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Biochar made from seaweed biomass of marine farms established for 
water pollutant remediation may be a promising amendment for soil 
remediation in the same coastal territory. The study aimed to assess the 
soil Cu-immobilizing, pH neutralizing, and nutrient improvement 
capabilities of a seaweed biochar when incorporated into degraded soil of 
the same coastal territory (Puchuncaví District, central Chile). 
Experimental design considered five treatments; degraded soil of 
Puchuncaví valley (C-), C- amended with either local seaweed biochar (B), 
vermicompost (V), or its mixture (BV), and a background soil (C+). 
Experimental soils were placed in pots and kept in a greenhouse (4 
weeks). Lolium perenne was then sown and cultivated until week 11. 
Treatments amended with biochar (B and BV) significantly increased soil 
pH, available nitrogen and decreased Cu2+ ions. These treatments 
reached very high EC values but had no negative effect on plant yield. 
Regarding plant growth, V and BV significantly increased biomass, but V 
resulted in higher yield because of its higher nutritional status. It was 
concluded that seaweed biochar, made from local seaweed biomass of a 
coastal marine water pollutant remediation farm, may be an effective soil 
amendment for degraded soils of the same coastal territory, although its 
combination with an organic amendment should be considered. 
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INTRODUCTION 
 

Globally, coastal zones have long become active for urbanization and 

industrialization (Halpern et al. 2015; Ausili et al. 2020). As a result of historical and/or 

current industrial pollution, both terrestrial and marine ecosystems of many coastal 

territories have been significantly affected (He et al. 2014; Yanes et al. 2018; Zhai et al. 

2020). Generally, remediation actions to reduce environmental risks in these territories are 

performed independently. For polluted coastal marine waters, passive processes for in situ 
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pollutant uptake through biosorption methods have been implemented (de Freitas et al. 

2019) and offer many advantages (e.g., simple implementation, low operating cost, high 

efficiency, no additional nutrient requirements, and relatively low energy input) (Michalak 

et al. 2013; Bordoloi et al. 2017; Liu et al. 2019). In contrast, in situ remediation techniques 

for physicochemically degraded soils, based on the application of soil amendments, are 

widely implemented because of their fast, low-cost, and easy application (Palansooriya et 

al. 2020). Among other factors, the election of soil amendments depends on the type of 

pollutants present (i.e., organic and/or inorganic), their bioavailable fraction, and the 

degree of other physical (i.e., compaction or reduction of organic matter) and/or chemical 

(i.e., acidification, salinization, nutrient loss) soil alterations (Palansooriya et al. 2020). 

Through delivering cost-effective remediation techniques and fulfilling green and 

sustainable remediation principles (because of their low life cycle environmental 

footprints), the use of proper bioadsorbents and soil amendments has been widely used for 

environmental remediation (Hou and Al-Tabbaa 2014).  

Yet, the opportunity remains for an integrated approach of coastal marine water and 

terrestrial remediation in coastal territories. Specifically, some bioadsorbents generated 

from coastal marine water remediation could potentially be processed for pollutant removal 

and thus reused as amendments for soil remediation in the same territory. This approach 

may not only reduce waste disposal and secondary pollution (normally associated with the 

reuse of residues) (Shi et al. 2018) but may also reduce remediation costs and support 

socioeconomical development of local communities in the territory. Indeed, emerging post-

sorption technologies now enable the manufacturing of value-added key adsorption 

products that can subsequently be used for/in (i) fertilizers, (ii) catalysis, (iii) carbonaceous 

metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds 

(Kumar Reddy et al. 2017). These new strategies ensure the sustainable valorization of 

post-sorption materials (with their ecological affability, biocompatibility, and widespread 

accessibility) as an economically viable alternative to the engineering of other green 

chemicals (Kumar Reddy et al. 2017; Tawfik et al. 2022). 

The Puchuncaví District in central Chile serves as an example of a coastal territory 

where both land (Puchuncaví Valley) and marine (Quintero Bay) ecosystems have been 

heavily polluted and degraded because of historical and current industrial operations. In 

fact, this territory is considered an environmental sacrifice zone because of the broad range 

of industrial activities along its shoreline since the 1960s, which includes the settlement of 

a copper smelter and a thermoelectric plant (Hormazabal et al. 2019). A recent study 

reported high concentrations of heavy metals in the water column near Quintero bay (Cu: 

28 to 741 µg L−1, As: 9 to 348 µg L−1, Cd: 0.091 to 0.243 µg L−1, and Pb: 0.093 to 3.425 

µg L−1) with similar concentrations being reported for two sites 5 km (Caleta Horcón) and 

19 km (Cachagua) north of the industrial park (Oyarzo-Miranda et al. 2020). Furthermore, 

soils of the Puchuncaví valley have been strongly degraded (both physically and 

chemically) and characterized as acidic, depleted in organic matter and nitrogen, and as 

being enriched with metals (e.g., Cu, Zn, Pb, and Cd) and metalloids (e.g., As) (Ginocchio 

