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Synopsis

The statistical geometry of fibrous networks is described in
terms of the fibre and sheet dimensions and geometric probability .
The method has been developedfor random- two-dimensional structures
and extended to cover deviations from randomness (orientation and
flocculation). It is also applied to a multiplanar structure as a first
approximation to three-dimensional structures . Further approxima-
tions to three-dimensional networks are discussed. Experimental
resultsfor two-dimensional structures are presented.

La géométrie statistique d'un réseau defibres
La géométrie statistique des réseauxfibreux est décrite en termes

des dimensions des fibres et de la feuille et des probabilités géo-
métriques. La méthode est développée pour des structures bi-dimen
sionnelles organisées au hazard et étendue pour couvrir les déviations
des cas dûs au hazard (orientation, flocculation) . On l'applique aussi
à l'étude d'une structure multiplanaire en tant que première approxi-
mation d'une structure à trois dimensions. On discute aussi d'autres
approximations pour des réseaux tri-dimensionnels . Des résultats
expérimentaux concernant des structures bi-dimensionnelles sont
présentés.

Statistische Geometrie von Fasernetzwerken
Die statistische Geometrie von Fasernetzwerken wird mit Hilfe

der Faser- und Blattdimensionen und der geometrischen Wahrschein-
lichkeit beschrieben. Das Verfahren wurde zunächst für zufällige
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zweidimensionale Strukturen entwickelt, aber dann so erweitert, dass
es auch zur Beschreibung der Abweichungen von der Zufälligkeit
(Orientierung und Flockung) benutzt werden kann . Ebenso lässt es
sich zur Beschreibung multiplanarer Strukturen als erste Näherung
für dreidimensionale Netzwerke verwenden. Andere Näherungen für
dreidimensionale Strukturen werden diskutiert und experimentelle
Ergebnisse für zweidimensionale Strukturen werden mitgeteilt .

Introduction
LOOKING upon the papermaking process from a general standpoint,

the papermaker's activities can be summarised in a few sentences . He finds
cellulose fibres in plants (or in fabrics), where they are arranged to serve the
purposes of nature (or the cotton manufacturer) . He destroys the original
ordered structure of the fibres by separating them partially or completely
from each other . He brings them together again in a new structural arrange-
ment to suit his own purposes . Along the way, he may take steps to remove
undesirable substances from the fibres before using them or he may treat
them mechanically to alter their dimensions or physical properties . From a
fundamental point of view, operations like these, although of great import-
ance to the quality ofthe finished product, are only incidental to the process .
Dissolution ofan existing structure and creation ofa new one is the essence of
papermaking .

The two outstanding characteristics of the structure produced on a
papermachine or in a laboratory sheetmachine are disorder and planar shape .
In either process, fibres are deposited on the wire in more or less haphazard
fashion, but, through a combination of the hydrodynamics of the wire and
the pressures applied in pressing and drying, they are forced into planes
essentially parallel to that of the sheet .

It is generally accepted that, apart from the effects of additives, fillers,
etc ., the physical properties of the finished paper are determined primarily
by the properties of the fibres and their arrangement in the sheet

	

that is,
its structure. Through this symposium, we hope to obtain a better quantita-
tive understanding and this is the only true form of understanding of the
nature of sheet structure, because it is both the determinant of the physical
properties of paper and the issue of the papermaker's effort.

Definition of the problem
THE structure of paper is defined here as the geometric arrangement of

fibres and interfibre spaces in the sheet . The problem is to describe structure
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in terms of the shape of the fibres and geometric laws alone . The results ought
to be generally valid for any fibre network, provided it satisfies certain con-
ditions . Not included in these conditions are the structural features of the
individual fibres . We will consider fibres as structural elements, characterised
only by their dimensions and shape, a large number of which , comprise an
irregular network . Questions of how the network was produced or how it
would respond to changes in its environment are immaterial . Our sole
objective here is to describe the network correctly in its final, static condition.
The problem being the geometry of an irregular system of a large number of
elements, the only possible method is statistical geometry. The problem will
be considered solved when a number of dependent variables (that is, well-
defined, geometric properties of the network apparently related to the macro-
scopic properties of paper) can be calculated from other independent variables
(quantities that are given or chosen at will) . The number of fibre/fibre cross-
ings and the number of spaces in the network are typical dependent variables,
whereas the length and width of the fibres are examples of independent
variables .

The long-range goal we keep before us is to provide a set of numbers
such that someone who may never have seen a piece of paper can still form
a reasonable image of it from our quantitative description . It is a goal to be
reached in steps (if at all) and perhaps by a path similar to the following .

General plan
I. TWO-DIMENSIONAL (2-D) NETWORKS

A.

	

Ideal (random) case
B.

	

Deviations from randomness-
1 . Non-random fibre orientation
2 . Flocculation

I( . THREE-DIMENSIONAL, (3-D) NETWORKS
(three models have been considered)
A. .

	

Multi-planar networks
B.

	

Networks of horizontal fibres
C.

	

Squeezed-out three-dimensional random networks

THE programme began with the two-dimensional case, because (1) the
fibres of most papers arrange themselves in a series of parallel planes and
(2) we wished to test our theories on very thin handsheets in which the fibres
lie essentially in one plane and are clearly visible (Fig . lb) . A further simpli-
fication consisted in defining the two-dimensional (2-D) network to be ideally
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random

	

that is, the fibre centres and the angles between the fibres and a
given direction have random distributions .

Fig. 1-2-D fibre networks

(a)-Random network of straight lines

	

(b)-Random 2-D sheet

(c)-Oriented 2-D sheet

	

(d)-Flocculated 2-D sheet

Real sheets differ from ideal 2-D structures not only by not being two-
dimensional, but also by deviating from randomness . Deviations from
randomness can be of only two types in that (1) the angular distribution is
non-random (orientation) and (2) the fibre centres are not randomly dis-
tributed (flocculation) .
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Three-dimensional (3-D) structures are most easily obtained by piling up
2-D layers to form a sheet approximating real paper . Because drainage on
papermachines takes place above the table rolls in steps, the fibres may be
deposited stepwise on the wire, at least at low machine speeds . Therefore, we
believe the multi-layer structure consisting of a pile of 2-D sheets to be a
model worth considering, at least as a first approximation . A more realistic
structure would be one in which the fibres are arranged in unevenly spaced,
parallel planes . Still more realistic would be a 3-D fibre network squeezed out
until the angles between the fibres and the plane of the sheet have all become
comparatively small . If this last model could be made to include flocculation
and non-random orientation, it would lead to the most realistic description
of the structure of paper .

It is obvious from the foregoing general plan that the number of in-
dependent variables necessary to describe the structure increases with each
succeeding entry . Near the bottom of the chart, our difficulties increased
exponentially . Whenever they were more mathematical than conceptual,
approximations were used ; in other cases, they were such that no adequate
definitions and concepts could be formed, leaving no alternative but to define
artificial models . On the whole, we found that statistical geometry furnishes
the tools for a satisfactory initial approach to the problem at hand .

The remainder of this article is given to relatively detailed considerations
of the single steps of the general plan .

Ideal 2-I) network

jnitions
IN an earlier publication giving full details,O) an ideal 2-D network was

.ned to have certain properties
1 .

	

The position of the fibre centres in the plane and angles between the fibre
axes and a fixed direction have random distributions .

2 . The area covered by more than two fibres is a negligible part (less than
1 per cent) of the total area .

3 .

	

Furthermore, fibres have length A and width w, both of which may vary so
long as A>w. Curvature in a fibre is expressed by the curl factor -r, the ratio
of fibre length to the distance between its ends. (2) The values A, W and T
are independent variables (because they are fixed by nature and the pro-
cesses leading to the finished structure) .

