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Synopsis

Mathematical theories for some of the mechanical properties of
a well-consolidated anisotropic fibrous web are developed in two
major divisions : the elastic and the plastic regimes of stress/strain
relationships . For each of the principal directions in the plane of the
sheet, theories of the elastic regime are developed for external load,
Poisson's ratio, Young's modulus and the modulus of'rigidity. Applica-
tions of the theory to improve pulp evaluation and to studies of im-
portant sheet properties (in the elastic regime) such as stiffness and
sheet rigidity are discussed. A complex ofphenomena of the plastic
regime is inferred from theory . Stresses tending to cause rupture of
fibre-to-fibre bonds are found in two important groups: those associ-
ated with torque on bonds resulting from shearing force in fibre seg-
ments (and combined with stress caused by anisotropic shrinkage of the
fibres) and those associated with tension in fibres (and combined with
the anisotropic shrinkage stress) . The incidence offibre-to-fibre bond
rupture as the sheet strain is increasedfrom the elastic range into the
plastic regime is governed by equations developedfor torque and tension
bondfailures. A brief discussion of the theory of the zero-span tensile
test is included.

Une étude théorique sur les propriétés mécaniques
des structuresfibreuses

On établit selon deux subdivisions principales

	

domaines élas-
tique et plastique des relations effort-déformation-les théories
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mathématiques de quelques propriétés mécaniques des structures
fibreuses anisotropiques . Pour chacune des directions principales de
la feuille les théories du régime élastique sont établies en fonction
de la charge extérieure, du coefficient de Poisson, du module
d' Young et du module de rigidité . Des applications de la théorie sont
envisagées pour améliorer l'appréciation des pâtes et pour étudier les
propriétés importantes de la feuille (sous régime élastique) telles que
résistance à la flexion et la rigidité de la feuille . Un complexe de
comportement du régime plastique est obtenu àpartir de la théorie . Les
forces tendant à provoquer la rupture des liaisons interfcbres sont
réparties en deux groupes importantes: celles qui sont associées à des
couples sur les liaisons résultant des forces de cisaillement dans les
segments des fibres (et ajoutées aux contraintes dues au retrait aniso-
tropique desfibres) et celles qui sont associées aux tensions dans les
fibres (et combinées également aux contraintes anisotropiques du
retrait) . Le nombre des ruptures de liaison qui se produit pendant une
déformation croisante de lafeuille depuis le domaine élastique jusqu'au
domaine plastique, est gouverné par les équations établies pour la
rupture des liaisons sous tension et torsion . Une brève discussion de la
théorie de l'essai de traction `zero-span' est inclue .

Einige theoretische Betrachtungen über die mechanischen
Eigenschaften von Faserstrukturen

Für die mechanischen Eigenschaften eines festen anisotropen
Faservliesses wurden mathematische Theorien in zwei Hauptrich-
tungen, nämlich für den elastischen und den plastischen Bereich der
Spannungs-Dehnungs-Beziehung entwickelt . Die Theorien für den
elastischen Bereich wurden fürjede der Hauptrichtungen in Blattebene
für äussere Belastung, Poisson'sches Verhältnis, Young-Modul und
Modul für Unbiegsamkeit aufgestellt und ihre Anwendung zur
Verbesserung der Stoffcharakterisierung und zum Studium wichtiger
Blatteigenschaften (im elastischen Bereich), wie Steifigkeit und
Unbiegsamkeit, diskutiert . Von der Theorie wurde ein Komplex von
Phänomenen des plastischen Bereiches abgeleitet . Man fand, dass
diejenigen Spannungen, die zu einer Zerstörung der Zwischenfaser-
bindungen führen, zwei Hauptgruppen bilden, nämlich diejenigen, die
mit einem auf die Bindungen wirkenden Drehmoment als Folge der in
den Fasersegmenten auftretenden Scherkraft verbunden sind (undzwar
zusammen reit der Spannung, die durch die anisotrope Schrumpfung
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der Fasern hervorgerufen wird) unddiejenigen, die mit der in den Fasern
auftretenden Zugkraft verbunden sind (im Zusammenhang mit dem
anisotropen, durch die Schrumpfung bewirkten Zug). Die Zerstörung
von Zwischenfaserbindungen beim Übergang des Dehnungs Prozesses
vom elastischen in den plastischen Bereich wird durch Gleichungen
bestimmt, die für die Zerstörung der Bindungen durch Drehmoment
und Spannung entwickelt wurden . Eine kurze Diskussion der Theorie
der Null-Reisslängen-Prüfung schloss sich an .

Introduction

THE development of sound mathematical theories on the physical
properties of paper and paperboard is obviously in the very interesting early
phase that is characterised by high heuristic value and relatively low pre
dictive power . In this stage, theories are fraught with suggestions for
experimental observations ; proper laboratory data, in turn, permit refinement
of theoretical structures and, in later phases, it is usually found that the values
of theory shift to embrace quantitative prediction of system properties and
provide better measures of the properties of the structural components . It
need hardly be said that the ultimate goals of theories on fibrous structures
are improved end products and refined control of raw materials and process
variables . We are now concerned, however, with the very early stage of
development oftheory and our attention must necessarily turn to rudimentary
matters .

This paper presents the results of efforts towards improved theories on
certain fundamental sheet properties. The composition of the paper is as
follows : the first sections present theories appropriate to the elastic or
Hookean stress/strain regime, yielding expressions for external load, Poisson's
ratio, Young's modulus and the modulus of rigidity for the principal direc-
tions of an anisotropic sheet ; the second set of sections presents discussions
of the interfibre and intrafibre mechanisms with which one should deal to
account for the plastic stress/strain regime ; the paper concludes with a note
on the theory of the zero-span tensile test .

Before turning to theories relating to the elastic regime, it might be help-
ful to observe that, while no theory can be expected to account perfectly for
all the properties of anything as complex as a paper sheet (observations with
a microscope are most discouraging!), the models for theories should have
some verisimilitude to actual structures . In the author's opinion, models in-
corporating regular geometric arrays of filaments (such as a superposition of
an orthogonal set aligned with the x and y axes and a second orthogonal set
arranged at 45° with the axes) are ill-advised . An anisotropic distribution
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function for angular orientation and random spatial distribution for the fibres
should be presumed, along with the most important distribution functions for
such variables as fibre dimensions and interfibre bond spacing . The best
efforts in the past (briefly reviewed in the next section) have incorporated
such distribution functions . It should also be observed that the legitimacy of
the assumptions and simplifying approximations underlying a theory should
be judged from the point of view of the range of properties of the simulated
product . An example from the following section is a theory for non-woven
webs; it appears to account quite nicely for a number of the mechanical pro-
perties of non-woven fabrics and, no doubt, other low-density materials, but
is believed by the author to be inadequate for papers of typical density .
Similarly, it is expected that the author's simplifying assumptions will prove
to be illegitimate when the interest centres on such high-density papers as
greaseproof and glassine, tracing paper, etc .

The elastic or Hookean stress/strain regime
As is well known, the tensile stress/strain relationship for paper is very

nearly linear for strains up to about 0-005 (0-5 per cent) when the duration of
the test is not greater than a few minutes . We shall refer to the approximately
linear, small-strain range as elastic and the range beyond about 0005 as the
plastic regime . Strictly speaking, the whole range involves creep and is there-
fore plastic ; however, most load/elongation recordings for paper (particularly
those for the cross direction) display two distinctly different regions and one
finds the concepts of elastic and plastic regimes quite useful approximations
to the true state of affairs .

A pioneering mathematical development was that of Cox . G> One of his
basic assumptions was that the fibres are attached only at their ends ; thus,
although his theory was useful for his purposes, it would be inadequate for
ordinary papers . Onogi and Sasaguri, (2 ) one of whose interests was a-proper
accounting for paper thickness changes during straining, evolved a mathe-
matical theory of a fibrous web. Their assumption to the effect that, during
straining, fibre-to-fibre bonds undergo no angular displacement was found
during the course of the present work to be unsuitable : in the special case of
random distribution of fibre elements in the plane of the sheet, an important
criterion based on a well-known relationship between Young's modulus,
Poisson's ratio and the modulus of rigidity is not satisfied . More serious,
however, is their tacit assumption, discernible at the outset of their theory,
that the sum of the tensile and shear forces in a fibre element is a vector
having direction parallel to that of the externally applied load .
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A most interesting and thoroughgoing work is that of Petterson,(3, 4)

whose interest was in developing theories to predict the mechanical properties
of non-woven fabrics . In an important early phase of his work, he demon
strated that non-woven fabrics (commercial, anisotropic) obey Love's theory( 5 )
for orthotropic materials . Of special interest is his mathematical treatment of
a fibrous system in which fibre elements may (depending on orientation and
direction of the external load) experience tension or compression . Although
the bonding in the webs with which Petterson was concerned was not as ex-
tensive as that in ordinary papers, it was assumed that consolidation was
sufficient to prevent buckling in fibre elements subjected to axial compression .
The Petterson theory, probably adequate for both non-woven fabrics and
papers of low density, has the weakness, when extended beyond its scope to
typical paper, of omission of the effects of shear and flexure in fibre segments .

