaluation values of PREC, REC, and SPEC for each of the 19 

species. The average accuracies of transverse sections were 97.42%, 97.32%, and 99.85%, 

the average accuracies of radial sections were 93.09%, 92.74%, and 99.62%, and the 

average accuracies of tangential sections were 91.84%, 91.47%, and 99.53%. These results 

indicate that the PREC, REC, and SPEC values of transverse sections were the highest and 

the classification accuracy was the best, while the tangential sections got the lowest 

evaluation values and the worst classification results. 

 

Table 5. The Classification Performance of Three Sections 

No. 

Transverse sections Radial sections Tangential sections 

PREC 
(%) 

REC 
(%) 

SPEC 
(%) 

PREC 
(%) 

REC 
(%) 

SPEC 
(%) 

PREC 
(%) 

REC 
(%) 

SPEC 
(%) 

1 100.00 97.22 100.00 100.00 93.55 99.63 100.00 91.89 100.00 

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 100.00 88.00 100.00 88.00 91.67 99.45 82.76 96.00 99.08 

4 93.94 100.00 99.62 83.87 81.25 99.07 74.07 76.92 98.71 

5 96.55 100.00 99.82 88.46 100.00 99.45 100.00 92.50 100.00 

6 96.67 100.00 99.82 100.00 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 96.67 100.00 100.00 100.00 100.00 

8 100.00 96.97 100.00 85.71 100.00 99.27 93.55 100.00 99.63 

9 96.15 80.65 99.82 84.62 95.65 99.27 73.33 73.33 98.52 

10 100.00 100.00 100.00 88.89 94.12 98.88 89.19 94.29 99.25 

11 96.88 96.88 99.82 96.67 96.67 99.82 100.00 81.48 100.00 

12 100.00 100.00 100.00 100.00 93.75 100.00 95.65 81.48 99.82 

13 90.32 96.55 99.45 93.55 87.88 100.00 82.05 94.12 98.69 

14 93.94 100.00 99.63 80.95 65.38 99.26 86.11 96.88 99.07 

15 100.00 100.00 100.00 96.43 96.43 99.82 100.00 96.77 100.00 

16 96.88 100.00 99.82 93.33 87.50 99.63 96.67 85.29 99.81 

17 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

18 96.77 100.00 99.82 100.00 90.63 100.00 91.67 88.00 99.63 

19 92.86 92.86 99.63 88.24 90.91 99.26 80.00 88.89 98.90 

Avg. 97.42 97.32 99.85 93.09 92.74 99.62 91.84 91.47 99.53 
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CONCLUSIONS 
 

1. Micro computed tomography (micro CT) was used to collect wood three-section 

microscopic images with 2 μm resolution. The number and the efficiency of image 

collection were much better than that of the traditional wood slicing method. The 

strategy provides abundant images for wood species classification. 

2. The accuracy of wood classification obtained by feature fusion method was higher than 

that of single feature. Among these methods, local binary pattern together with Gray-

Level Co-occurrence Matrix (
,

+u 2

P R
LBP GLCM，  ) in combination with support vector 

machine (SVM) was the best, which was superior to the back propagation (BP) neural 

network method. 

3. Combining with the above features, the classification accuracy of transverse sections 

was higher than that of radial and tangential sections no matter whether using BP neural 

network or SVM. The transverse sections of the same species contain inherent texture 

information and have stable structure and high similarity, while the transverse sections 

of different species have great difference in texture. Due to the different angles of image 

collection of radial and tangential sections, the texture information of the same wood 

species may be different, which means that the texture information is not stable. 

Therefore, the classification results of transverse sections should be taken as the main 

evaluation basis for the classification of the 19 high-value hardwood species. 
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