Two other independent variables pertaining to the network as a whole
are A, the area of the sheet and Nf, the total number of fibres in A. The
quantities A and Nf may be replaced by w, the weight per unit fibre length
3-F.S.P . : i
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(specific fibre weight) and W, the weight per unit area of sheet (basis weight
of the sheet) . Thus, we have

Nf/A = W/Aw (1)

(Throughout this article, the bars over symbols indicate mean values .)

Properties of random structures
FOLLOWING the definition of randomness above, the probability p(r)

that a point chosen at random in A is covered by r fibres is

e_NfalA(NfOIA)r
P(r) =

	

r (2)

where á= Aco is the mean area of a fibre and Nf6/A is the mean number of
fibres covering a point in A. The term NfálA can be replaced by Wcolw,
according to equation (1) . Then, with PCr)r > 2 < 0*01 (definition 2), the
maximum basis weight compatible with the definiton of a 2-D network can
be calculated . For a number ofpapermaking fibres, this value has been shown
to lie between 1 and 3 g/m2 (see Table IVM).

An equation of the same form as (2) expresses the probability of finding
exactly Nf fibre centres within a small area a, chosen at random in A. In this
case, Nfa1A is replaced by the mean number of fibre centres in the area a and
ñf=Nfa1A= Wa/áw. Dividing A into a large number of squares, each of area
a, the fraction containing exactly nf fibre centres, p(nf), is given by

e_NfaIA(NfaIA)nf
pCnf) =

	

nfi (2a)

If the squares of area a have sides of the same order of magnitude as the
fibre dimensions, most fibres will pass through more than one square . Con-
sequently, each one will contain segments of fibres that pass through (fibre
chords), terminate in (fibre ends) or lie entirely within the square . The fraction
of the all the squares containing nseg fibre segments is given by

p(nseg) =
e-nseg (n seg)nseg

nseg I
(2b)

where ñseg is the mean number of segments per square .
A straight line of length L (a scanning line) drawn through a random

2-D fibre network will intersect a certain number of fibre axes N. Dividing
the scanning line into small lengths l, the probability of finding exactly n
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intersections in l (or the fraction of sections containing n intersections) is
given by-

e-N11L (NIIL)n

	

.

	

2c()p(n) = n

Here, Nl/L is the mean number of fibres intersecting length l and is indepen-
dent of the direction of scanning, because of the random fibre orientation.

Equations (2-2c) are all applications of the Poisson distribution, a func-
tion describing the relative frequencies of random events, processes and
arrangements . Agreement between experiments and values predicted by any
one of the equations verifies the random fibre centre distribution in a general
way . The most convenient, though not very sensitive comparison of theory
with experiment is that between equation (2c) and the measured scanning
distributions . When applied in different directions, scanning also provides a
simple means of checking the randomness of the angular distribution of the
fibres .

Scanning furnishes data for still another test of randomness of the net-
work . Consider the distances (gap sizes) along the scanning line between two
consecutive intersections with fibres . For a random or Poisson process, the
probability that this distance has a value between g and (g -I- dg) is given by
the negative exponential distribution

r(g) = L.exp
(
-L gl dg

	

.

	

.

	

.

	

.

	

.

	

(3)

where NIL, is the mean number of intersections per unit length of scanning line
or the reciprocal mean gap size .

Calculation of dependent variables
Definitions

THOSE dependent variables chosen to describe the structure of an ideal
2-D network areM

1 .

	

The (total) length or mass of fibrous material (M), m
2.

	

The (total) number of fibre crossings (N,), n, ;
3 .

	

The (mean) number of crossings per fibre (c), c ;
4 .

	

The (mean) free fibre length or gap size along a fibre (g), g ;
S .

	

The (mean) number of free fibre lengths per fibre (fig), n, ;
6.

	

The (total) number of polygons or holes (Nh), nh;
7. The (mean) number of sides per polygon (ñ,), ns ;
8 .

	

The (mean) polygon area (ah), ah .

The symbols in parentheses at the end of each of the eight definitions
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above refer to net values (totals or averages) of the variables . We believe
variables 2-S to be associated with mechanical properties of the network and
6-8 with porosity properties . Firstly, they, then their distributions, will be
considered .

Net values

The total length and mass in a 2-D sheet ofarea A have received the same
denotation, M-

M{

=NfA

=AW/ti'v

- NfAw

	

.

	

.

	

.

	

(4)

length

	

mass
= AW

	

.

	

.

	

.

	

(4a)

2-D sheets consist of intersecting fibres and the spaces between them . In net-
works of straight lines, these spaces are polygons, whose average number of
sides ñ s has been shown to be 4 when the lines are of either infinite( 3 ) or finite
length.0) The fibres of real paper are themselves slightly curled, but the
distances along fibres between adjacent crossings the free fibre lengths or
gaps are small enough to be treated as straight lines bordering polygons .

Of the remaining six quantities, the number of crossings is first in im-
portance, because the other five can be calculated from it . It is expressed by

N -- (Nf
A

)

	

.

	

S
7TA;-r 2

from which it follows that the mean number of crossings per fibre is

and the mean free fibre length is

2N,

f

g - cT . (7)

The average polygon, having four sides, is formed by four crossings, each of
which belongs to four separate polygons . Thus, in a network of infinitely long
lines ofno width, the number of polygons is equal to the number of crossings,
whereas networks offinite lines ofno width have fewer polygons in proportion
to the number offibres . In networks offinitefibres with width, a fraction ofthe
number of polygons equal to the fractional covered area of the sheet is lost .
The final expression for the number of polygons in a network is

NfáNh = (N,, -Nf) exp (- A ) (8)
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The mean polygon area, however, is not affected by fibre width, because the
narrowing of larger polygons owing to fibre width is exactly compensated by
the complete covering and disappearance of smaller holes, hence

A

Finally, the average number of free fibre lengths per fibre is given by

g-

	

p (- A )

	

.

	

.

	

.

	

.

	

.

	

.

	

(10)

where c> 1 and the exponential term corrects for the saine effect as in equa-
tion (8) .

Distributions
An important feature of random fibre networks is non-uniformity. The

network of Fig. la, consisting of 970 straight lines of uniform length, was
constructed using random number tables. Fig . lb pictures about 970 fibres in
a portion of a 2-D handsheet photographed to the same scale. Comparison
with Fig . 1a shows a remarkable similarity and emphasises the fact that, in
spite of efforts by the papermaker to the contrary, paper must always be
non-uniform in structure .

By viewing paper as a random structure, we ascribe to it an inherent non-
uniformity, which no papermaker can hope to remove without actually con-
trolling the deposition of individual fibres . At the same time, we open the
door to treatment of paper structure and its inherent non-uniformity by
statistical geometry to express the distributions of the dependent variables in
terms of the independent variables .

The dependent variables possess either areal or frequency distributions .
No. 1, 2 and 6* have the former, for, when the sheet is divided into small
squares of area a, the squares exhibit distributions with respect to these three
variables . These distributions cannot be predicted exactly from theory, but
they may be approximated by a technique based on equation (2b) . Knowing
(a) the frequency of squares containing different numbers of segments
(equation 2b) and (b) the relationship within a square between the number of
segments and any one dependent variable such as number of crossings, sub-
stitution of the latter (b) in the former (a) yields an approximate areal dis-
tribution of the number of crossings per square .

* The distribution of the number of polygons was not considered, because many
polygons lie in two or more adjacent squares
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It has been shown(') that the mean of the distribution ñseg given by
equation (2b) is related to the mean number of fibres per square ñf by

where

and 1=1/a . (4)
The relationships between dependent variables No. l and 2 and ñseg are

and

ñseg = fifklT2

Tl (

= nseg keg = nseg keg 17V

(11)

(13)

nc -
-

2
1
,P nseg (nseg-1) (14)

where keg is the mean segment length. The term nseg(nseg- 1)/2 is the maxi-
mum number of crossings possible among nseg segments and p is the prob-
ability that two segments intersect . From earlier data('

_ 7rñfrr2(k-1) 2

8k(ñfk-T2)
which, when Too and T=1 reduces to 7r/8, Deltheil's value for a random
network of infinitely long fibres . (5)

Variables No. 3, 4, S, 7 and 8 refer to individual geometric elements,
therefore have frequency distributions . The distribution of the number of
fibre crossings per fibre is simply the scanning distribution equation (2c) with
n replaced by c and N11L by c=2NcINf. Ifindividual values of c are converted
into values of ng , the number of free fibre lengths per fibre, with equation (10),
the c distribution can be transformed into the ng distribution . Both distribu-
tions can be corrected for variations in the fibre length by summing over all
fibre lengths for each value of c and ng . The fibre length distribution is an in-
dependent variable that has to be given in terms of an empirical relationship
or in the form of a histogram.