Model and assumptions for the present work
The theoretical treatments presented in the following sections are based

on a model fibrous web that has been dried under restraint, so that the various
forces in a fibre element come into existence with the initial infinitesimal
straining of the whole web and are linear functions of the strain to which the
web is subjected. The theory does not embrace a web that has been creped or
dried without restraint (such as in loft drying) or mechanically treated to
modify the configuration of the fibres in such manner that the foregoing
assumption about the forces in fibres does not hold .

The fibre centres are distributed randomly over the area of the sheet, with
an average number of N fibre centres lying in unit area. The fibres are
assumed to be almost parallel to the surfaces of the sheet, with the fibre
segments lying in a small angular range from such parallelism ; cosine error
associated with failure of this assumption is taken to be small . In this model,
a segment is the interval along a fibre between points of bonding with other
fibres . The angular orientation of fibre segments in the plane of the sheet is
described by a distribution function Pe (the chance that a fibre segment will
lie between 8 and 9-f- de is PM). In the present work, the principal directions
of the anisotropic sheet are designated x (for example, machine-direction) and
y (cross-direction) and P$ is assumed to be symmetrical with respect to these
directions. The z direction, about which little is done in the present work, is,
of course, perpendicular to the xy plane . The angle B is in the xy plane and is
measured from the y direction (see Fig . 1) .

The present treatment does not require that the whole fibre be straight .
The analysis needs only the assumption that, over a fibre interval of one or two
segments ( a few per cent of the fibre length), the interval may be regarded as
15-F.s.P. : i
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essentially straight . Beyond the obvious point that the analysis treats an
initially straight segment, there are two considerations here of importance
the expression for the probability of involvement of a fibre in the analysis of
the sheet stress is really the probability that a segment, of length between s
and (s + ds), will be `cut' by a mathematical plane, rather than the probability
that a whole fibre will be cut by a plane . The other consideration relates to the
definition given above for P, ; this function describes the distribution of angles
of segments rather than of whole fibres . The most appropriate and un-
doubtedly the most objective experimental definition ofPe lies in the technique
of counting (with the aid of a microscope) short fibre intervals (of pre-
determined length, unrelated to segmental lengths) .

The fibres of the model are assumed to be ribbon-like, with the broader
dimension of the cross-section parallel to the xy plane . The fibres are not
presumed to be of uniform size, but to have basic dimensions described by
distribution functions . Following Onogi and Sasaguri,(2 ) variations in cross-
sectional dimensions are taken into account by distribution functions in
cross-sectional area (PA) and moment of inertia of the fibre cross-section re-
ferred to a neutral axis in the z direction (PI ). The fibre segmental length s is
described by a distribution function PS. The structure and cross-sectional
dimensions of a fibre are considered constant only within a segment ; in
assessing this from a statistical point of view it should be borne in mind that
s is typically of the order of only a few per cent of the fibre length . However,
the moduli of elasticity of the fibres, E for the axial direction (Young's
modulus) and G, the modulus of rigidity for shear angle referred to the axis
ofthe fibre and in the `plane ofthe ribbon', are considered uniform throughout
all the fibres.

As indicated earlier, it has been found necessary in the present work to
provide for angular displacement of fibre-to-fibre bonds. It is assumed, how-
ever, that the linear displacement of one end of a fibre segment relative to the
other end is simply that corresponding to the straining of the web . It is
assumed, with earlier workers, that fibre segments subjected to axial com-
pressive stress do not buckle . Ranger and Hopkins(6 ) hold the view that
fibre-to-fibre bond failure may start with fibres under axial compressive stress
and this implies buckling of a sort ; this kind of action, however, is not to be
expected at low levels of web straining . There is some evidence from labora-
tory work on stiffness (mostly unpublished), involving small strains, that
might be explained by failure of this assumption to be strictly valid . The point
is an important one and should be kept in mind in future refinements of
theory .
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Poisson's ratio vx, and v., and the principal moduli (Young's) Sx and S,,
A schematic representation of a fibre segment before (s) and after (s)

straining when the web is subjected to a strain e in the x direction is given in
Fig . 1 . The initial angles of the fibres to which the fibre under consideration is

Fig. 1-Schematic representation of deformation of a fibre segmelit
The bonds undergo angular displacements ~, and 02, but are rigid so that 6 -aand

e -ß remain constant

bonded at the `lower' and `upper' ends of the segment are a and ß. From the
geometry it is easily shown that-

a = es(sin2 6 - vxy COS2 0),

	

.

	

.

	

.

	

.

	

.

	

.

	

(1)

b = es(1+vx,,) sin 0 cos ®,

	

.

	

.

	

.

	

.

	

.

	

,

	

(2)
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in which vxy is Poisson's ratio for the web, with reference to contraction in the
y direction resulting from loading of the web in the x direction. On eliminating
s from the right side of equation (1), one has a nearly exact expression (low-
level straining of the web) for the axial strain in the fibre. When 9 lies within
+ tan-1 "V vxy of the y axis the fibre is subjected to axial compressive stress ;
when the web is loaded in the y direction the axial compressive loading occurs
in segments for which 8 lies within + cot-1 "V vyx of the x axis . In all other
segments the axial stress is tensile.

The displacement b is associated with flexure and shear in the segment .
If the ends of the segment undergo angular displacements Y'1 and 02, it may
be shown through analysis of the flexure and shear of the segment that

b = Fs 3 /12E1+ (01+02)s/2 +Fs/AG

	

.

	

.

	

.

	

.

	

(3)

where F is the shearing force (that is, the force acting over a fibre cross-
section in a direction normal to the fibre axis as indicated in Fig . 1) and the
other quantities have the earlier defined meanings . Equation (3) is really an
approximation, but is very accurate for strains appreciably beyond those of
the elastic regime, in so far as error associated with finiteness of strain is
concerned . Of more significance is the error associated with the consideration
that the segmental length s is not large in comparison with the fibre width
(parallel to the xy plane) ; this is discussed by Timoshenko . ( 7

The extension a is related to the tensile force T (compressive if negative)
through equation (4)-

a = Ts/AE

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

(4)

The angular displacements of the bonds at the two ends of the segment
may be arrived at in the following manner . As straining of the web occurs, up
to the onset of failure in a bond, it would appear that the angles between the
segment and the `lower' and `upper' intersecting fibres should remain fixed at
the initial values (8 - a) and (8 - ß), respectively . It is assumed that, on the
average, the `lower' fibre segment at the bond will undergo as much angular
displacement at the bond as the lower end ofthe segment under consideration .
A similar assumption is made for the bond at the `upper' end of the segment.
It may then be shown that

~1 = (e/2)(1 + v,y)(Sin e cos 8 + sin a cos a) (S)

~2 = (e/2)(1 + vxy)(sin e cos e + sin ß cos ß)

	

(6)

Before considering the effect of varying a and ß over all possible angles, it is
of interest to note that there will be no bond rotation only when a (or ß) is
(7r-0) ; the bond rotation will approach its maximum possible value (for a
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given 0) when the angles are equal and in that isolated case there is no flexure
or shear in the segment . When the segment is along either of the two principal
directions (0 = 0 or 77-/2), for which orientations there is nominally (and on the
average) no flexure or shear in the segment, there may be appreciable flexure
and shear when cc and ß are midway between 0 and ,7T/2 or between ~/2 and 7T.

Utilising equations (2, S, 6) in equation (3), one obtains the following
expression for the shearing force-

F = (e/2h)(1 +v,,,) [sin 0 cos 0 - (1/2) sin acos a- (1 /2) sin ß cos P]

	

.

	

(7)

where

	

h = (s2/12EI)+(1/AG)

	

.

	

.

	

.

	

.

	

.

	

. (8)

To obtain the average value of F for all angles a and ß, one may hold
constant and vary a-

<F>A, = (e/2h)(1 + v,ry) [sin 0 cos 0- (1/2)
fo
Pa sin a cos a da

ß = const .

<F>A, cos 0+ P sin 0 = (e/2h)(1 + vx,,) sin 0 cose 0

- (1/2) sin ß cos ß]

	

(9)

where P,, is the angular distribution function . When j3 is varied over all angles,
the expression obtained for the average shearing force involves a second
integral [from the last term in equation (9)] . When the angular distribution
function is symmetrical with respect to the principal axes (which is believed
generally to be the case, at least as a good approximation), both integrals
vanish ; thus

<F>A, = (e/2h)(1 +vx,,) sin 0 cos 0

	

.