2000; Ginocchio et al. 2004; Neaman et al. 2009). As such, several research studies and 

local government efforts have been directed at coping with the environmental risks of 

pollutants and soil degradation. Remediation actions for land (Muena et al. 2010; Córdova 

et al. 2011; Neaman et al. 2012; Ulriksen et al. 2012; Pardo et al. 2018) as well as coastal 

marine waters and sediments (Parra et al. 2015; Oyarzo-Miranda et al. 2020; Latorre-

Padilla et al. 2021a, 2021b) have been suggested as cost-effective alternatives.  
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In the last decade, an experimental brown algae (Macrocystis pyrifera) seaweed 

farm had been established at Quintero Bay to encourage in situ pollutant (organic and 

inorganic) remediation of its coastal marine waters. The project was funded by a regional 

Chilean grant (Fondo de Innovación para la Competitividad [Innovation Fund for 

Competitiveness], FIC Algas 2017, n° 30397482-0). The species of M. pyrifera was 

selected based on its ability to grow to considerable sizes in a wide range of environmental 

conditions, representing a great advantage in terms of biomass productivity (Schiel and 

Foster 2015). Moreover, compared to other brown seaweeds, M. pyrifera has a higher 

capacity to accumulate metals (Davis et al. 2003; Latorre-Padilla et al. 2021b), which 

renders its biomass a potentially effective bioadsorbent for in situ clean-up of coastal 

marine waters. Whilst seaweed biomass can normally be used as a raw product for the food, 

animal feed, cosmetics, and nutraceuticals industries (Rotter et al. 2020), pollutant-rich 

seaweed biomass must be discarded.  

Several studies have demonstrated that seaweed biomass may be a promising raw 

material for the production of biochar (a carbon-rich product produced via thermal 

decomposition under oxygen-limited conditions and at relatively low temperatures) (Chen 

et al. 2015; Roberts et al. 2015a; 2015b; 2015c; Cha et al. 2016; Contreras-Porcia et al. 

2018). In recent years, because of its potential use as a soil amendment, biochar has become 

a subject of important scientific and commercial interest (Guo et al. 2020). Several studies 

have shown that biochar can remediate the physical and chemical properties of degraded 

soils (Curaqueo et al. 2014; Obia et al. 2016; Amin et al. 2017), which in turn promotes 

plant development (Al-Wabel et al. 2013; Amin et al. 2017; Godlewska et al. 2017; De 

Sousa Lima et al. 2018). Biochar made from macroalgae biomass has low carbon content 

and relatively low cation exchange capacity, but high pH (8.0 to 10.1), nitrogen, and 

extractable phosphate contents (Bird et al. 2011). Macroalgal biochars present more 

similarities to those produced from poultry litter relative to those derived from ligno-

cellulosic feedstocks (Bird et al. 2011). Due to these positive characteristics, macroalgal 

biochar has properties that may provide direct nutrient benefits to soils and may be 

particularly useful for application on acidic soils (Bird et al. 2011; Yu et al. 2017). 

However, electrical conductivity (15.3 to 61.2 mS cm-1) and extractable Na (range 141 to 

812 cmol(+) kg-1) in biochars from saline macroalgal species is high, unlike freshwater 

species that have lower values (2.8 mS cm-1 and 24 cmol(+) kg-1, respectively) (Bird et al. 

2011), which may restrict their use as soil amendment.  Few studies have assessed the pros 

and cons of the use of seaweed-derived biochar as a soil amendment for in situ soil 

remediation (Bird et al. 2011). Biochar produced from pollutant-rich seaweed biomass 

(obtained from the Quintero Bay seaweed farms) represents a promising opportunity to 

implement a low-cost local amendment for degraded soil remediation in the Puchuncaví 

valley using an integrated bioremediation approach for this coastal territory, as long as its 

salinity is not a restriction to plant growth.  

The primary aim of the present study was to assess the Cu-immobilizing and 

neutralizing capabilities of seaweed-derived biochar when incorporated into the acidic and 

metal(loid)-enriched soils of the Puchuncaví valley, to assess improvement of the soil’s 

nutritional content for plants and to assess any impact in soil salinity (based on the results 

from small-scale and short-term laboratory experiments). Because the organic matter 

content and nutritional status of the chemically degraded Los Maitenes soil had been very 

low, the secondary aim of the study was to assess another organic amendment 

(vermicompost) for soil remediation. The present study represents the first research step 

towards field site evaluations. 
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EXPERIMENTAL 
 

Study Area and Soil Sample Collection 
Soil samples were collected from the Puchuncaví valley, Valparaíso Region, a 

semiarid Mediterranean climate-type ecosystem located in the coastal area of central Chile 

(Fig. 1), with an historical average annual precipitation of 351 mm, mainly collected in 

winter (May and August) and an average annual temperature of 14.4 °C. Since 1964, soil 

in this area has been heavily degraded via the emission of sulfur dioxide (SO2) and 

metal(loid)-rich particulate matter (such as copper, zinc, cadmium, and arsenic) from the 

Ventanas industrial complex. Whilst environmental regulations (established in the 1990s) 

achieved a considerable reduction in pollutant emissions, the cumulative effect of more 

than 35 years of industrial activity in this area resulted in heavily polluted and eroded soils 

(Ginocchio 2000; Ginocchio et al. 2004; Neaman et. al. 2009) as well as polluted coastal 

marine waters (Oyarzo-Miranda 2020).  