The distribution of the free fibre length is identical with the negative
exponential distribution, equation (3), where NIL is related to the independent .
variables by-

N- 2ANf
L -rA (16)

An approximate distribution of the polygon area can be calculated from
equation (3) by assuming that the polygon area is proportional to the square
of the side length, the free fibre length-

a = Yg2

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

. (17)
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and substituting equation (17) into equation (3) . If, as is usually the case, the
free fibre length is small compared to total fibre length-

-y z 2/-gti
as found by Goudsmit for random networks of infinitely long lines . ( 3 )

Experimental programme and conclusions
THE independent variables A, w, T, A and W are subject to straight-

forward measurement . On the other hand, Nf must be calculated from the
scanning equation (16), w from equations (16) and (1) . The necessary scanning
data are most easily acquired by projecting the sheet on to a screen and
counting the number of intersections N that fibres make with a straight line of
length L or with an optical scanner .

Handsheets of 2-5 g/m2 fulfilling definitions 2 and 3 (page 17) were made
from suspensions of 7 x 10-4 per cent consistency in a British sheetmachine,
and studied in two ways

(a)

	

Results of scanning tests on them were compared directly with the dis-
tributions from equations (2c) and (3)-see Fig. 2 and 3, respectively .

(b) Portions of the sheet were projected on to a screen with a grid whose
squares corresponded to 1 mm squares on the sheet . The number of
segments and the number of fibre centres in each square were counted and
their distributions over the sheet compared with curves predicted by
equations (2b) and (2a)-Fig . 4 and 5, respectively .

The agreement in Fig . 2-5 between the calculated curves and the experimental
results is strong evidence for the random nature of 2-D sheets and justifies the
use of these equations for other areal and frequency distributions .

Fig . 6-8 demonstrate that the distributions of m, n, and ah can be cal-
culated with a remarkable degree of accuracy from the independent variables .
Now, it is not surprising that the net values showed good agreement between
theory and experiment . 0 >

That equations derived for geometric properties of 2-D sheets agree with
experiment implies that an ideal 2-D fibre network is completely described
when we assume the sheet/brming process to be random and assign values to its
independent variables.

Orientation in a 2-D network

5o far, we have been concerned with the geometric properties ofrandomly
formed networks only. In this section, we will consider the way in which
arbitrary angular distributions of fibre axes influence the geometric properties
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Fig . 2-Distribution of the number of fibres intersecting a scanning line

Fig. 3-Distribution of free fibre length
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Fig. 4-Distribution of the number of fibre segments per mm2

Fig. 5-Distribution of the number of fibre centres per mm2
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Fig . 6-Distribution of the length of fibrous material per mm2

Fig. 7-Distribution of the number of fibre crossings per rnm2
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of 2-D sheets . Because the dependent variables can best be calculated from N,
we derive this property first, starting with a generalised form of equation
(14)-

N, = 2PNf(Nf-1)

	

.

	

.

	

.

	

.

	

.

	

.

	

(14a)

The term P is the probability of an intersection between two given straight
lines of lengths A i and A;, lying in the area A and making angles 9i and 8 ; with
a fixed direction . Numerically-

P

	

Aj sin I O i - e;
P -	A

	

.

	

.

	

.

	

.

	

.	(19a)

Fig. 8-Distribution of polygon area

Introducing the fibre length distribution A(A) and the angular distribution
0(e) and averaging over all fibres, one obtains

P-

	

AiA . sin 6 i - 8j 0 9i 0 fI A Ai A A

	

d8jd®jdA dA
e i o e, o ~ i-o ~;-o

A2 ei-~ ei=~ sin
10

i - e; J o(ei)o(O;) dOids,

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

(19)
e i=o

	

a ;=0

Solution of equation (19) requires evaluation of 0(B) . Rather than measure
the angles that the individual fibres make with a given axis (a cumbersome
job), we employed the scanning technique to measure 0(e) . In oriented fibre
networks and machine-made papers, the number of intersections with a
scanning line of length L in the machine-direction, N(0), (8 = 0), will be smaller
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than the number in the perpendicular (cross-) direction, N (7r/2) . Scanning
such sheets in different directions defines a periodic function N(8), which can
be represented by a Fourier series ; the first two terms suffice for an initial
approximation

N(6) = a+b cos 2®

	

.

	

.

	

.

	

.

	

.

	

.	(20)

The double angle is used for symmetry reasons ; a and b are constants .
It can be shown that the angular fibre distribution 0(e) is related to

equation (20)(4 )-

0(0) = 1+e cos 2e

	

.

	

.

	

.

	

.

	

.

	

.

	

(21)

where e is the eccentricity of the distribution (see Appendix 1)

e _-_ 3b
Tra (22)

The machine-direction (0=0) must be found experimentally, if it cannot be
inferred, as in oriented handsheets . One scans the network in different direc-
tions radially from an arbitrarily chosen origin . The method of least squares
gives expressions for a, b and the negative angle a that the machine-direction
makes with the initially chosen origin as follows-

a =
:~N(ej) ;

	

b=
.r/M2+p2 ;

	

a - 2 taw-' - m

	

. 23(p1)

	

()

where

m = '57N(B,) cos 2®j

	

and

	

= ~N(e) sin 20 1
~COS2 201

	

p

	

:~ sin 2 20,

Once the machine-direction is known, e is calculable also from the
scanning results-

e
_ _3 N(ir/2) -N(0)

7r N(-r/2)+N(0)

	

.
(24)

The resultant eccentricity is a new independent variable related to fibre
orientation .

Substituting equation (21) into (19) eventually gives-

P - 2íi2

	

1 - e2,r
A

	

~

	

6 )*
Term P, equation (14a) and the reduced mean fibre length Al r= Aj, ; combine
to form-

N,

	

Nf2~12

	

1 - e2Tr
AT2 (ir

	

6 )
. (25)
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The number of crossings is greatest when e=0, that is, when the network is
random, at which equation (25) reduces to equation (5).

Although NC is diminished by any preferential fibre orientation, the re-
lationships between N,, and the other dependent variables are unaffected .
Thus, a decrease in N, increases the mean polygon area [equation (9)] and the
mean free fibre length [equation (7)] and decreases the total number of
polygons [equation (8)], the number of crossings per fibre [equation (6)] and
the mean free fibre length [equation (10)] . Of course, the number of crossings
and mean free fibre length of a given fibre is a function ofits orientation. This
leads to the result that when a strip of paper is clamped in machine-direction
the clamp will grip more fibres, but each fibre will, on the average, be crossed
by fewer other fibres . Similarly, when clamped in the cross-direction, the
clamp will grip fewer fibres, but each fibre will, on the average, be crossed by
more other fibres . The ratio of total number crossings made by the fibres
gripped when the sheet is clamped in the machine-direction S(-,712) and the
corresponding number for the cross-direction S(0) is given by-

S(7T)

	

W2_
1

	

2e-7e2
2

	

+ 9-r~ 45r

S(0)

	

_1 __2e_ 7e2
;2 9r-- 45

(26)

The value of this ratio is always greater than 1 (unity) .

Experimentalprogramme
The experimental programme was designed to determine (1) how good an

approximation is obtained by using only the first two terms of the Fourier
expansion to describe the scanning distribution, equation (20) ; (2) the
accuracy with which the angular fibre distribution can be calculated from
equation (21) ; (3) the agreement between the calculated and measured values
of N, equation (25).