	

.

	

.

	

.

	

(10)

It is of interest to note that equation (10) yields exactly half of what one
obtains on the assumption of no angular displacement of bonds .

Taking the components of the shearing and tensile forces along the x
direction [calling into play equations (1), (4), (10)], one obtains for the con-
tribution to the external load on the sheet-

+ eAE (sin 3 0-vxy sin 0 cose 0)

	

(11)

It is desirable at this point to introduce the number m of fibre segments per
unit area (in the xy plane) of the sheet . The total length of fibre in unit area
of the sheet in segments having length between s and (s+ ds) is readily seen to
be msP, ds ; accordingly, if W is the mass per unit area of the sheet (basis
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weight in g/cm2), <A>Av is the mean cross-sectional area of the fibres and p is
the mean density of the fibre wall

W = <A>A""Pm

	

sPs ds

	

.

	

.

	

.

	

.

	

.

	

(12a)
fo

m = W/(<A>A,P<s>Av)

	

.

	

.

	

.

	

.

	

. (12b)

The sheet is now `cut' with a yz plane (normal to the sheet stress) . The number
of segments having length between s and (s+ ds) cut by this plane is
,&msPs sin 0 ds, where V is the width of the strip under tension ; introducing
this and the other distribution functions and integrating, one obtains for the
total tensile force in the sheet-

97.11

	

&We,

	

(1 /2)(1 + vx)

	

"	~

f

~

f

"0 (s/h) sin2x

	

<A>Avp<S>Av

	

y fo fo 0 0

external load i s now along 0 = 0.

x COS2 8 P,PAPIPs ds dI dA d9

+

	

AEs sin4 OpePAPs ds dA de
0 0 0

- vyx

	

AEs sin2 6 cos 2 B PePAPs ds dA de

	

(13)
"0 f'oJo jo o

In equation (13), the strain ex replaces the earlier e to avoid later confusion
when strain is applied in the y direction ; it should be borne in mind that h is a
function of the variables s, I and A [equation (S)] .

When the external load is applied in the y direction (the strip is cut in the
y direction and the width I& is now in the x direction), a treatment similar to
that given above yields

-

	

VWey

	

1

	

+ v

	

~/2

	

~

	

~

f"o
s h) sin2 0y

	

A

	

s

	

(/2)(1 yx) - 2

	

(l
< >AvP< >Av

	

~r/ fo

	

0

	

0

x COS2 6 PePAPIP, ds dI dA de
,r/2 00 00

+f

	

f

	

f

	

AEs C4s4 8 PePAPs ds dA d9
-,,/2 0 0

fiT/2 00 00
-vyx	AEs sine 9 cose ePePAPs ds dA d6

	

(14)
-,,/2 fO fo

The y direction remains the reference for 8 ; for example, the direction of the
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The cumbersome integrals appearing in equations (13) and (14) will now
be replaced with the following symbols-

Expressions for Poisson's ratio for the two principal directions may now
be obtained. First, with the sheet under load in the x direction, the contribu-
tion of a fibre segment in the y direction is considered-

- <F>Av sin B + T cos 9 = - (ex/2h)(1 + vxy) sine 0 cos
+ exAE (sin2 0 cos 0-vxy cosa 9)

	

(17)
It is seen that the number of segments cut by an xz plane in unit distance
along the x direction is msP, cos e ds . Introducing this and the other distribu-
tion functions and integrating, one obtains an expression for the total con-
tribution in the y direction. This is equated to zero ; after cancelling a factor
from the equation-

'9(1/2)(1 +vxy) `fly+vxy~2y- 3y = 0

	

.

	

.

	

.

	

.

	

(18)
In similar manner, through consideration of the total contribution of force in
the x direction when the sheet is loaded in the y direction, one finds-

(I/2)( 1+ vyx) -~P 1x +vyx'~p2x - -'~p3x = 0

	

.

	

.

	

.

	

.

	

(19)
Equations (18) and (19) yield expressions for Poisson's ratio for the principal
directions

v
xy
- 2~3y- -'~e1y

	

.

	

.

	

20
Y1y + 2Y2y

v

	

- 2Y3x-Y1x

	

21yx

	

Y 1 r + 2Y, Y

Equations for Young's modulus are obtainable immediately from equa-
tions (13) and (14)-

&X
=

	

W

	

(1+vxy)

	

+~ -v
Y<A>AVP<S%Av 2 1x Zx xy -9"3x IJ

(22)

-

	

W

	

(1+vyx) -cy + ~y -v yy ~<A>AVP<S>Av 2

	

1y Zy yx 3y

In these expressions -Ir is the sheet thickness .

(23)

Y 1 , = First integral, equation (13)
Y2x = Second integral, equation (13) (15)
19"3x = Third integral, equation (13)
` 11'1y = First integral, equation (14)
`SP2y = Second integral, equation (14) . (16)
y3y = Third integral, equation (14)
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When, as is generally the case, Pg is symmetrical about the principal
axes, it can be shown that

Y1x = Yly
'~e3x = -9"3y

(24)

However, '5'0Zx and `9''2Y may be substantially different, the former being the
larger when, as is ordinarily the case in machine-made paper and board, P$
is maximum along the x axis and minimum along the y axis . (s ) When the
sheet (for example, an ordinary handsheet) is isotropic in the xy plane,
_Pg=const . =1 /-,T and these two integrals are equal.

The familiar reciprocity relation

"XY/-9x = vYx/ ffy (25)

may easily be shown to be satisfied by the foregoing theory. Satisfaction of
this equation is a necessary but not sufficient condition that a theory be
correct .

The modulus ofrigidity Wxy (= gyx)

There is an increasing need, especially in engineering work involving
paperboard and structural board, for theoretical and experimental informa-
tion on the modulus of rigidity (for shear strain in the xy plane*) .

Two kinds of diagram of distortion of the web corresponding to shear
strain in the xy plane immediately come to mind . In the first and perhaps
more conventional diagram, one visualises small displacements that are
parallel to, say, the y axis, with lines initially parallel to the x axis rotating
through a small angle y (the shear strain) . If one assumes that bonds undergo
no angular displacement (a more obviously questionable assumption where
the angular displacements of shear are concerned), the theory leads in an
apparently straightforward manner to an expression for Wxy . However, the
theory does not satisfy the elementary criterion for the isotropic case that
off =2(1 +v)W. When angular displacement of bonds is introduced, the theory
satisfies the foregoing criterion, but some uncertainty arises as to whether or
not angular displacements are properly handled. The second diagram of dis-
tortion avoids this uncertainty through reference of angles to the principal
axes of shear as shown in Fig. 2 ; these axes are designated 1-l' and 2-2' .
As is well known, the principal axes remain perpendicular to each other
during shear ; tension stress and strain (y/2) exist along one axis (1-l' in Fig . 2)
and a numerically equal compressive stress and strain (-y/2) exist along the

* There should be utility, too, in theory on 9xz and !§yz ; no attempt was made in the
present work to develop theoretical expressions for these moduli .
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other axis (2-2' in Fig. 2) . Only the second treatment is given here (it yields
the same final result as the first) .

As shown in Fig . 2, a fibre segment of length s is extended (literally
shortened if 8 lies between .7T/4 and 3-,T/4) and rotated . The ends of the segment
rotate through angles 01 and Y'2, the values of which depend on 8 and the

Fig . 2-Schematic representation of deformation of a fibre segment during shear in
the xy plane

Although the bonds are rigid, they undergo angular displacement (0 1 and 02 are not
shown in this sketch)

orientations a' and ß' of the neighbouring segments with respect to axis 1-l' .
Analysis of the diagram shows that the axial extension of the fibre is-

a = (sy/2)(cos2 S - sin 2 8)

	

.

	

.

	

.

	

.

	

.	(26)
(= sy sin e cos e)

and the relative displacement (at the `upper' end of the segment) normal to the
axis is-

b = sy sin 8 cos 8

	

.

	

.

	

.

	

.

	

.

	

.

	

(27)
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Assuming, as in the foregoing section, that the neighbouring segments share
in the flexing with the segment under consideration, it may be shown that

~i = (y/2) (sin 8 cos 8 + sin a' cos

	

(28)

~2 = (y/2) (sin 8 cos 8 + sin ß' cos

	

(29)

On substituting these angles in equation (3), utilising equation (27) and refer-
ring angles to the y axis (8 = 0- 7r/4 ; a'=a-.7T14 ; ß' = ß-7T/4), one obtains for
the shearing force

F = (yl2h) [sine 0-(1/2) sine a-(1 /2) sine ß] .