Using a shovel, two composite topsoil batches (0 to 20 cm depth; n = 10 (totaling 

60 kg)) were sampled for use in this study. The first batch (C-) represented chemically and 

physically degraded soils collected from Los Maitenes, an area located 2 km southeast of 

the Ventanas industrial complex, known for its soil acidification and high concentrations 

of Cu, Zn, As, and Cd (Neaman et al. 2009; Cárcamo et al. 2012; Rueda-Holgado et al. 

2016). The second batch (C+) represented background soils collected from Maitencillo, a 

coastal area located 11 km north of Los Maitenes, where the soil has not been affected by 

atmospheric pollutants derived from the Ventanas industrial complex (Neaman et al. 2009; 

Muena et al. 2010). Composite soil samples from both areas were stored in closed 

polyethylene containers before being transferred to the laboratory where respective 

samples were sieved to < 2 mm with a nylon mesh and oven-dried at 60 °C for 24 h. 

Thereafter, samples were manually homogenized, and a batch of each soil type was sent to 

the Soil Analysis Laboratory of the Pontificia Universidad Católica de Valparaíso, 

Quillota, Chile for physicochemical determinations. The obtained results are summarized 

in Table 1.  

 

Table 1. Physicochemical Characteristics of Chemically Degraded Topsoil from 
Los Maitenes (C-) and Background Topsoil from Maitencillo (C+) 

Soil Characteristics Los Maitenes (C-) Maitencillo (C+) 

Texture Sandy Sandy loam 

pH 4.1 5.8 

EC (dS m-1) 0.18 1.00 

CEC (cmol kg-1) 5.36 6.15 

OM (%) 0.73 1.05 

N available (mg kg-1) 12.9 9.5 

P available (mg kg-1) 17.7 33.2 

K exchangeable (mg kg-1) 169 179 

Total Cu (mg kg-1) 354 27.6 

Total Zn (mg kg-1) 81.2 174 

Total Cd (mg kg-1) <0.004 1.24 

Total As (mg kg-1) 6.75 16.1 

EC, electric conductivity; CEC, cation exchange capacity; OM, organic matter 
 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Ginocchio et al. (2023). “Seaweed biochar for soil,” BioResources 18(3), 4637-4656.  4641 

 
 

Fig. 1. Satellite image (Google Earth) and Chilean map showing the Puchuncaví District in central 
Chile that includes Quintero Bay and the Puchuncaví valley (dotted circle). Seaweed biomass for 
biochar production was obtained from coastal marine cultivation areas located along Quintero 
Bay (experimental remediation farm, FIC Algas project). Soil collection areas in the valley 
included Los Maitenes (degraded soil) and Maitencillo (background soil) sites. The Ventanas 
industrial complex, established in the 1960s, is indicated by a red box. 

 

Characteristics of Study Soil Amendments: Seaweed Biochar and 
Vermicompost 

The seaweed biochar used in the present study was produced from air-dry M. 

pyrifera biomass. The latter was harvested from individuals that had been cultivated for 

120 days in coastal waters of the experimental remediation farm in Quintero Bay (FIC 

Algas 2017, project n° 30397482-0) and which had been exposed to pollutant (organic and 

inorganic) emissions from the Ventanas industrial complex (Parra et al. 2015). Dried 

Macrocystis biomass was transferred to the Waste and Bioenergy Management Center of 

Universidad de la Frontera and subjected to a slow pyrolysis process in a specialized 

furnace with a stainless-steel reactor and two thermocouples. A constant N2 flow (0.5 L 

min-1) was used for air displacement. Starting at room temperature, constant biomass 

heating at a rate of 20 to 50 °C h-1 was implemented until a final temperature of 450 °C 

was reached (Araya et al. 2021). A biochar yield of 53.3% was obtained, with an ash 

content of 69.9%. General characteristics of produced biochar can be found in Araya et al. 

(2021).  

Due to the absence of an intensive washing pretreatment of the seaweed biomass 

or deashing post-treatment, given the prioritization of productivity for commercial 

purposes (Araya et al. 2021), the elevated ash and EC values of biochar obtained in this 
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study had been considerably higher than that of other types of biochar (Tag et al. 2016). 