It was impossible to produce oriented 2-D sheets . Instead, 30 g/m2 sheets,
composed of a 5 : 1 mixture of undyed, highly beaten, bleached sulphite fibres
and unbeaten sulphate fibres dyed black, were made by lifting a sheet
machine gridplate out of a dilute pulp suspension at an angle . Comparable
random sheets were formed from the mixture in the sheetmachine by the
standard pulp evaluation procedure . In photographs of the sheets, the black
fibres appeared to form a 2-D network, the white fibres being hardly visible
(Fig . 1 c) .

The oriented sheets were scanned every 10°, beginning at the apparent
machine-direction. The dotted line shown in Fig . 9 is the theoretical curve of
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the scanning distribution, equation (20), having calculated a= 156 (mean
number of intersections per scan), b 1 =38-3, a= 7° . The experimental points,
denoted by crosses, are seen to fall reasonably close to the theoretical
curve of eccentricity 0-208, as calculated from equation (22) . The solid line in

Fig. 9-Scanning distribution and distribution of fibre orientation

Fig . 9 is the angular distribution curve of equation (21) . The small circles
about it, signifying the number of fibres at a given orientation, scatter more
than the experimental points of the scanning curve, probably because the
number of fibres per 10° sector averages about a quarter of the number of
intersections per scan .
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The lack of constriction in the scanning curve indicates the insensitivity
of scanning to fibre orientation . Real deviations from the cycloidal shape as
reported in the literature(6 ) will not be revealed by an equation as simple as
equation (20) . The Fourier series may be expanded, however, to a sufficiently
large number of terms, N(e) = a + b1 cos 29 + b2 cos 4e + . . . + bn cos 20, so
that any desired accuracy can be achieved, with proportionate increase in
numerical work .

TABLE1-SCANNING DATA FOR A RANDOM
AND AN ORIENTED 2-D SHEET

The number of fibres and the number of crossings were counted in both
oriented and random sheets, the latter having a nearly circular angular
orientation distribution . The data in Table 1 show good agreement between
theory and experiment . On the whole, the effect of non-random fibre orienta-
tion on the total number of crossings appears to be comparatively small . It
will, in general, equal 165e2 per cent, which, for the case of the relatively
biased orientation illustrated by Fig . 9, amounts to a modification of only
7 per cent .

Flocculation in a 2-D network

THE difficult problem of describing quantitatively the statistical geometry
of a flocculated fibre network has not been solved completely . A method that
appears promising combines two models, one containing a detailed definition
of a floc, the other a detailed definition of a non-random point distribution .
In combination, the models give the total number of fibre crossings and,
therefore, all the other dependent variables .

The first model defines a floc of density n as a set of n fibres all or most of
which intersect each other . The floc density n has a distribution with moments

Data Random I Oriented

Mean fibre length, cm 0283
Mean curl factor 1-21
Area of sheet, cm2 5-86
Total scan length, cm 7-5
Eccentricity 0 I 0208

Number of intersections 230 156
(total scan length) (mean)
Number of fibres (calculated) 1 210 818
Number of crossings (calculated) 4 330 1 780
Number of crossings, eccentricity not

considered 1910
Counted number of crossings 4103 1 661
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tzr . It can be shown that the total number of crossings in a flocculated fibre
network is the sum of the number of crossings within flocs plus the number
between flocs-

N,

	

~2-I~i
- -

1N, = 2 Nf

	

2Nf2P

	

.

	

.

	

.

	

.

	

.

	

(27)
~i

The term P is the probability that any two fibres, chosen at random, will
intersect.

Flocs may constitute only a part of the network, the rest consisting of
randomly distributed fibres . In flocculated networks, the probability that a
given pair of fibres intersects is a combination of three terms-(]) 16
212/1TT2Arandom for the random part of the sheet, (2) is - 1 for intersections
within the flocs and (3) is (ai + aj+ UiU;/2)/Afloccu1ated(7) for intersections
between flocs, where a denotes the area and U the circumference ofthe flocs . (4)

In order to evaluate equation (27), the area distribution and at least the
first two moments ofthe density distribution of the flocs must be known . These
two quantities are those most workers in the field believe to be sufficient for a
numerical description of sheet formation.

The second of the two models comes in when we wish to evaluate the
area and density distribution of the flocs . Consider circles, denoting flocs,
dropped at random on a plane . Both the plane and the circles contain points
that may represent either fibre centres or crossings . The background density
of points is AO , the density within a circle is al and a region where r cir ,
overlap is ra t . Then it can be shown that p(n), the number of points per
area (local point density) in a randomly chosen region of the area A
(see Appendix 2)

A _,~O+Lln,>~
-Ai)rrnlr .

Ld
p(n) = e--

[no
1
e

	

n

	

(ae

In equation (28), r represents the number of overlapping flocs ant.,
which accounts for the area covered by the flocs, is equal to :~,gpi28i ;
term 8i is the mean density of centres of circles of radius P i . Rather tn-.
attempt to describe the cumbersome evaluation of equation (28), we present
below a simplified case to demonstrate its use and the type of information it
yields .

Consider the case of non-overlapping flocs of uniform area : that is,
r=1, a=ßp28 = fraction of sheet area covered by flocs and a is small enough
that e-a ^_J 1- a. Hence, equation (28) reduces to

~' n e-Ai

	

(29)



Equation (29) contains three variables, a, Ao and A,, which terms can be
puted by solving equation (29) for three sets of data . The data are
lined by dividing A into a large number of small unit areas and counting
.umber of points per unit area .
To use equation (29) for n = 0, 1 and 2, however, the sheet must be
led into areas so small that they contain only 0, 1 and 2 points . This being
acticable, the range of point densities was divided into three classes

, ring most of the range, but not entirely, to ensure independence . Equa-
(29) then becomes

4--li.s .P . : i

f(mi) = (1- a) i.

	

+a >.

	

t

	

(i = 1, 2, 3)

	

-

	

(30)
n .

	

nn(mz)

	

n(m2) '

Exce

~tatistlcal 8eomet~~ o,ffibrous network

	

.3,3

A~ne-A0 A 1 ne-Ai

e the summation is made over the class widths with means mi .
The above method was used to study flocculated sheets like that photo-

,f-ied in Fig . 1d. Sheets of this kind were made from a mixture of black and
fibres similar to those used for oriented sheets . Unlike the latter, how-
they were formed in a British sheetmachine from suspensions containing

;asing amounts of water (increasing concentrations), hence, with an
asing degree of flocculation .

-ABLE 2--DISTRIBUTION OF FIBRE CROSSINGS IN A FLOCCULATED 2-D SHEET

(unit squares of2 mm side length)
19 11 21 27 60 31 39 18 11 13 12 28 28 21 28 30 49 35 21 42 11

:, 26 16 21 22 33 16 27 18 27 27 19 26 29 16 14 22 9 58 14 4 21
24 27 9 54 28 14 18 11 17 27 32 31 46 21 14 23 28 31 18 18 1 14
14 42 27 25 28 25 27 17 24 39 42 39 36 32 24 27 47 58 54 22 26 18
58 54 16 40 32 26 38 21 24 41 24 18 32 51 45 25 37 12 21 11 18 28
21 12 20 33 27 34 34 28 22 51 68 62 21 30 16 27 30 28 27 10 5 27
45 28 22 33 21 14 37 70 56 31 37 17 9 27 18 40 87 77 38 20 50 25
28 17 27 24 27 41 20 37 43 23 32 33 23 21 10 23 16 39 40 38 43 30
32 17 16 12 29 27 12 39 34 21 26 57 25 18 40 16 29 20 71 17 14 13
19 17 13 17 16 25 31 13 36 24 17 40 40 29 45 32 19 61 63 31 37 13

Total number of crossings 6 232
Total number of unit areas (squares) 220
Mean density of crossings 28
Distribution-

Class Range of
crossings

Number of
squares

Frequency

1 1-20 67 0305=f1
2 21-40 120 0545=f2
3 41-60 24 0110=f3

s > 60 9 0040
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A surface photograph like Fig. 1d shows part of a flocculated black
2-D sheet. Its negative was projected on to a screen having a square grid to
represent 220 squares of 2 mm side length on the original sheet. The fibre
crossings were taken as points and their number counted in each square
Table 2 shows the results . The class widths of Table 2 yield, upon computa-
tion,

A0
= 23, X1 1 = 42, a= 0-2 ; 20 per cent of the area of the sheet is flocculated

and has a mean fibre density 42, whereas the rest of the sheet is a random
fibre network with mean density 23 . The average point density over the entire
sheet is 28 .