Averaging over all values of a and ß

<F>Av = (y/2h) [sin2 0-(1/2)

	

Pa sin2 a da -(1 /2)

	

Pß sin 2 ß dß

	

(30)
fo

	

fo
Of course, the two integrals in equation (30) are equal and, hence, the expres-
sion for the mean shearing force may be simplified to

<F>A, = (y/2h) [sin2 0 -	P a sin2 a da

	

.

	

.

	

(30a)
fo

The contribution of the shearing and tensile forces to the shearing force
in the sheet is

<F>A, sin 0 + T cos 0 = (-y/2h) (sin3 0- sin 0
JO
Pa sin2 a da)

+yAE sin 0 cose 0

	

(31)

The last term in equation (31) invokes the axial strain in the segment als from
equation (26) . Utilising equation (12b) in the expression msPs sin 0 ds for the
number of segments cut by a yz plane of unit length in the y direction, intro-
ducing the distribution functions, integrating and dividing the total shearing
force in the sheet by the strain and area, it is found that

=

	

W

	

(s/2h) sin4 0 PePAPIPs ds dl dA d0
<A>AvP<S>Av IfO

	

0

	

fO'* fO""

oo -oo - oo
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Pa sin 2 a da f

	

f

	

(s/2h) sin2 0 PePAPIPs ds dI. dA d0
0

	

0 0 0 0

-l-

	

AEs sin 2 0 COS2 0 PBPAP, ds dA d0

	

.

	

.

	

.

	

.

	

(32)
0 0 0

Two necessary (although insufficient) conditions for the correctness of
the theory are (a) 9,,,, = 9,, x and (b) in the isotropic case, for which P, =



Mechanics offibrous structures

	

219

const. =1/ ,7r, of = 2(1 + v) 9. In a test of the first condition, an expression was
developed for 9,,x ; the result is easily expressed by stating that the sines in all
the integrals of equation (32), excepting the last, are changed to cosines and
the limits of integration for 8 and a are changed from 0 --> 7T to - 7T/2 -> 7T/2.

It can then be shown that 9x,, = 9,x, providing that PO is symmetrical with
respect to the x and y directions . The second condition can be tested by
putting P, =1/-.r in all the integrals ofequation (15) or (16) and equation (32) ;
although the mathematical manipulations become tedious, it can be shown
that the second condition is satisfied .

Creep
When the duration of recording of the load/elongation characteristic of

paper is substantially longer than a few minutes, creep is significant . As in
other high polymers, creep in paper exists at all levels of stress and, when the
strain is less than about 0005, there seems to be no doubt that the creep is
almost purely an intrafibre phenomenon . The following, therefore, is sug-
gested for studies of creep phenomena in fibres or, alternatively, for predictive
purposes when basic creep data are available . The moduli of elasticity given
by equations (22), (23) and (32) are regarded as so-called delayed moduli
that is, in each case the delayed modulus is the quotient of the applied stress
and the strain after a known duration t of the stress. To be sure, this implies
an accurately linear relationship between the delayed strain (at some fixed
time, t) and the stress and this will not generally exist ; ( 9 ) however, it would be
of interest to accept the approximation for at least the earlier phases of
studies on the relationships between creep phenomena in fibres and sheets .

Some computational and numerical aspects
The theory developed so far brings to light the potentially important

properties of fibres and sheet structure . As always supposed and as demon-
strated by the recent work of Petterson,(3, 4) Young's modulus E and the
cross-sectional area A of the fibres are very important . In papers having
density in the ordinary range (but not in non-woven fabrics of the sort with
which Petterson worked), the moment of inertia 1 of the fibre section (re-
ferred to an axis in the z direction) plays a significant r6le . Somewhat surpris-
ing is the influence ofthe rigidity modulus G of the fibre for shear strain in an
xy plane : in the two terms comprising h, the second (involving G) is of the
same order as the first (involving EI) . This suggests that an array of fibre
properties to be studied should include G; as direct measurement may prove
to be quite difficult, evaluation through the theory (working through 6x and
t,, or Sxy or all three moduli) might be attempted .
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Fibre length does not appear in the equations developed for the elastic
regime. According to the theory, the fibre length and the fibre length distribu-
tion function are not important, providing that the fibre length is large in
comparison with the mean segmental length <s>Av. This condition is met in
ordinary papers .

Until experimental and theoretical information on PS is obtained, one
must rest content with the use ofthe mean segmental length . In all the expres-
sions for the moduli of elasticity and Poisson's ratio, <s>Av factors out and
cancels, leaving this quantity only in the first term of h; needless to say, P,s is
dropped from the integrands when the mean segmental length is used . A
mathematical treatment relating bonded area in a sheet with the mean seg-
mental length is given in Appendix 2 . The situation, however, is different with
the remaining distribution functions . There are techniques available for
determining the function P0(s) and for measuring the dimensions of cross-
sections of fibres .* From the latter, the functions PI and PA can be calculated .
In careful researches involving the theory, one should include these functions
in the integrands (where indicated) and numerical integrations should be
performed .

The theory has not accounted for the fact that fibres lying `in the sur-
faces' of the sheet (practically none would lie on a surface with no external
crossings of other fibres) have fewer points of bonding with other fibres . The
number of points of bonding for surface fibres would seem to lie between the
limits 0-5 to a fraction approaching unity of the number of bonding points for
internal fibres . It would seem that at least an approximate correction to the
theory (important in thin sheets) could be worked out . A consequence of
this consideration [realised on studying equations (13) and (14)] is that
Young's modulus of an imagined thin layer in an anisotropic sheet is at a
maximum when the layer is at the midplane and remains constant as the layer
is moved towards either surface until `surface fibres' enter the layer, when the
modulus diminishes to a minimum value at the surface.

A numerical illustration

It is emphasised that the primary purposes of the theory at the present
time relate to research . As suggested above, the several distribution functions
should be taken into account in careful work . In order that the reader may
gain some numerical feeling about the theoretical expressions, however, some
calculations have been made on the basis ofthe following model : an isotropic

* Dyson( 10 ) has recently published the principles of a new optical device (referred to by
the manufacturer as the Dyson image-splitting eyepiece), which, it is expected, would
improve the accuracy of fibre mensuration by an order of magnitude.
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sheet comprised of uniform, ribbon-like fibres, all having width 00030 cm
and thickness 00008 cm. From the work of Jayne, (11) a typical value of E for
woodpulp fibres is seen to be about 3 x 1011 dyn/cm2. As a pure guess, the
modulus of rigidity of woodpulp fibres (for shear strain in the xy plane) is
taken to be 1 x 1011 dyn/cm2 . Since an isotropic sheet was assumed for the
purposes of calculation, PB =1/r. The quotient W1 Off appearing in equations
(22) and (23) for Young's modulus in the two principal directions and in
equation (32) for the modulus of rigidity is, of course, the sheet density . This
is taken to be 0-75 g/cm3 and the density ofthe fibre is assumed to be 1-5 g/cm3 .
Since the,calculations are based on average quantities, <s>A, appears only in
the first term of h; this mean is taken equal to 0005 cm (arrived at through the
theory given in Appendix Z) . The results of the calculation are

vxy =vyx =v=0298

-ex = iffy = 5-27 x 1010 dyn/cm2

	

33
Wxy = 9 = 2-03 x 1010 dyn/cm2

There are no experimental data available for a legitimate comparison
with theory . In his recent dissertation work, Schulzt 12 > obtained Young's
modulus for handsheets that had been dried under constant strain . The
optimum `degree ofwet straining' for a handsheet of density comparable with
that of the example yielded a Young's modulus of 5-5 x 1010 dyn/cm2
(after correcting for the fact that Schulz based his stress calculations on the
cross-sectional area of cellulose of density 1-55 g/cm3) . The agreement is
fortuitously good in view of the fact that the fibre properties and dimensions
employed in the calculations were merely typical and were not based on
the properties of the pulp employed in Schulz's work .

Applications of the theoryfor the elastic regime
The value of theory in research on the relationships between fibre and

sheet properties has already been discussed . For some time to come, it is
expected that the chief use of physical theories of paper will be in bringing to
light hitherto neglected fibre characteristics and behaviour and in yielding
improved techniques for measuring the visco-elastic properties of fibres ; it is
hoped and expected that theory will indicate improved techniques for pulp
evaluation .

Working through theory in the other direction, towards the prediction of
sheet properties, it should be brought to mind that a number of important
behavioural properties of paper and paperboard involve stresses and strains
in the elastic regime. Stiffness or flexural rigidity is one such property . In one's
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thinking on this subject, it should be borne in mind that equations (22) and
(23) should be applicable to mathematical laminae within a sheet ; when
recognition is made of the fact that density and all the distribution functions
change throughout the thickness of a sheet, this point of view is theoretically
preferred especially in work on stiffness . In using equations (22) and (23) in
this way, the factor W/_'T should be replaced with PsheeO the density of the
web in a given plane (treated as a variable throughout the sheet) . (In the
purest application of theory, whether one is concerned with stiffness, Young's
modulus in pure tension or the modulus of rigidity, this point of view should
be used.)