This is to be expected, since the algae came from a saline environment (Bird et al. 2011), 

finding concentrations of sodium in seaweed biomass between 27 and 55 g kg-1 (Neveux 

et al. 2014). However, washing of seaweed biomass results in a reduction of the sodium 

concentration by approximately 95% (Neveux et al. 2014).   

Metal(loid) contents of seaweed biochar and other characteristics are shown in  

Table 2. Noteworthy was the observation that even though seaweed biomass used for 

biochar production in the present study came from a highly contaminated environmental 

matrix (Oyarzo-Miranda et al. 2020), metals adsorbed in the seaweed biomass 

subsequently remained in the tars of the pyrolysis process (Araya et al. 2021).  

In the present study, to better cope with low levels of OM and nutrient soil 

deficiency of degraded Los Maitenes soil (C-), commercial vermicompost (ANASAC) was 

used as a secondary soil amendment. The selected vermicompost had a pH of 7.7, EC of 

6.53 dS m-1, OM content of 14%, and an N-nitrate content of 118 mg kg-1 as stated in the 

label.  

 

Table 2. Chemical Characteristics of Seaweed Biochar 
 

Seaweed Biochar Characteristics Seaweed Biochar 

pH 11 

EC (dS m-1) 27.4 

CEC (cmol kg-1) 40.2 

OM (%) 29.5 

N (%) 2 

Cu (mg kg-1) 11 

Zn (mg kg-1) 21 

Cd (mg kg-1) 10.6 

Ni (mg kg-1) 8 

Pb (mg kg-1) 4.4 

As (mg kg-1) 1.03 

EC, electric conductivity; CEC, cation exchange capacity; OM, organic matter 
 

Experimental Design 
A total of five soil treatments were assessed in the present study, the background 

soil of Maitencillo (C+), the physicochemical degraded soil of Los Maitenes (C-), and three 

experimentally amended conditions for the C- soil (Table 3). The latter was designated as 

B (seaweed biochar), V (vermicompost), and BV (seaweed biochar and vermicompost). 

The treatments consisted of six replications each and thus totaled 30 experimental units. 

To assess the effect of biochar and/or vermicompost in the physico-chemical properties of 

C- soil, experimental soil mixtures using single and combined amendments were prepared 

(as shown in Table 3). Batches of C- soil were mixed with 1% seaweed biochar and/or 3% 

vermicompost (dry weight basis, dw), which had been equivalent to doses of 22.3 ton ha-1 

and 67.05 ton ha-1, respectively. The biochar dosage was determined via laboratory assays, 

aimed at neutralizing the C- soil (up to pH 6.5), while the vermicompost dosage was 

defined based on previous area-related studies (Goecke et al. 2011; Cárcamo et al. 2012; 

Neaman et al. 2012). A fifth treatment, combining both amendments at their respective 

doses, was also incorporated (Table 3).  
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Table 3. Soil Treatments Used to Assess the Effects of Seaweed Biochar and 
Vermicompost on the Remediation of Chemically Degraded Los Maitenes Soil 
(C-) 

 

Treatment Biochar (%) Vermicompost (%) 

C- 0 0 

C+ 0 0 

B 1 0 

V 0 3 

BV 1 3 

Single and combined treatments of B and V were based on dry weight percentages and 
background soil from Maitencillo (C+) was included for comparison 
 

Batches (6 kg, dry weight) of each experimental soil were prepared by adding the 

substrates in 10-L polyethylene bottles and mixing the components in an automatic roller 

(Tecco YGR) at 11 rpm for 20 min. The gravimetric water content at 100% field capacity 

of all experimental soils (amended and not amended) was estimated according to the 

method by Klute (1986) to define irrigation regimes for weight loss. Thereafter, the soil 

from each experimental soil was poured into six 1-L plastic pots (800 g of soil per pot) 

with holes for drainage. Pots with experimental soils (total of 30 experimental units) were 

randomly placed on benches in a greenhouse under a controlled temperature (26 ± 2 °C) 

and natural light and photoperiod (spring period). Positioning of pots was randomized once 

a week to avoid edge effects, and they were watered at 70% of field capacity every other 

day over 11 weeks. As suggested in the literature, soil chemical equilibration was supported 

during an initial 4-week period (España et al. 2019). Then, at the beginning of the fifth 

week, 0.6 g of Lolium perenne var. Belinda seeds (a species commonly used for assessing 

soil acidity and metal toxicity) were sown in every pot (Arienzo et al. 2004). 