3-D networks

THE geometric treatment of three-dimensional structures is difficult in
comparison with the two-dimensional case, not only because it is more com-
plicated, but also because experimental tests by direct visual observation are
practically impossible . For lack of a direct check, we must place confidence
in the theoretical results and apply them to reasonably well-defined physical
experiments . This will provide an indirect check of the theory, besides accom-
plishing one of the general objectives of the programme relation of the
physical behaviour of paper to its structure. The latter subject is important
enough to occupy an article of its own later in the symposium . Only the
principal features of 3-D networks will be set forth here .

Multiplanar network
A multi-planar (MP) sheet consists of a pile of NL distinct, 2-D sheets .

Its most important dependent variable is again its total number of fibre
crossings . The detailed treatment of MP sheets( 9 ) first considers NL 2-D
layers, each containing Nf lines of no width, forming on the average Né
crossings . (Primed quantities refer to networks whose fibres have no width.)
If every layer completely penetrates every other layer, the resulting network of
NLNf lines lies in a single plane and has NC" NLZ crossings . If, on the other
hand, crossings are formed only by the lines within layers and between
contiguous layers, a total of N c (3NL - 2) crossings will be formed .

The number of crossings in an MP sheet of real fibres, Nc ,,, lies some-
where between these two extremes . It is a much more complex quantity than
N, for 2-D sheets, for it cannot be truly evaluated without first considering the
effects of fibre width and rigidity . Within 2-D layers, either by themselves or
in MP sheets, the number of crossings is fewer than that predicted by equa-
tion (S), because fibre width lowers the probability of a crossing between a
given pair of fibres. Quantitatively, its effect is to reduce Nc by a factor
B= 2[1 +p(0)], where p(0) represents the fractional uncovered area of a 2-D
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sheet and is equal to exp (= NfilA), the first term of the Poisson distribution .
Between a pair of 2-D layers in MP sheets, the reduction factor is B2 .

The number of crossings between fibres of different layers is restricted
also by the rigidity (or lack of flexibility) of the fibres . The more flexible the
fibres, the greater thefraction ofthe possible crossings actuallyformed between
thefibres of any two layers, an independent variable of fibres we have called
the penetration factor, 6K.* Its magnitude, which for fibres (K-1) layers
apart is obviously a decreasing function of K, depends on process variables
like pressing and drying, as well as fibre properties . For the present, however,
our only interest is in the numerical values of 6K for finished sheets .

From this discussion, it is apparent that no reasonable expression for
Ncm can be very hospitable . Notwithstanding, a number of simplifications are
possible, particularly that 6K > 3= Cp(0)K-2 , where C is a constant . Then

1 Cp(0)2 2Cp(0)2[1-p(0)2(NL -1)
]N,,= N'NLB 6 1 +2B 1-

NL
62+ 1-p(0)2 - NL[1 _p(0)2]2

(31)
In practice, the right side of equation (31) produces a number that, replacing
N, in equations (6), (7) and (10) for 2-D sheets, makes it possible to calculate
the dependent variables cm, gm and ngm . (The subscript m indicates properties
of MP sheets .) All three have distributions and means different for every layer
in the sheet . In the case of cm , for example, the mean number of crossings per
fibre in the Kth layer, when 2 < K <NL -1, is

cm = c'B 6 1 + B 262 -f- Cp(0)2

	

2_p(0 2(NL-K-1 ) _02(K-1)

	

32
I -p 0}2 (

	

)	P()

	

)

	

()11
Note that c' is the mean number of crossings per fibre of no width in a single
2-D layer . For the two edge layers, K=1 or NL and-

j, = c'B o, -I- B 6 +
Cp(0)2I _

	

0 2(NL-2)1

	

2

	

1 -p(0)2 (	p()

	

)

	

(32a)

Computation with equations (32) and (32a) showed the ratio of c1 : Ck> 3
to be approximately 1 :1-5-that is, fibres in the edge layers are held to the net-
work by about two thirds as many crossings as fibres well within the sheet .
Consequently, the edge layers should be more porous than the rest of the sheet .

Near the beginning of this article, we intimated that certain problems
concerned with MP theory are of a fundamental nature . Evaluation of the
dependent variables, Nh , ah and n S , for multi-planar sheets is one of those
problems . We have not been able to give a satisfactory definition of a pore or

* The penetration factor has been called `the effective fibre fiexibility'(9 )
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a hole in an MP network in which the fibres lie in adjacent parallel planes, let
alone in truly three-dimensional networks . We have, instead, formulated a
model from an MP sheet based on flow phenomena. This is discussed in our
second contribution to this symposium .

Experimentalprogramme and results
Our experimental work with MP sheets consisted of measuring the

properties ofthe fibres, particularly the QKvalues and the macroscopic physical
properties of MP and normally formed handsheets of the same basis weight .
Again, we save discussion of the latter until later in the symposium.

As for the crK values, they were measured on three-layer sheets, of which
the fibres of the top layer were undyed, those of the middle layer were dyed
with Congo Red and those of the bottom layer were dyed with Methyl Violet .
Examining these sheets under polarised, vertical illumination according to the
technique of Page and Tydeman, (10, 11 ) the fraction of the area of fibre/fibre
crossings in optical contact of almost all crossings could be measured .
Typical results appear in Table 3 . Greater in sulphite sheets than in kraft
sheets, QK is increased in both by heavier wet pressing . The accompanying
data on the tensile strength of sheets of the two pulps indirectly verifies the
evidence of a larger amount of bonding in the sulphite handsheets .

TABLE 3

* Based on eight-layer MP sheets

These results, however, together with other experiments in which mechanical
properties of MP sheets of the same substance were compared, represent
physical properties and will therefore be discussed later .

Network ofhorizontalfibres
Here, we are concerned with a network of rigid fibres of mean length A,

width W and thickness s, whose centres are randomly distributed throughout
a volume V=AD. The fibre axes lie in parallel planes, in which they have a
random angular distribution . The terms 8 and D, the thickness of the fibres

Pressing Tensile strength
Pulp pressure, lbl in2 Q1 Q2 Q3 atp(0) per cm perg,*

CM x 10-5

Sulphite 1 000 0-95 0-89 0-64 at 0-43 6-1
50 0-92 0-71 0-44 at 0-44 5-6

Kraft 1 000 0-84 0-65 0-37 at 0-48 4-9
50 0-74 0-51 0-27 at 0-52 4-0
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and the maximum thickness of the sheet are new independent variables . Our
first problem is again calculation of the number of crossings.

The general equation for the total number of crossings is the same as
equation (14) . The probability that two horizontal fibres intersect is the pro-
duct of (1) the probability that the projections of two fibres intersect in a
plane A of the network, P1=2A2/,7TA and (2) the probability that two lines of
length 8 intersect (overlap) on a line of length D (the thickness of the net-
work). This probability P2 is equal to

8(2D - 38)
P2 =

	

D-8)2

	

.

	

.

	

.

	

.

	

.

	

.

	

(33)

For thick sheets, when D> 8, equation (33) reduces to 28/D.
Substituting equation (33) in equation (14) gives

A2Nf28(2D -38)
N, =

	

.