Other properties of importance in the elastic regime are the rigidity of
paperboard and structural fibre board for shear in the xy plane ; this is of
growing engineering importance in theories relating to containers and
building materials .

In many converting operations in which a rapidly moving web is quickly
subjected to strain, the level of strain is in the elastic regime and, because of
the high rate of straining, there is reason to hope that theory will provide a
reliable basis for developmental work.

The plastic stress/strain regime
USUALLY, but not always, the stress/strain characteristic of paper dis-

plays a second, nearly linear portion whose slope is much less than that of the
elastic regime . (13) In the case of non-woven webs comprised of synthetic
fibres, Petterson has shown that the plastic regime can be associated with the
plastic nature of the individual fibres . (3, 4) It is not generally believed that the
plastic regime of paper and paperboard made from wood fibre can be attri-
buted to the plastic nature of the individual fibres ; the stress/strain curves for
individual fibres display much less curvature than that of typical paper . There
have been opposing schools of thought on the mechanisms operating in a
paper sheet under stress that may account for the stress/strain characteristic
and for creep and creep-recovery data . It is held by some that both the short-
term and long-term strain exhibited by paper at low levels of stress is attribut-
able almost entirely to elastic and creep deformation of the fibres themselves .
Others feel that the fibres may be regarded as essentially inextensible and that
creep and plastic flow, particularly at high stress levels, is the result of fibre-
to-fibre bond breaking and fibre-to-fibre slipping . The former view is very well
substantiated (for low levels of stress and strain) by the excellent data on the
stress/strain relationship and creep obtained by Steenberg and his associates
at the Swedish Forest Products Research Laboratory(14-17) and by Brezinski
at The Institute of Paper Chemistry. ( 9 ) The imaginative work of Nordman
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and his associates at the Finnish Pulp and Paper Research Institute ( 18--21 ) has
furnished strong evidence that, at higher levels of stress and strain, the re-
sponse of paper in the plastic region is attributable to breaking of fibre-to-
fibre bonds . Very recently, using an ingenious microscopic technique adapted
from a method developed by Emerton and Watts,(22) Page (23) and Page and
Tydeman(24 ) at the British Paper and Board Industry Research Association
have obtained information supporting the evidence that fibre-to-fibre bonds
fail in the plastic regime . In connection with the pulp evaluation programme
at The Institute of Paper Chemistry, Lathrop (25) has developed very sensitive
photoelectric equipment to study the change in light flux scattered by single
fibres as a function of straining. He observed both positive and negative
changes on loading fibres and concluded that the probable net effect is too
small to account for the observations of Nordman et al. Thus, it is concluded
that the major portion of the change in light-scattering coefficient of paper
produced by straining is attributable to fibre-to-fibre bond breaking . For the
purposes of the present work, it is assumed that fibre-to-fibre bonds (in all
but the weakest, lowest density papers) hold without failing for strains up to
and perhaps beyond about 0-005 ; as treated in the theoretical sections for the
elastic regime, each fibre-to-fibre bond is rigid, but undergoes slight angular
displacement as the sheet is strained and the fibres are subjected to the actions
of extension, flexure and shear ; it is presumed, in view of the experimental
evidence, that the onset of the plastic regime is occasioned by the breaking of
an appreciable number of fibre-to-fibre bonds . Following Nordman and
others, it is presumed that each increment of strain is associated with an
increment in the number of bonds broken; intrafibre creep continues to
contribute to the sheet strain ; as the process ofstraining is continued to higher
strains, a further mechanism fibre failure is considered possible ; ultimately,
of course, the sheet is so weakened by general bond failure and fibre rupture
that disruption of the sheet commences at some point and quickly propagates
across the strip .

A theory of the plastic regime should rest upon analyses of the stresses in
fibre-to-fibre bonds arising from the several kinds of forces existing between
fibres. The author is of the opinion that energy considerations alone are in
sufficient for a suitable mathematical treatment of the plastic regime . The
mechanical interactions between fibres considered in the present work are the
following

1 .

	

Stresses in bonds owing to flexure of fibre segments .
2.

	

Stresses in bonds resulting from the anisotropic shrinkage of fibre segments .
3.

	

Stresses in bonds owing to tension in fibres .
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The stress distribution in a bond is reckoned, of course, from a suitable
summing of the foregoing stresses .

Stresses in bonds owing to fexure offibrefibre segments
According to the theory presented below, it develops that a very im-

portant aspect of flexure in fibre segments is the high shearing stress existing
in certain bonds in consequence of the associated torque acting on the bonds.
An estimate ofthe stress can be made in the following way . The contributions
to the torque in the `lower' bond shown in Fig. 1 from both the segment shown
and the segment beyond the bond (assumed for illustrative numerical purposes
also to have lengths) is, from considerations similar to those leading to
equation (7)

Fs/2+ F's/2 = (es/2h) (l + vx1,) [sin 8 cos e- (1 /2) sin a cos a

- (1/4) sin E cos E - (1/4) sin ß cos ß]

	

(34)

in which F is the shearing force in the extension of the fibre into the next
segment beyond and `below' the bond and E is the orientation of the next
crossing fibre beyond the bond. Numerical considerations of equation (34)
show that the bond torque can vary from zero (when all three angles are
equal) to a maximum value when 9 = 45° and a=ß=,E=135° (or, of course,
when the values are interchanged) . Using the numerical values leading to
equations (33), it is found that this torque is about 3-5 dyn cm when the
strain in the sheet is e = 0-01 . The calculation of the maximum shear stress in
a bond between two ribbon-like fibres corresponding to this torque ifdone
with rigour, taking into account the deformability of the fibre wall material
--would in itself be a major effort . An approximate idea of the stress can be
gained by treating the fibres as rigid and the bonded zone as disc-like . If Tm is
the maximum shear stress and ifthe stress at distance r from the centre of the
zone is assumed to be proportional to r, it may be shown that-

-r�, = (F+ F')sl-uR 3

	

.

	

.

	

.

	

.

	

.

	

.

	

(35)

in which the numerator is obtainable from equation (34) . When the torque is
3-5 dyn cm and R=0-0015 cm, the peripheral shear stress is found to be
6-6 x 108 dyn/cm2 (9 600 lb/in2) . If the bond is held under this stress, its
strength would be greater than that of the strongest adhesives determined
with macroscopic areas . (26) When the stress discussed in the following section
is taken into consideration, it will be seen that the maximum peripheral stress
should be appreciably greater than this value .
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Stresses in bonds resulting from anisotropic shrinkage
It is well known that woodpulp fibres shrink substantially in transverse

directions (on drying from equilibrium with water) while displaying only a
small shrinkage in the axial direction ; inspection of the data of Weidner,t27 >

for example, shows that a typical transverse contraction of about 5 per cent

Fig . 3-Shearing forces in a bond, shown for only one fibre A, caused by anisotropic
shrinkage : a similar set, with signs reversed, should exist for fibre B

occurs for woodpulp fibres on drying from water to equilibrium with air at
50 per cent relative humidity. It is not known at what moisture content the
Campbell effect(28) has completed its task of bringing molecular bonds into
action, but it is presumed that, at this point, only a fraction of the ultimate
shrinkage of the fibre has occurred . At a bond like that pictured in Fig. 3 the
differential shrinkage will cause a distribution of shearing forces (to be
16®r.s.P . : i
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visualised as acting on elemental areas) on each fibre like that shown for fibre
A. In view of considerations similar to those made by deBruyne(26 ) in his
interesting discussion of stress-concentrating effects in glued joints, one must
conclude that the stresses established in fibre-to-fibre bonds by drying of the
sheet are maximum at the periphery.

The order of magnitude of the maximum stress arising in anisotropic
shrinkage can only be estimated . Involved in the estimate are the axial and
transverse moduli of elasticity of the fibres, the effective strain in each fibre
and the geometry . On the basis of the structure of a fibre, it is presumed that
the axial value of Young's modulus is much greater than the transverse . Thus,
for an order-of-magnitude estimate, it may be assumed that the axial com-
pression ofeither fibre is smallcompared with the effective transverse extension
of the other . Let it be supposed that the latter is 0-03 and put Et at only
0-5 x 1011 dyn/cm2 , halfthe fibre thickness at 0-0004 cm and the fibre width at
0003 cm.