During the 1st, 4th, and 11th weeks of the assay, following the methodology 

described by Vulkan et al. (2000), 5 to 7 mL aliquots of soil pore water had been collected 

from all pots using Rhizon® pore water samplers (Rhizosphere Research Products, 

Wageningen, Netherlands). These samples were stored in acid-washed polyethylene vials 

and were analyzed for pH (combined pH electrode, Sensorex 120C), electrical conductivity 

(EC) (conductivity-meter, Schott Gerate CG858), and ionic copper (Cu2+) (selective Cu 

ion electrode, Orion, model 9629 BN; calibrated using a diamino acetic acid solution) 

(Rachou et al. 2007). pCu2+ (Cu activity) was calculated from the obtained Cu2+ values 

(according to Eq. 1):  

pCu2+ = -log [Cu2+]          (1) 

By week 11, the root and shoot biomass of L. perenne in each pot had been 

harvested. Aerial biomass was washed with deionized water and blotted dry with absorbent 

paper prior to fresh biomass determination. Roots were separated from soils by spraying 

tap water (at a low pressure) onto the roots over a fine-mesh sieve (allowing for the removal 

of soil while retaining thin roots). Root and aerial biomass were oven-dried to a constant 

weight (dried at 45 °C in an air-forced cabinet for 72 h) before determining dry weight 

biomass. 

 

Statistical Analysis 
A two-way analysis of variance (ANOVA) was performed (with a Tukey HSD 

posteriori test) to compare differences in chemical properties of pore water among 
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treatments and time. A one-way ANOVA was used to contrast the root and shoot biomass 

of L. perenne among treatments. When data did not meet conditions to perform parametric 

tests, logarithmic transformations, as described in Zar (1984), were performed. All data 

processing was performed using the SPSS 23 (IBM, Armonk, NY, USA) and Infostat 

(UNC, 2020p, Córdoba, Argentina) statistical programs. 

 

 
RESULTS AND DISCUSSION 
 

Experimental Soils: Physicochemical Characteristics 
As expected, the most successful neutralization of C- soil was obtained after 

biochar incorporation (with or without vermicompost) (Table 4). At the tested doses of the 

present study (Table 3), incorporation of vermicompost also reduced soil acidity, although 

less efficiently than seaweed biochar. Indeed, incorporation of biochar increased the pH of 

C- soil by 2.4 units (up to pH 6.6) followed by incorporation of vermicompost by 2.0 units 

(up to pH 6.1) (Table 4). This was unsurprising because biochar is known for its 

neutralization effects that may be attributed to its alkalinity (Ding et al. 2017; Yu et al. 

2017; Moore et al. 2018). Soil neutralization via these soil amendments could furthermore 

be associated with the presence of phenolic, carboxyl, and hydroxyl functional groups in 

both vermicompost and biochar (which react with soil H+ and thereby reduce H+ 

concentrations and increase the pH level) (Ding et al. 2017; Oliveira et al. 2017; Yu et al. 

2017; Araya et al. 2021).  

Due to the high salinity of the seaweed biochar (27.4 dS m-1; Table 2) of the present 

study, it was not surprising that biochar amended C- soils showed high EC soil values (with 

or without vermicompost) (Table 4), even at the low (1%) dose applied to C- soil. 

Incorporation of vermicompost did not affect EC values (Table 4). The CEC of amended 

soils (B, V, and BV) was lower than that of C- soil (with values ranging from 3.22 to 4.11 

cmol kg-1). Due to the dilution effect of adding amendments (particularly in the case of 

vermicompost), the total metal(loid) concentrations of amended soils were slightly reduced 

(Table 4).  

 

Table 4. Initial Physicochemical Parameters of Experimental Soils 

Treatment* pH EC CEC OM Available Nutrients 
(mg kg-1) 

Total Metal(loid) 
(mg kg-1) 

(dS m-1) (cmol 
kg-1) 

(%) N P K Cu Zn As 

C- 4.1 0.18 5.36 0.73 9.5 33.2 179 354 174 16.1 

C+ 5.7 1.0 6.15 1.05 12.9 17.7 169 27.6 81.2 6.8 

B 6.6 21.2 3.61 0.73 15.9 62.4 1994 315 142 13.3 

V 6.1 0.88 3.22 1.21 20.7 51.2 556 283 133 11.2 

BV 6.6 20.4 4.11 1.21 17.5 73.6 1606 323 146 13.6 

* Codes explained in Table 3 
EC, electric conductivity; CEC, cation exchange capacity; OM, organic matter 

 

Lastly, incorporation of biochar or vermicompost improved nutritional content of 

C- soil, but only vermicompost improved OM content (1.7-fold) of C- soil (to even higher 

values than that of the C+ soil) (Table 4). Specifically, available N, P, and K levels in C- 

soil increased 1.7-, 1.9-, and 11.1-fold after incorporation of biochar and 2.2-, 1.5-, and 

3.1-fold after incorporation of vermicompost (Table 4). Therefore, available N increased 
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much more (2.2-fold) after vermicompost incorporation than with biochar incorporation 

alone (1.7-fold). Findings from the present study agreed with previously described results 

regarding selected soil amendments (Amoah-Antwi et al. 2020; Kheir et al. 2021). 