	

.

	

.

	

.

	

.

	

.

	

(34)
7TA(D-b)2

For thick sheets
2X28Nf2

N, =
7rV

(35)

Excepting Nh and ah , the other dependent variables and their distributions can
be computed from these equations . A special feature of this network is that its
surface profile and variations in its thickness can be calculated .

Real fibres are not truly rigid, however; they are deformed and in
contact with more fibres than the above equations indicate . Our efforts to
introduce a quantity equivalent to the penetration factor QK have so far been
unsuccessful .

Squeezed-out 3-D random network
The geometry of a truly 3-D fibre network squeezed out until the angles

between the fibres and plane of the sheet are relatively small has so far proved
to be too difficult to be treated rigorously. Little enough is known about
truly 3-D networks. Miles( 4 ) has shown that the total number of crossings
made by Nf fibres of length A and radius r randomly distributed in a volume
V (where V> A3) is

N = 'r Nf2 ~2r

Ogstont 12 > has considered the voids for the same model.

(34)

Conclusion
A rigorous mathematical treatment of fibre networks to give an exact

geometric description of the structure of paper would seem to lie beyond our
grasp in the light of present knowledge . Through continued research we hope
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to arrive at an approximation, although there can be little doubt by now that
even this goal is some distance away . Whenever models have to be substituted
for reality, physical experiment is the only guide for rightness of choice . It is
the physical and, in the end, technical application that justifies any attempt to
reach a quantitative understanding of the geometric structure of paper .
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Appendix I

Orientation
A.

	

SCANNING AND ANGULAR DISTRIBUTION

CONSIDER a scan line of length L in an area A making an angle ~ with the
fixed direction (Ox) . The probability that a fibre of length A dropped ran-
domly at an angle e on to A is intersected by the scan line at the angle (e - 0)

La I sin (0-0)1' .

	

see equation (19a) .A
The probability that they intersect at any angle is

LA fo sin (B-~) j 0101 dB
A J

and the number of intersections made by the scan line with Nf fibres is

N(

	

=Nf~L

	

~
A

	

f

	

I sin (8 - 0)10(0) d8
0

- NfLA

	

-

	

" Sine-) 0(e) de +
f"'

sine -

	

E)(0) de

	

.

	

.

	

A1
0

Here, 0(e) is the angular distribution of the fibre axes .
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Differentiating equation (AI) twice with respect to 0 gives
dN~(~) - N~A

~ [f
~ Sin (8-~) 0(B) dB+O(B) I

-
LJ

	

sin (B-~) 0(B) dB-0(¢)
J
~

	

.

	

(A2)

Adding equations (AI) and (A2) and changing the variable 0 to e gives

or

By definition-

N(O) +d2N(e) = 2NfLA
0(o)de2

	

A

=

	

A

	

[N(O)
	d 2N(e)

" (0)

	

2NfLA

	

+

	

de2

f,
0(0) d0 = 1 .

0

(A3)

In order to obtain a parallel relation for N (~), we integrate equation (AI)
with respect to 0 from 0 = 0 to 0 = 0+-. Thus

N(O) do = f

	

N(O) do
®,~

	

o ~-
- NfLA

	

e+~

	

sin (0 - ~) E)(0) d0

	

dA f, U

NfLA
"

e+,,
=

	

A

	

sin (e -

	

) d~

	

0(®) de
o f,f

	

1
= NfLA

	

', 20(0) d0
A fo

2NfLA

Combining equations (A3) and (A4) results in
d2N(e)

+N(O)del

fo
N(~) d~

(A4)

(AS)

We now introduce N(0) =a+ b cos 20, equation (20) into equation (AS) . This
produces equation (21)-

0(0) = I + e cos 20

where e = - 3bl,7ra, equation (22) .
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B.

	

METHOD OF LEAST SQUARES

The chosen machine-direction (0=0) may differ by an angle a from the
direction of maximum orientation . To find a, we rewrite equation (20) as
follows

N(0) = a + b cos 2(0 + a)

	

.

	

.

	

.

	

.

	

.	(20a)
The problem is to solve for a, b and a from a number of scans in different
directions . Introducing

where

cos (20 + 2a) = cos 20 cos 2a - sin 20 sin 2a,
N(0) = a+ m cos 20 +p sin 20

m = b cos 2a

	

Therefore,

	

= 1/m2 +P2

	

see

	

.
,

	

equation (23)p = - b sin 2a

	

a = 2 tan-1 (-p/m)

According to the method of least squares

:~ [N(0) -a -m cos 20 -p sin 20] 2 = minimum

	

.

	

.

	

(A6)
Expanding equation (A6) and remembering

:~ COS2 20 = :~ sin2 20 ;

	

:~ cos, 20 sin 20 - 0,
one obtains
,:~ N2(0) - 2 :~ (a + m cos 20+p sin 20)N(0)

+ (m2 +p2) :~ cos 2 20 + ná2 = minimum,
where n is the number of scans (directions), ranging from 0 to 7T .

Differentiating with respect to a, m and p, gives finally

aa
a = m

	

cos2 20 -

	

N(O) cos 20 = 0

	

, . m = ~ N(0) cos 20
am

	

~

	

~

	

)	cos2 20
a
=

	

COS2 20-

	

N(O) sin 20 = 0

	

N(0) sin 20
a

	

p

	

p

	

sin2 20p

(23)

When the direction of maximum orientation is known (0=a= 0), the eccen-
tricity e can be calculated from scans in the two main directions (0 = 0, 0=,7r/2).

Introducing equation (21) into equation (AI) and changing the variable

N(6) = NÁA

	

ar- f sin (~-B)(~+e cos 2¢l d¢
Jo

+ f sin (~-9)(~+ecos 2~1 d¢l
0e

	

/ J
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Comparing with equation (20)

a =
NfLA

	

-

	

a
sin (~ - 0) d +

	

" sin

	

-0 d

	

-- 2NfLA.
f,

From equation (22)
b = -vae - -2eNfLA

3 3A

Thus, equation (20) becomes

N(0) -
2NfLA

	

I -e

	

20
A

	

~

	

3
cos

For 0=0 and 0 =7T/L, respectively

N(0 = 2NfLA

	

I -e .

	

N _

	

- 2NfLA (I +e
()

A

	

~

	

3) '	2

	

A

	

3

(A7)

Hence

and

N(v12) +N(0) _ 2/7r _ _3
N(?r/2)-N(O)

	

2e/3

	

-,re

3 N(-ri2) -N(0)
e
- -r N(v12) +N(O)

(24)

Comparing the above value for a with that from equation (23)
~N(0) - 2NfLA
n -rrA

or

	

7rA :E [N(O)IL]
f -

	

--~ 1 :~' ~ .

2A n

	

2A L

This result means that the number of fibres in an oriented sheet can be
calculated using the scanning technique in the same way as in the case of a
random sheet, equation (16), if the scanning is done in a number of different
directions and the average ratio used in the scanning equation .

C .

	

TOTAL NUMBER OF FIBRE CROSSINGS

Introducing equation (21) into equation (19)

P = Á fo f0 sin (B-~) 1 (-1 +ecos 2010 +ecos 2¢ I d¢d9 .
d d

	

1\

	

l

For symmetry reasons-
APP = J 'ff J B sin (8-¢)I ~ +ecos 2610+ecos 2¢l d¢dB .