The computed average shearing stress, from one centre line along the
other to the periphery, is seen to be 4 x 10 8 dyn/cm2 (5 800 lb/in2 ) . The stress
at the periphery ofthe bond should be higher than the average value ; however,
creep and stress relaxation will lessen the stress and, hence, we might think of
the calculated stress given above as a reasonable estimate of the order of
magnitude of the stress caused by differential shrinkage of the fibres . The
stress is at a surprisingly high level .

Combination ofbond stresses originating in torque and anisotropic shrinkage
The vector sums of the stress forces shown in Fig. 3 and those arising in

torque are qualitatively shown in Fig . 4 . It is of considerable interest to note
that the peripheral shearing stress displays two maxima and two minima,
estimated to be about 109 dyn/cm2 (15 000 lb/in2)

	

fora sheet strain of 0-01 .
Injudging the possible effect of a shearing stress at this high level, it should be
borne in mind that rupture stresses for very small areas tend to be appreciably
higher than are observed for ordinary, macroscopic areas : it may well be that
a fibre-to-fibre bond measuring only 30 1-k on a side could withstand a shearing
stress as large as the foregoing, but this seems doubtful .

It seems clear that bond failure resulting from shearing stress due to fibre
flexure and anisotropic shrinkage should generally initiate at the ends of the
diagonal that is the more closely perpendicular to the external tensile load
(Fig. 4) .

As the straining of the sheet increases beyond the elastic regime, some of
the bonds between fibres that are roughly perpendicular to each other and
oriented at approximately 45' and 135' will fail and, as will be seen later, it is



expected that some of the bonds near the ends of fibres that are roughly
parallel to the external load will fail . As the straining is increased, torque
failures will occur for fibres oriented farther and farther away from the an-
gular orientations yielding maximum torque, in accordance with equation (34)
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Fig. 4-Shearing forces in a bond, shown for only one fibre A, resulting from the
combined effects of torque and anisotropic shrinkage

It is expected that torque bond failures should initiate in the left or right limbs,
where the shearing stress is maximum (only the peripheral forces are shown)

and tension failures will occur for fibres that are oriented farther away from
parallelism with the external load . It would seem that torque failures may
occur with nearly equal probability anywhere along a fibre, whereas (as will
be shown in the next section) a tension failure of a bond will most probably
occur at either end of a fibre.
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Before proceeding to the discussion of tension failures of bonds, a
numerical aspect of equation (34) should be given attention . When sin 9 cos 9
is at a maximum value (either in the first or second quadrant) and the other
products are of opposite algebraic sign, but numerically at their maxima, the
angles can deviate appreciably from 45° or 135 ° without significant change in
these products . For example, the angle may change from 32° to 58° or from
122° to 148° with a torque reduction of only 10 per cent (the range is 18°
corresponding to a variation of only 5 per cent) . It would seem, then, that the
first torque failures would involve statistical fluctuations in the strength of
bonds for fibre segments occurring in appreciable ranges of orientation angle .
At greater strains, according to equation (34), a wide variety of angular
orientations of bonded segments could result in torque failures of bonds .

Stresses in bonds owing to tension infibres
A consideration of the equilibrium of a fibre leads immediately to the

conclusion that the tension (or compression) in a fibre at any point is the
algebraic sum of the shear forces in the bonds from that point to either end
ofthe fibre . It is important to consider the manner ofbuild-up offibre tension,
because the shear force at a bond is equal to the increment in fibre tension
from one side of the bond to the other . If the build-up is gradual, the shear
force is weak; if it is sudden, the shear force is strong. Of interest are the
mathematical aspects of the special, idealised case pictured in Fig. 5 . All the
segments shown are of the same length s and of similar cross-sectional dimen-
sions . Each crossing fibre is treated as a beam of length 2s having clamped
ends and these ends are assumed to move with the sheet extension that is,
after the sheet has been subjected to a strain e, neighbouring ends of adjacent
`beams' move apart from an initial separation s to s(1 + e) .

Numbering from the `top' of the fibre, there are n segments to the middle
of the fibre in which to reckon the build-up oftension . In the first segment, the
shear force (ST)1 is also the tension ; in the second, T2=(ST)1 + (8T)2, etc .
The strain in the pth segment is given by equation (36) and the following
equations relate the shear forces (the 8T values) and the tensions . In equation
(36), xp is the central deflection of the pth crossing fibre (Fig . 5) .

ep = e - (x, -- xp+1)ls

	

.

	

.

	

.

	

.

	

.

	

. (36)

(~T)1 = ex,
(8T)2 = cx2

. (37)

(8T), = ex,
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(38)

(ST)p = sce + (ST)p+1- (sc/c')T,

	

:

	

.

	

.

	

.

	

.

	

(39)

Equation (39) is derived from the three preceding sets of relationships . Now,

Fig . 5-Disposition of a fibre and crossing fibres (most flexible arrangement)
appropriate to the development of equations (36-42)

T1 =

	

(~T)1

	

== c'el
T2 - Tl + (8T)2

	

= c'e2

Tp = Tp_1+(8T)p = c'ep
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at the centre of the fibre, xn+I = 0, by symmetry and (ST),,+1= 0. Then, for the
nth segment (putting sc/c' =j)

(ST)n = sce -jTn .

Alternating from Tn_ 1 = Tn - (ST),, [that is, from equation (38)] to equation
(39) to obtain (8T)n_ 1 , then to equation (38) to obtain T�_2 , etc., one can
obtain a series of expressions for the tensions in the segments and the shear
forces in the bonds . Before illustrating this, let us put Tn = -qc'e, in which c'e
is the maximum possible tension in a fibre aligned in the direction of the sheet
strain (corresponding to an infinite number of points of bonding) and -q is the
fraction of this maximum possible tension existing at the centre of the fibre .
[If one wishes to consider a fibre at angle 6, one substitutes for `e' the expres-
sion for als from equation (1)] . For the fifth segment from the fibre centre,
for example, one finds

Tn-4 = [,q -(1-,1)(10j+ 15j2 +7j3 +j4)]e'e

(ST)n-4 = (1--1)(5j+20j2+21j3+8j4+js)c'e

	

.

	

.

	

.

	

(41)

The scheme for obtaining the numerical factors ofj and its powers is given in
Fig . 6 . This has been worked out for values ofn up to 10 ; it is easily extended
to larger values . The numberq is defined as (n -p), so that q = 0 for the segment
nearest the fibre centre (the nth) and q= 9 for the segment nearest the fibre end
in an example with n =10 (whole length of fibre bonded at 21 points) .

The value of -q can be obtained by developing the expressions for T1 and
(ST)1 ; these are equated and q is computed . It then becomes possible to
compute other segmental tensions and shear forces .

From equations (37 and 38), which define c and c', it is readily seen
that

c = 24EI/s 3 = 1-04 x 108 dyn/cm,

c' = AE = 7-2 x 105 dyn,

when the fibre cross-section and Young's modulus employed earlier for
illustrative purposes are used and s=0-005 cm. It is then seen that j= scl c' -
0-72 . When the expressions for T1 and (ST)1 are equated, with n =10 and
j=0-72, computation shows that

= 1- 1

	

= 0999625 .2661

(40)

In other terms, the tension built up in only ten bonds is almost exactly the
maximum possible value . Ofcourse, one is more interested in the shear forces
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(dT)1 , (8T)2, etc . When, with the help of Fig . 6, the expressions are developed
and the foregoing value of 1- -q =1/2661 is substituted, one finds

It is of very great interest to note that, with the mostfexible arrangement of
crossing fibres (Fig . 5), more than half of the ultimate tension developed in

Fig. 6-Scheme for developing equations for Tp and (8T)p , in which the numbering
is based onq= n -p ; counting ofq begins at thefibrecentre, with q =0for the segment

nearest the centre
The scheme is illustrated in equations (40) and (41) and, in the expression for Tin_q,
the exponents for j range from 1 to q ; in that for (8 T)n_q , the exponents range

from 1 to (q + 1)

(8T) 1 = 0562 c'e
(8T)2 = 0246 c'e
(8T)3 = 0- 108 c'e
(8T)4 = 0047 c'e
(8T)5 = 0021 c'e (42)
(8T)6 = 00090 c'e
(8T)7 = 00038 c'e
(8T)8 = 00017 c'e
(8T)9 = 00007 c'e
(8T)lo = 00003 c'e
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the fibre occurs at the first bond (counting from either end of the fibre) ; at the
second bond, the increment (the shear force) is 24-6 per cent of the ultimate
tension significant, perhaps, but small ; beyond several bonds from either
end, the shear forces are entirely negligible . In short, although the tension in
the fibre is maximum at the fibre centre (and extremely close to the maximum
possible value for a given orientation), the shear forces on central bonds are
quite negligible . Thus, the expectation is that tension failures of bonds should
occur first at the fibre ends . When an end bond fails, the next bond becomes
number one and is suddenly exposed to a large fraction of the central tensile
force . Depending on the statistical fluctuations of the bond strengths along
the fibre, the bonds may fail in rapid-fire series or the ruptures may cease
after only several failures ; if the fibre curves away to an orientation of lesser
strain, the bond ruptures may cease on the curve . If the bonds are of uniform
strength and rupture along a straight fibre until, for example, only eight bonds
of the fibre remain (n =4), the most remote bond from the centre would still
be subjected to more than half of the maximum possible tension and the
central tension in the fibre would be 95 per cent of the latter value.