 

Experimental Soils: Pore Water Chemistry  
Soil neutralization was rapidly achieved after the application of both amendments 

and significantly increased with the progression of time as shown by soil pore water values 

(Table 5). Specifically, B and BV treatments reached the highest pH values, with only 

slight variation detected throughout the 11 weeks. The pH value in vermicompost 

treatments (V and BV) also increased (up to pH 6.51 by week 11), although it should be 

noted that the initial pH of 5.7 had been nearly one unit higher than that of C- soil (Table 

5). Whilst a gradual pH increase over time was observed in the pore water for all treatments, 

the magnitude of this increase varied among the treatments and the different sampling dates 

(Table 5). The C- soil showed the lowest pH values throughout the experiment and little 

variation was found throughout subsequent weeks. It is known that several factors may 

influence long-term soil pH changes (e.g., the microbial decomposition of OM and the 

nitrification process) (Cárcamo et al. 2012), as observed in soil pore waters of the present 

study. 

 

Table 5. Variation of pH, EC, and pCu2+ in Experimental Soils over Time (during 
weeks 1, 4, and 11)  

Treatment 
/ Week 

pH pCu2+ EC (mS cm-1) 

1 4 11 1 4 11 1 4 11 

C- 4.6 + 
0.3 

4.7 + 
0.2 

5.1 + 
0.3 

5.7 + 
1.1 

5.4 + 
0.6 

2.6 + 
0.2 

0.5 + 
0.1 

0.5 + 
0.1 

0.3 + 
0.1 

C+ 5.8 + 
0.5 

6.2 + 
0.2 

7.0 + 
0.3 

9.6 + 
1.9 

9.2 + 
0.9 

8.2 + 
0.4 

1.3 + 
0.2 

1.7 + 
0.1 

0.3 + 
0.3 

B 7.2 + 
0.1 

7.3 + 
0.1 

7.4 + 
0.2 

20.2 + 
1.3 

20.7 + 
1.1 

14.0 + 
2.0 

> 20 > 20 14.9 + 
2.4 

V 5.7 + 
0.5 

5.9 + 
0.4 

6.5 + 
0.5 

8.7 + 
1.5 

7.8 + 
1.7 

6.1 + 
0.9 

1.2 + 
0.5 

1.3 + 
0.4 

0.4 + 
0.2 

BV 7.3 + 
0.2 

7.3 + 
0.1 

7.6 + 
0.2 

17.4 + 
0.4 

16.9 + 
1.1 

11.7 + 
0.6 

> 20 16.9 + 
1.6 

14.6 + 
2.9 

 

Source of 
Variation 

F P F P 

Treatment 375.78 < 0.001 748.8 < 0.001 

Week 46.92 < 0.001 191.16 < 0.001 

Interaction 3.87 < 0.001 8.85 < 0.001 

Data are presented as means with standard deviation. Electrical conductivity (EC) that exceeded 
the measurement capacity of the conductivimeter is expressed as > 20. F and P values of two-
way ANOVA for pH and pCu2+ levels are provided. 

 

Biochar amended C- soil (B and BV) reached very high EC values (> 20 mS cm-1), 

resulting in saline pore water values (particularly at the onset of the assay) (Table 5). While 

these EC values tended to decrease with time (in all treatments), EC values of the B and 

BV treatments were still higher than 14 mS cm-1 by week 11 (indicating high salt 

concentrations) (Table 5). Generally, the high EC values of biochar can be explained by its 

high ash content, high surface-area-to-volume ratio (Ullah et al. 2020), and a particularly 

high Na concentration when of marine origin (Bird et al. 2012). All three characteristics 
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were true for the seaweed biochar used in the present study. Therefore, the increase of EC 

in biochar-amended soils could be explained by either the high contribution of ionic 

nutrients (that can promote plant growth) or the presence of cationic and anionic salts (that 

can cause toxicity symptoms in plants), which suggests that the present´s study increase in 

pore water EC rather reflects the increase in nutrient ions (such as K, Mg, or Ca). However, 

to test this hypothesis, analyses to quantify seaweed biochar salt concentrations and to 

assess its potential toxicity to plants are needed.  

Copper activity (pCu2+) values significantly increased after the incorporation of 

amendments (B, V, and BV), which suggests an important decrease in soluble Cu 

concentrations in C- soil (Table 5). As expected, the incorporation of biochar had been 

more effective in decreasing soluble Cu levels (3.8-fold) than that of vermicompost alone 

(1.4-fold). However, pCu2+ values also significantly decreased for all treatments over time, 

indicating an overall increase in Cu solubility over time irrespective of treatment (Table 

5). Yet, the biggest changes were detected for B and BV treatments, where pCu2+ decreased 

from 20.24 to 13.95 and from 17.41 to 11.73, respectively (Table 5). The magnitude of this 

decrease was 3 to 5 times higher than that of the C- soil (which only decreased from 5.71 

(week 1) to 2.64 (week 11), suggesting that the incorporation of biochar significantly 

decreased Cu solubility in the chemically degraded soil, at least for the duration of this 

assay. The effect of biochar on metal availability depends on its original feedstock and its 

processing temperature (Wu et al. 2017; Araya et al. 2021). As such and because of 

contrasting results, the potential of biochar to modify soil metal availability has been 

widely discussed. Some authors have found that biochar reduces the mobility and 

bioavailability of metals (mainly ascribed to its liming effect) (Jones et al. 2016; Wu et al. 