0
0

v
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The integration is done as follows
AP = f

o-~ 1 +e cos 29

	

[l

	

"sinf"

	

(8-~) d~ +e f0-osin (8 - ~) cos 2~ d~

	

d9.2A2

	

0=0 7r

	

7r 5=0

	

0=0

Substituting

	

sin (0-0) = sin B cos ~ - sin o cos 9

and

	

cos 2o = 1-2 sine o = 2 cos2 0 -1 gives

AP

	

o=~ (1

	

1

	

~=a
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+ecos 2B

	

-	sinB sin o +cos 8 cos o
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+ e sin B Sin o - 3 Sin3 0

	

-e cos 9

	

-3COS3 O+cos 0
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=
11,

	

1 +ecos 28

	

1(1-cos 8)+ e(sin2 B-3 sino 9+3 coso B-cose B
fo (7r

	

[~

+3 cos B)
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Thus,

1

	

e2,,r
6

p - 2A2

	

1 -e2,77.
A ( ,rT

	

6 )
and the total number of crossings in the sheet is

N = Nf2,~2

	

1 -e27r
c A,r2 (7r 6

(25)

D. THE TOTAL NUMBER OF CROSSINGS WITH OTHER FIBRES OF

THE FIBRES INTERSECTING A SCANNING LINE

Consider a scanning line of length L drawn at an angle 0 with a fixed
direction through a network of fibres with angular distribution O(9)d9. The
fibres intersecting the scanning line have an angular distribution

sin (B - ~) j 0(8) dB

fo ~ sin (B -

	

O(8) dB
.1

(A8)

This results from the fact that a fibre at an angle e1 with the fixed direction is
I sin (81 --#) I / I sin (92 r) I times more likely to intersect the scanning line
(making an angle ~ with the fixed direction) than a fibre making an angle 82
with the fixed direction .

From equation (A1), it follows that the mean number of intersections
with other fibres made by a fibre at an angle B with the fixed direction is-

e(0, A

	

= Nf~2A

	

f

	

sin (e -

	

) 0(~) d~

	

.

	

.

	

,

	

A9
0
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Then the mean number of crossings per fibre, given the fibre intersects a
scanning line that makes an angle 0 with the fixed direction, equals

Thus, the numerator becomes

Thus
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fo
~ c(6, A) 1 sin (B-0(B) dB

(A10)
f
0

	

sin (B-0(8) dB

and the total number of crossings with other fibres of the fibres intersecting a
scanning line of length L is

S(O) = T(O)N(O, L)

	

.

	

.

	

.

	

.

	

.

	

.	(All)
We now introduce the following expressions previously used

O(0) --- 1 + e cos 20, equation (21)

2
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2NfLA

	

1 _ e cos 20(~ )

	

A (-u 3
and calculate S(O) for the two main directions (that is, for

	

=0 and 0 =7T/2).

For 0 = 0, the numerator of equation (A10) is
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which on integration gives
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Similarly, the denominator of equation (A10) for 0=0 is equal to

2(1 -e .
'7r 3
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and
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(26)

Note that, when concerned with tensile strength, 0 is perpendicular to the
direction of the externally applied force .

In deriving equation (26), the crossings between fibres intersecting the
scanning line were counted twice ; those between fibres that do and do not
intersect it were counted once . This error being in both the numerator and
denominator, the total error in equation (26) is relatively small.

Appendix 2
Flocculation

	

probabilistic treatment of a non-random point distribution( 8 )

A MODEL to describe a non-random 2-D distribution of points envisages
a plane containing randomly placed circles of various radii ; their centres
have a Poisson distribution with densities OK . The parts of the plane not
covered by circles contain points having a Poisson distribution with density
AO ; the parts covered by a circle contain points having a Poisson distribution
with higher density, A 1 (A1 > AO) . The value A1 is independent of the radii of the
circles . For all cases that r circles overlap, the density is rA 1 .

The plane is divided into areas of type Cr(Co, background ; c 1 , covered by
one circle ; c 2 , covered by two circles, etc.) . In any small neighbourhood
chosen at random, let N= the local density of points . The probability dis-
tribution ofN is given by

p(N = n) = p(n)

p'(n j Cr)P"(Cr)

	

(A12)
r=0

where p'(n j Cr) = conditional probability that N =n, given that the region is
of type cr

= Poisson distribution with mean Ao , A i , 2A 1 , . . ., rA1 .
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and

	

p"(cr) = probability that the region is of type c r .
= probability that a circle of radius a surrounding the

neighbourhood encountered contains r centres
= e-a arl r

where a=va2 :~8K. When a has a distribution identical to the circle radius
distribution, it follows that-

a = G.WaK20K
where 6K 'is the mean density of circles of radius aK .

Thus, equation (A12) becomes

p(n) = p'(n Ico)p"(co)+

	

p'(nI er)p "(er)
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(28)

For the initial evaluation of equation (28), two simplifications are intro-
duced-(]) the circles have uniform radius a so that a is the fractional area of
the plane covered by circles, (2) there are so few circles that overlapping can
be neglected, hence the density distribution reduces to r=0, 1 and a is so
small that e-a,: 1- a.
Then equation (28) becomes

r

	

n
p(n) _ (1-- a) ñO e-A o + a nl! e -A l (29)

Equation (29) is a distribution containing three parameters AO , A l and a,
which can be evaluated from three independent sets of data. The analysis is
least laborious when the sample areas are so small that they contain no more
than four points andfo ,fl, f2 andf denote the frequencies of sampling areas
containing respectively n = 0, 1, 2, 3 points . From equation (29)

f(0 ) _ (1- a)e-AQ +ae-Ax
f(1) _ (1 - a)Aoe-Ao +añle-Al

f(2) = (1- a)2
~2

e-,'o + a2
~2

e-A
(A13)

Selecting areas containing fewer than 4 points being impracticable in the
case of crossings in a 2-D sheet, the range ofpoint densities can be divided into





DISCUSSION

PROF. R . x. PETERS : Could you comment on how easy it is to make a
random sheet and, secondly, can you possibly explain at this stage how it is
that the Poisson distribution has come into the picture as distinct from a
normal distribution?

DR . I-I . CORTE : On the first question, when you make a 22g/m2 handsheet,
you suspend 50 mg of fibres in 7 litres of water and you will see in the suspen-
sion (or you have at least the impression) that the fibres are moving quite
independently of one another . We do not know whether they do that . When
fibres move independently of one another, they should form a random net-
work : that is the definition of it. Whether or not they do this we do not know
beforehand, but we can check it afterwards .

Once this sheet is made, we can perform a number of quite simple
experiments . These sheets have a diameter of 16 cm and, for instance, you
draw a straight line and count the number of intersections between the
straight line and the fibres

	

ofthe order of 1200 . Then you divide the straight
line into a number of equal sections and compare the number ofintersections
per section with the Poisson distribution . This has to fit and that answers your
second question. When you travel along a straight line and place events at
random, the number of events at uniform intervals has a Poisson distribution .
Thus, the number of telephone calls in a busy telephone exchange per minute
has a Poisson distribution .

The existence of such a Poisson distribution is not a complete proof, but
it is very strong support that the system we have produced is random.

MR. P . x. PRIOR: If you perform exactly the same operation with one of
your flocculated sheets, how will that differ from the Poisson distribution?
Will it necessarily be distinguishable?

DR . CORTE : Yes, it would be distinguishable and it will not be a Poisson
distribution . You may have a bimodal distribution, for instance . If not, you
may have a wider distribution and that is what normally happens .

DR . A . B . TRUMAN : As stated in your paper, that the fibres in a two-
dimensional sheet are randomly distributed does not imply that they are

Transcription of Discussion



Statistical geometry offibrous network

uniformly distributed . Does it follow that flocculation of the fibres may be
observed in a random sheet?

DR . CORTE : The term flocculation is, so to speak, a human expression and
not a mathematical one . Papermakers use this word for a visual effect : when
we use the word here, we mean the amount of non-uniformity that is beyond
that inherent in a Poisson process . You can think of making the non-uni-
formity of a random sheet the standard (unit flocculation) . The flocculation
scale would then start at this point (the non-uniformity of a random sheet)
and the term flocculated would apply to sheets with a formation worse than
random .

MR. P . E . WRIST : I wish to refer to a point to be discussed in my paper at
the end of the week . For reasons outlined there, we have been forced to the
conclusion that the fibres in a sheet of paper are more uniformly distributed
than would occur by a random distribution alone .