Ifthe resistance to flexure of the cross-fibres increases, because of orienta-
tion or shortening of the span, the shear force on the end bonds should in-
crease . If orientations of the crossing fibres away from the perpendicularity
shown in Fig . 5 had the effect of doublingj, for example, the shear forces at
the end bonds would increase from 56 per cent to 68 per cent of the central
fibre tension (which now would be within one part in 66 000 of the maximum
possible value) ; if, because of increased extent of bonding in the sheet, s were
reduced to the point thatj had been increased tenfold, the shear forces at the
ends of the fibre would be at the 90 per cent level and it is obvious that the
second bonds would be subjected to shear forces less than 10 per cent of
the central fibre tension.

The shear stress distribution in an end bond resulting from the com-
bination of shear force arising in tension and the stress that is due to aniso-
tropic fibre shrinkage might be of the form shown in Fig . 7 . The former
component corresponding to a sheet strain e=0-01 (in the direction of the
fibre terminating just beyond the bond), based on the numerical values em-
ployed earlier and assuming that (8T) 1 = 0-7c'e, is found to be 5-6 x 108
dyn/cm2 (about 8 000 lb/in2) . This is somewhat less than the maximum
shear stress arising in torque alone in bonds between fibres crossing at 45° and
135 ° (sheet strain of 0-01 at 0=90') . Earlier, it was estimated that the stress
caused by anisotropic shrinkage is of the order of 4 x 10 8 dyn/cm2 ; the
maximum of the combined stresses would then be about 9-6 x 10 8 dyn/cm2
(14 000 lb/in2 ) . If allowance is made for the fact that fibres taper somewhat
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near their ends, one should increase this figure and it may be concluded that
torque and tension failures of fibre-to-fibre bonds should be of comparable
occurrence (but not necessarily of comparable importance) .

Fig . 7-Shearing forces in a bond, shown for only one fibre A, resulting from the
combined effects of fibre tension (or compression) and anisotropic shrinkage

It is expected that tension bond failures should initiate in one of the bond edges
(only the peripheral forces are shown)

Significance to the plastic regime
of torque and tension failures ofbonds
The considerations of the foregoing sections lead to the conclusion that,

as the sheet strain increases beyond the elastic regime, some of the bonds of
fibres in two quite different groups begin to fail . These include (a) some of the
bonds between fibres that are approximately perpendicular to each other and
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oriented roughly 45° to either side of the direction of straining and (b) some of
the bonds offibres that are roughly parallel to the direction of straining . In the
former group, bonds may fail anywhere along a fibre in accordance with
the conditions of equation (34) and statistical fluctuations in bond strength ;
in the latter group, the strong probability is that the end bonds will fail first.

In assessing the effects of bond failure, it is convenient to regard the
strain e of the sheet as the independent variable. It is useful to think in terms
of the external load on the sheet, through equation (13) [or equation (14) for
loading in the cross direction] . The most important term in this equation,
numerically, would ordinarily be the second integral . Fibres nearly parallel to
the direction of straining (8 ^_= 90°) contribute importantly to the external load
and are, in fact, under substantial tension ; a simple calculation shows that, if
the bonds held, many fibres oriented within a few degrees of the direction of
straining would break when the strain is 0-03 ; for fibres of the size employed
in earlier calculations, the tension would be 21 600 dyn (22 grams) . When,
at some relatively low level of strain in the plastic regime (perhaps between
0005 and 0-01), the bonds of such fibres begin to fail, it is expected that only
slight increments of strain would cause the remaining bonds of those fibres to
rupture in accordance with earlier discussion . When these fibres have been
taken out of play, the effect is two-fold : firstly, their mass is subtracted from
W, a multiplying factor in equation (13) ; the angular distribution function
Pe will be modified in such manner as to place more emphasis on orientations
away from the direction of straining. The decrement is to be thought of as a
subtraction from the extension of the elastic line . Thus, although the external
load increases with strain, it cannot increase with slope as great as that of the
elastic line . Secondly, for each of the many bonds that fail, one segment of
augmented length will appear in place of a pair of adjacent segments in a
neighbouring fibre that remains in action. This, too, will cause the load/strain
relationship to fall away from the elastic line .

At the same time, torque failures of bonds will occur. At the lower levels
of sheet strain, such failures may not be of much importance, because, firstly,
early in the plastic regime, fibres oriented at angles roughly 45° away from the
direction of straining should not contribute heavily to the external load
[equation (13)] and, secondly, the effect of each bond failure is the replace-
ment of two pairs of contacting segments with two single segments of aug-
mented length in each fibre in a scattered manner, in accordance with
equation (34) the result of which should be only a small decrement from the
elastic line . Therefore, at the lower levels of strain in the plastic regime, the
effect of torque failures of bonds on the external load is not expected to be
as important as that of tension failures.
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As the sheet straining is increased, the ranges of angles corresponding to
bond failure will increase in both groups of failure (increase of angular spread
from 9= 90° for tension bond failure and from 45° and 135° for torque bond
failures), as discussed earlier . It seems fairly obvious that the relative im-
portance to the external load of torque bond failure will increase with in-
creasing strain . Many of the fibre segments oriented within small angles of
the direction of straining will have been taken out of action ; W should be
thought of as the mass of fibre per unit area that is still in action and the
distribution function PB and PS do not include fibres that are no longer bonded
to neighbouring fibres . It is not expected, however, that the spread of range
corresponding to tension bond failure can proceed far before complete
failure of the sheet initiates in some spot.

One must not lose sight of the importance, in the plastic regime, of the
effects of intrafibre creep and stress relaxation . The relative importance of
these effects to the observed stress/strain relationship will depend, of course,
on the rate of increase of the strain .

The evidence that some fibres fail during tensile straining of paper is not
entirely clear ;( 29) if they do, one can feel reasonably sure that they involve
segments making small angles with the direction of straining [tension in a
fibre element can be obtained at once from equations (1) and (4)

	

and equa-
tion (20), if Poisson's ratio is not known] . If a fibre fails, there will be a decre-
ment in the load from the elastic line, although the remaining portions of the
fibre may continue to contribute to the sheet stress . In connection with fibre
failure, it is of considerable interest to speculate on the effect of fibre curva-
ture (that is, general, gradual curvature in distinction to curvature within a
segment) . Reference has already been made to the possibility that tension
failure of bonds may initiate near the end of a fibre and propagate along a
curved fibre to a point on the curve where the local segments are so oriented that
the bond stress is no longer sufficient for rupture . A curved fibre may be so
oriented that fibre failure under tension may occur without bond failure . The
reader is asked to visualise a fibre in the form of an integral sign, with the
central stem oriented in the direction of straining and the ends curved to-
wards the positive and negative y directions . When the sheet is strained, there
should not be the sudden build-up of tension in the fibre discussed in the
foregoing section ; the build-up should be gradual around the curved ends and
it seems likely that such a fibre should be stressed to the breaking point
without the occurrence of bond failure .

It will be readily appreciated that a reasonably accurate mathematical
theory for the plastic regime, embodying the complex of phenomena des-
cribed or implied in this and earlier sections, would be extremely involved .
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It should embrace, at least in its later stages of evolution, appropriate treat-
ment of statistical fluctuations of bond and fibre strength . It should be re-
membered that the model fibrous structure assumed for the present theoretical
treatment is one in which each fibre segment is of such configuration that it
will have tension (or compression), flexural and shear stresses linearly re-
lated to the sheet strain (that is, the model corresponds to a sheet dried under
mechanical restraint) . In reality, paper behaves as though the segments were
not all disposed to exhibit stresses linearly related to the sheet strain ; the
configuration may vary all the way from Steenberg's microcrêping( 15 ) to
configurational changes of a more macroscopic nature, induced by mech-
anical treatment of the web . These effects, which generally reduce the slopes of
the stress/strain relationship in both the elastic and the plastic regimes and
increase the breaking strain, are understandable in a qualitative way on the
basis of theoretical considerations like those of the present work ; ultimately,
mathematical theories of the stress/strain relationship should take into
account both the non-linear configurations of fibre segments and of the sheet
itself.