2017; O'Connor et al. 2018), whereas others have found that metal(loid) concentrations in 

pore water of biochar amended soils may increase. For example, Beesley et al. (2010) 

found that Cu and As concentrations in pore water of biochar amended soils increased more 

than 30-fold, which could be explained by a significant increase of Dissolved Organic 

Carbon (DOC). In general, biochar produced at < 500 °C has a high DOC content that 

could, in turn, promote the solubilization and mobilization of Cu into soil pore water, due 

to the formation of Cu-DOC complexes (Ahmad et al. 2014; Hameed et al. 2019). Yet, in 

the present study, Cu activity significantly decreased in soil pore water after incorporation 

of seaweed biochar with C- soil (the biochar having been produced at < 500 °C). Moreover, 

this effect lasted 11 weeks after biochar application. 

 

Plant Growth Parameters  
Shoot biomass (dry weight basis, dw) of ryegrass plants that had been cultivated in 

experimental soils varied significantly among the treatments (P < 0.001) (with the lowest 

value recorded for C- soil (0.75 g) and the highest value recorded for V treatment (2.52 g) 

(Fig. 2a). All amended C- soils (B, V, and BV) showed significantly higher shoot biomass 

than that of C- soil, although, unexpectedly, B and BV treatments were not statistically 

different to the C+ soil (as was seen for V treatment) (Fig. 2a). Similar to shoot biomass, 

all amendments significantly increased root biomass (dw) compared to that of the C- soil 

(P < 0.001) (Fig. 2b), although none were statistically different from C+ soil (Fig. 2b). 

Pearson single correlations among plant biomass and soil pore water parameters (pH, EC, 

and pCu) showed positive and statistically significant correlations among root biomass and 

pH (r = 0.53) as well as shoot biomass and EC (r = 0.43). No single correlation of 

significance had been detected among pCu and L. perenne shoot or root biomass.  
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Fig. 2. Variation of shoot (a) and root (b) dry biomass of Lolium perenne plants grown in C- and C+ 
soils and amended C- soils (B, V, and BV) (n = 6). Letters indicate significant differences among 
treatments according to a Tukey HSD test (P < 0.05). 

 
Seaweed biochar and/or vermicompost incorporation to C- soil resulted in a 

positive and significant response for dry biomass of L. perenne, with similar (B and BV) 

or even higher (V) yields than the C+ (background) soil. These results suggest that, at the 

experimental dosage tested, the use of both soil amendments had been effective to restore 

the soil chemistry of C- soils (discussed above) and to sustain normal growth of the 

a 

b 
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indicator plant. For vermicompost (V) incorporation, shoot yield was even higher than that 

of the background soil. These results agreed with previous findings that biochar (Abd El-

Azeem et al. 2013; Roberts et al. 2015b, 2015c; Godlewska et al. 2017) and vermicompost 

(Kheir et al. 2021) may be used as soil amendments for the remediation of chemically 

degraded soils. Changes in metal and nutrient availability are mainly governed by changes 

in soil pH (González et al. 2015). Because biochar tends to alkalize soils, it can reduce 

metal availability. In addition, nutrient availability could be reduced if the amendment 

changed the soil pH beyond its optimal range (5.5 to 6.8) (Lehmann et al. 2015). For 

example, N, K, Ca, and Mg deficiencies can occur when the pH goes below the optimal 

range, whereas the solubility of Fe, P, Mn, Zn, and Cu can decrease when the pH goes 

above the optimal range (Cortés-D et al. 2013). In this study, soil pH in the optimum range 

was achieved by incorporating vermicompost with acidified soils. However, biochar 

application then increased soil pore water pH above 6.8, which might explain its lesser 

effect on plant dry biomass. 