DR . CORTE : I am glad to hear this . I was under the impression that, in
order to render a sheet, say, completely uniform, you have to control the de-
position of every fibre. Only then can you control the position of the fibre
centres and make a completely ordered and uniform structure like a woven
fabric .

MR . WRIST : This is the ultimate in control . While we cannot control
deposition to any extent approximating to this ideal, we do have a s :
measure of control on the papermachine through the use of such mean:
wire shake, velocity differential between the jet and wire speed and
agitation that occurs over table rolls at high speeds all of which pros .
relative motion between the fibre suspension and the forming web . Comb
with the local variations of drainage resistance produced by any local v,
tions in the concentration of fibre deposition, this relative motion promo.
more uniform distribution than would be produced by a randomising pra
alone .

DR. CORTE: Relative motion of fibres leading to a more uniform ,
tribution may exist, but I have never seen them and they have not b
considered .

MR . w. H . HALE: Have these statistics been compared with actual pad
made on standard production machines?

DR . CORTE : It has never been done, because no two-dimensional sheet
can be made on the papermachine and this statistical treatment refers to



Discussion

	

two-dimensional papers only . The extension of statistical geometry to three
dimensions is possible and has been made, but direct observation of the
geu -nietric quantities is impossible ; instead, one has to use them to predict
physical behaviour . That will be the subject of our next contribution .

PROF . A . x . NISSAN : I am interested in comparing this work with other
work, not in the paper industry at all, but where statistical geometry is called
for . Bernal published about two years ago an article in Nature, in which he
tried to explain (very tentatively as admitted by him) the structure of liquids
and he calls for statistical geometry as a new science that does not exist as yet,
for a higher form of mathematics . He has done some empirical experiments
like yours to find out the number of sides of polygons that are produced
randomly and he gives a table of results . I was interested to find that the
maximum occurs at five in his work, whereas in yours I notice four sides.

DR . CORTE: The number of sides of the polygons are derivable .

PROF . NISSAN : His were not and I was wondering whether you have com-
pared your work with Bernal's .

DR . CORTE: I know Bernal's publication on crystal lattices, but as a matter
offl, -Act the number of sides of the polygons in two dimensions is four : there is

proof of it, very easy and quoted in our paper . We have in fact made
fed photographs of such a piece of paper, cut these polygons out with a

scissors and written down the number of sides . We found to our sur-
that 88 per cent of them had three or four sides, with an average of four .
tunately, we did not isolate the pentagons . (Bernal's polygons are the
of polyhedra, which he finds on the average to be pentagons .)

`ROF. NISSAN : So really your results differ from Bernal's .

DR . O . J . KALLMES : I think he is working only in three dimensions, not in

DR . C . W . CARROLL : Arising from Wrist's comments, if by uniformity
:ngcans symmetry, I would recall to you that the Poisson distribution can be

;1(imated by the normal distribution under certain conditions . In the case
dom fibre deposition, these conditions correspond to the requirement

. spite of the low probability of an event (that is, small chance of a fibre
landing on a particular small sub-area), the number of fibres involved

,S .P. : I



	

Statistical geometry offibrous network

is so large that the product of the small probability of an event and this very
large number of randomly deposited fibres (the parameter of the Poisson dis-
tribution) is itself relatively large . Thus, the more concentrated the fibre sus-
pension from which a sheet is randomly formed, the greater the tendency that
the sheet will be characterised by a normal distribution of fibre centres . In
this sense, the Poisson and the normal distributions are not two discrete
distributions, but represent a continuum in the realm of distributions, merg-
ing one into the other .

MR. WRIST : My comment did not refer to the choice of distribution func-
tion, but that the distributions we obtained on practical sheets of paper are
more regular than would result from a random distribution alone. If we could
do no better than achieve a random distribution as you seem to suggest and
that flocculation worsens the situation still further, we would be unable to
make a saleable sheet of paper.

DR . KALLMES : In any case, if you say basically the process gives random
flocculation of unity by definition, to a more uniform sheet we could give that
a flocculation figure of 0-9 or 0-8 . The important point is that you have a
reference mark .

A DELEGATE : I am getting a bit confused . Don't you get uniformity from
averaging a large number of random distributions?

DR . CORTE : When the mean goes up, the variance goes up accordingly
and the standard deviation (the square root) goes up too . The relative
standard deviation (standard deviation divided by the mean) goes down with
increasing thickness of the pile of random sheets .

MR. WRIST : If we restrict our discussion to two-dimensional sheets alone,
a random distribution is acceptable ; but, if you then go on to build up a three-
dimensional sheet by stacking two-dimensional sheets, you are assuming that
the relative position of the fibre in a given layer is completely independent of
the positions of fibres in the layers beneath. This is where my interpretation
of the papermaking process disagrees with yours . Once you have the first
two-dimensional sheet laid down, the deposition of the subsequent fibres is
not a completely random event, there is a strong tendency for it to be drawn
to a place in the sheet where there is deficiency in fibres and the result is a
tendency to build up a much more uniform sheet . It is fortunate that this can
occur ; otherwise, thin sheets of paper would be completely unacceptable in
formation.
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DR. CORTE: Nevertheless, although this may be so, it could be checked
whether randomness occurs . For machine-made papers, it may not be the
case, because the hydrodynamic effect could upset the whole picture . We do
not seem to know exactly how the fibres are deposited on the wire. For a purely
formal description, it would not really matter, because you could slice a paper
and describe each layer no matter how it was formed . We want only to de-
scribe, we do not want to refer to the forming process_at all. If it is not random,
we have experimental means to find out how non-random it is and express
this . The problem of how this state of affairs was produced is an entirely
different thing and is not the subject matter of this paper .

MR. P . A . TYDEMAN : Could you clarify a point on nomenclature ? You
have defined g as mean free fibre length and I notice you call it also the
distance between two intersections .

DR . CORTE : I mean the distance between centres of fibre intersections .

MR. TYDEMAN: That is surely not free fibre length?

DR . CORTE : We call it free fibre length . The distribution is, by the way,
independent of the width of the fibres . When you take wider fibres we
assume that we have a large number of them with statistical or random dis
tribution-then, of course, a number of these gaps would disappear, would
be blocked, but those remaining are still an infinitely large number and their
distribution would still be exactly the same.

MR. P . G . SUSSMAN : Have you ever used a scanning area smaller than
1 mm and so determined the statistical distribution of the mass of these small
areas? If the scanning area is small enough, there is a definite probability of
finding very dense spots in a sheet of purely random structure .

I once made sheets of 70 g/m2 substance from highly dilute stock
(0-002 per cent consistency) and they showed quite a few very dense spots,
though they were very even over larger areas .

An ordinary handsheet, made from the same pulp at 0-02 per cent con-
sistency, showed more general variation in look-through, but none of these
dense spots .

DR . CORTE : We have never scanned areas smaller than 1 mm2, but we
have scanned larger areas by taking, for instance, four of them together to
give a square . There is a certain rule about this, how the parameters of the
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distribution vary from size to size and, whenever they do not correspond to
this, then you have a non-random structure . This is revealed by comparing
the results of two adjacent squares or of two squares separated by one or
more squares . The autocorrelation between squares that are a certain distance
apart would indicate whether the distribution is random .

A random distribution is independent of the size of the squares . Only
the parameters of the distribution vary with the size of the squares in a well-
defined manner .

A DELEGATE : In practice, when one makes a random sheet does it work
out according to the equation and when one scans a sheet made from a high
dilution, do you in fact find this so, even when you are scanning very small
areas?

DR . CORTE : Yes, this is part of the equation . Take, for instance, the one-
dimensional case analogy . The parameter of the negative exponential dis-
tribution would be one over the mean number ofintersections per unit length,
say, 1 mm : this gives the spread of the distribution . When the intervals have
only half the width, say, 0-5 mm, then of course the mean is smaller, the
parameter is larger and the spread is automatically larger.