Some studies have suggested that, while biochar promotes metal immobilization, it 

may also decrease the availability of macro and micro-nutrients (resulting in nutrient 

deficiencies for the plant). For example, a study by Rees et al. (2015) on the cultivation of 

L. perenne and Noccaea caerulescens illustrated that biochar incorporation with acidic 

soils improved the nutritional condition of the soil and decreased metal solubility. Yet 

biochar incorporation with soils of a higher pH decreased nutrient availability (mainly due 

to soil alkalization and changes in negative exchange sites for metal cations and nutrients) 

(Rees et al. 2015). The relationship between pH and biochar exchange sites was also 

studied by Gang et al. (2019), who found that there are pH ranges in which the nutrients 

provided by the biochar may become more/less available. For example, when the pH of an 

acidified soil increases, the adsorption of NH4
+ also increases (due to the increase of 

negative charges on the substrate). In contrast, when soil pH increases above 8, NO3
- 

adsorption decreases (because the negative charge of OH- binds to the positive charges on 

the surface of the biochar) (Gang et al. 2019). As a result, the combined use of biochar 

with other amendments has been recommended to achieve the reduction of metal 

availability whilst contributing to soil fertility and favoring plant growth (Wu et al. 2017; 

Xu et al. 2017). For example, a study by Wang et al. (2016) found that the combination of 

compost and biochar resulted in significantly greater benefits than single biochar when it 

came to fresh root and shoot biomass of mung bean (Vigna radiata) plants. Yet, in the 

present work, the combined incorporation of seaweed biochar and vermicompost (BV) did 

not induce a better plant response (at least not with the tested doses).  

It is also important to note that elevated EC values of B and BV treatments had no 

relevant effects on plant yield. It is well known that potential plant toxicity, based on high 

EC soil values, depends on several factors related to salt concentration and composition 

(e.g., having high cation (K, Mg, Na), anion (NO3, SO4, Cl), or other ion (Mo, Al, and B) 

concentrations) (Wallender and Tanji 2011). In this study, the high macronutrient 

contribution of biochar suggests that its cationic component may be contributing to its high 

EC, which would thus not be toxic to the organisms growing in the soil. Generally, the high 

EC values of biochar can be explained by its high ash content, a high surface-area-to-

volume ratio (Ullah et al. 2020), and a particularly high Na concentration when of marine 

origin (Bird et al. 2012). All three characteristics were true for the seaweed biochar used 

in the present study. Therefore, the increase of EC in biochar amended soils could be 

explained by either the high contribution of ionic nutrients (that can promote plant growth) 

or the presence of cationic and anionic salts (that can cause toxicity symptoms in plants), 
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which suggests that the present study’s increase in pore water EC rather reflects the 

increase in nutrient ions (such as K, Mg, or Ca). However, to test this hypothesis, analyses 

to quantify seaweed biochar salt concentrations and to assess its potential toxicity to plants 

are needed. 

Incorporation of selected seaweed biochar and/or vermicompost with degraded soil 

of  Los Maitenes (C-) proved to be effective for the improvement of relevant physical (OM) 

and/or chemical soil parameters (pH, Cu availability, and macronutrient availability), and 

subsequently allowed for proper L. perenne growth (at least over the short term of 11 

weeks). Findings from the present study thus agreed with previously described results 

regarding soil amendments (Amoah-Antwi et al. 2020; Kheir et al. 2021). The findings 

furthermore suggested that the use of seaweed biochar as a soil amendment might be more 

effective than vermicompost for potential in situ and large-scale soil remediation in the 

Puchuncaví valley (inducing chemical improvements at a third of the application dosage). 

Indeed, while incorporated at a lower dose than vermicompost, seaweed biochar resulted 

in significantly higher soil neutralization and reduced free Cu2+ ions in soil pore water 

(even 11 weeks after its application). Whilst the present study represents a promising step 

toward field site evaluations, lower doses of vermicompost or other locally available 

organic amendment candidates must first be considered in similar laboratory-scaled 

experiments. 

 
 
CONCLUSIONS 
 

1. Seaweed biochar, produced at a slow pyrolysis temperature (450 °C) from M. pyrifera 

macroalgae biomass (grown at an experimental remediation farm in Quintero Bay), 

proved to be an effective amendment for remediation of degraded soils from the 

Puchuncaví valley under laboratory controlled conditions. At a low application dose 

(1%), it effectively increases pH,  neutralizes the soil, and immobilizes its Cu ions, 

whilst improving macronutrient levels over the short-term period of 11 weeks. These 

achieved soil improvements were able to restore indicator plant (L. perenne) yield 

levels to that of the background soil (irrespective of the soil salinization detected after 

biochar incorporation).  

2. Although seaweed biochar was effective in increasing soil pH and, therefore, reducing 

both soil acidity and Cu solubility in degraded soil of Los Maitenes, the authors 

recommend the combined use with vermicompost, or another organic amended,  to 

better contribute to restore the soil OM levels and soil fertility and thereby favor plant 

growth. This approach could be particularly useful if aided phytostabilization with 

native plants is the preferred technique to encourage in situ soil remediation. 

3. The positive experimental results obtained under laboratory-controlled conditions in 

the present study show the potential of an integrated terrestrial-coastal marine water 

remediation approach for the Puchuncaví District. However, further remediation 

studies under field conditions are needed as well as project evaluations and assessments 

of economic feasibility.  
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