Note on the theory of the zero-span tensile test
IT is of some interest to review, from the point of view of the present

work, the theory( 29 ) relating the strength of individual fibres and zero-span
breaking stress . In that earlier theory, the analysis leading to the tensile force
in a fibre, the introduction of the probability that a fibre will cut across a
plane and the integration of components offibre forces to arrive at an expres-
sion for the external load may be thought of as a special case of the theory
leading to equations (13) and (14) (or, later, equivalent relationships) . Perhaps
the first thing to notice about the zero-span theory is that Poisson's ratio does
not appear ; this is because the clamping of the sheet by the jaws of the zero-
span testing device prevents lateral contraction . The zero-span theory was
evolved in connection with studies requiring handsheets, for which Pe =
const . =1/iT. In work with machine-made paper, it is suggested that equation
(13) or (14) be employed with the appropriate Pe introduced in the second
integral . The effect of fibre flexure and shear was not invoked in the earlier
theory (this is equivalent to omitting the first integral) . The only justifications
for such omissions from the theory are (a) the zero-span test actually involves
a finite span (at the instant of failure the jaws separate by an easily discernible
distance) and the fibre segments in the zone in which failure evidently occurs
are not `bonded' together under the high compressive stress of the jaws and
(b) the sheets usually tested are prepared from unbeaten or lightly beaten
pulp, so that the contribution to the observed breaking load of resistance of
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the fibres to flexure and shear is probably negligible . In work with strong,
well-bonded sheets, it would be of interest to test the importance of the first
integral.

REFERENCES
1.

	

Cox, H. L., Brit . J. appl. Phys ., 1952, 3 (3), 72-79
2.

	

Onogi, S. and Sasaguri, K., J. Japan . Tech . Assoc . PulpPaper Ind.,1957,11(4), 233-238
3.

	

Petterson, D. R., On the Mechanics ofNon-woven Fabrics (Sc.D . Thesis, Mass. Inst. of
Tech., Cambridge, 1958)

4.

	

Petterson, D. R ., Ind. Eng. Chem ., 1959, 51 (8), 902-903
5.

	

Love, A. E. H., The Mathematical Theory of Elasticity (The University Press, Cam-
bridge, 1927)

6.

	

Ranger, A. E. and Hopkins, L . F ., Nature, 1960, 187 (4743), 1097-1098
7.

	

Timoshenko, S., Strength of Materials, Part I. Elementary Theory and Problems (Van
Nostrand, NewYork, Third edition, 1955)

8.

	

Danielsen, R. and Steenberg, B., Svensk Papperstidn., 1947, 50 (13), 301-305
9.

	

Brezinski, J. P., Tappi, 1956, 39 (2), 116-128
10 .

	

Dyson, J., J. Opt . Soc . Am., 1960, 50 (8), 754-757
11 .

	

Jayne, B. A., Tappi, 1959, 42 (6), 461-467
12 .

	

Schulz, J. H ., The Effect ofStrain Applied During Drying on the Mechanical Behavior
ofPaper (Ph.D . Thesis, The Inst . of Paper Chem., Appleton, 1961)

13. For a review, see, for example, Rance, H. F. in Meredith, editor, The Mechanical
Properties of Paper (Mechanical Properties of Wood and Paper, Interscience, New
York-London, 1953)

14.

	

Steenberg, B., Svensk Papperstidn ., 1947, 50 (6), 127-140
15.

	

Steenberg B., Svensk Papperstidn ., 1947, 50 (15), 346-350
16.

	

Ivarsson, B. and Steenberg, B., Svensk Papperstidn., 1947, , 50 (18), 419-432
17 .

	

Andersson, O. and Sjoberg, L., Svensk Papperstidn ., 1953, 56 (16), 615-624
18 .

	

Nordman, L., Gustafsson, C. and Olofsson, G., Paper and Timber (Finland), 1952,
34 (3), 47-52

19 . Nordman, L., Gustafsson, C. and Olofsson, G., Paper and Timber (Finland), 1954,
36 (8), 315-320

20.

	

Nordman, L., Tappi, 1955, 38 (12), 724-727
21 .

	

Nordman, L., Fundamentals ofPapermaking Fibres, Ed . F. Bolam (Technical Section
B. P. & B. M. A., Kenley, 1958), 333

22 .

	

Emerton, H. W. and Watts, J.,Proc. Tech . Sect. B.P. & B.M.A ., 1953, 34 (2), 269-287
23 .

	

Page, D. H., Paper Tech ., 1960, 1 (4), 407-411
24.

	

Page,D. H. and Tydeman, P. A., Paper Tech ., 1960, 1 (5), 519-530
25 .

	

Lathrop, A. L., work to be publishedsoon
26.

	

deBruyne, N. A. and Houwink, R., Adhesion and Adhesives (Elsevier, New York-
Amsterdam-London-Brussels, 1951)

27.

	

Weidner, J . P ., The Influence of Humidity on Changes in Diameter and Length of
Sulphite Fibers (Ph.D . Thesis, The Institute of Paper Chemistry, Appleton, 1938) ;
Paper Trade J., 1939, 108 (1), 31-40

28 .

	

Campbell, W. B., Paper Trade J., 1932, 95 (8), 29-33 ; Canada, Dept . Interior, Forest
Service, Bull . No . 84 (1933) ; Tappi, 1949, 32 (6), 265-271

29.

	

Van den Akker, J . A., Lathrop, A. L., Voelker, M. H. and Dearth, L. R., Tappi, 1958,
41 (8), 416-425



238

	

Alechani cs offibrous structures

Appendix l

Glossary
a

	

Axial extension of a fibre segment
A

	

Cross-sectional area of fibre wall
b

	

Transverse displacement of end of fibre segment
c

	

See equations (37)
c'

	

See equations (38)
e

	

Sheet strain
ex	Sheet strain in direction of x
ey	Sheet strain in direction of y
E

	

Young's modulus of fibre, axial
,ffx	Young's modulus of sheet in x direction ; see equation (22)
O'y

	

Young's modulus of sheet in y direction ; see equation (23)
F

	

Shearing force in fibre segment (parallel to xy plane)
F'

	

See equation (34)
Shearing force in sheet

G

	

Modulus of rigidity of the fibre for shear stress along cross-section and
parallel to F

Wxy

	

Modulus of rigidity of sheet for shear strain in xy plane and shear
forces parallel to y axis

	

see equation (32)
h

	

See equation (8)
I

	

Moment of inertia of fibre cross-section referred to neutral axis in z
direction

j =

	

sc/c'
L

	

Fibre length (see Appendix 2)
m

	

Number of fibre segments per unit area of sheet
n

	

See text leading to equations (36-41)
p

	

See text leading to equations (36-41)
PA	Distribution function for A
PI	Distribution function for I
PS	Distribution function for s
PB

	

Distribution function for 8
q

	

See text leading to equations (36-41)
r

	

Radial distance in theory leading to equation (35) ; relative bonded
area

	

see Appendix 2
R

	

See equation (35)
s

	

Fibre segmental distance or interval between bonds
Ylx, et,,: . Symbols for integrals

	

see equations (15) and (16)
T

	

Tensile force in fibre segment, axial
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(8T)p Increment, across bond, in fibre tension ; `tension' shearing force on
bond
Tensile load in sheet in x direction

	

see equation (13)
,,

	

Tensile load in sheet in y direction

	

see equation (14)
u

	

Fibre width (dimension parallel to xy plane)
Width of strip of sheet under tension

W

	

Fibre thickness (dimension parallel to z axis)
W

	

Mass of fibres per unit area of sheet
x

	

A principal axis of sheet ; corresponds to machine-direction
xp	Central deflection of a fibre element

	

see equation (37)
y

	

A principal axis of sheet ; corresponds to cross-direction
z

	

A principal axis of sheet ; it is normal to xy plane
Thickness of sheet

a

	

Angular orientation, referred to y axis, of fibre segment bonded at
`lower' end of segment under consideration

a'

	

Similar to a, except angle referred to line at 0 = 45'
ß

	

Angular orientation, referred to y axis, of fibre segment bonded at
`upper' end of segment under consideration

ß'

	

Similar to ß, except angle referred to line at 0=45'
y

	

Shear strain in fibre, referred to segment axis and parallel to the xy
plane

8

	

Angular orientation of fibre segment referred to line at 0=45'-see
Fig . 2
See equation (34)
Bond area

	

see Appendix 2
Ratio of fibre tension to maximum possible tension for given sheet
strain

	

see text leading to equations (40) and (41)
8

	

Angular orientation of fibre segment, referred to y axis
vxy

	

Poisson's ratio for sheet, with sheet stress in x direction

	

see equation
(20)

vyx

	

Poisson's ratio for sheet, with sheet stress in y direction

	

see equation
(21)

p

	

Density of fibre wall
Tm

	

Maximum shearing stress in a fibre-to-fibre bond owing to torque on
bond

Y'1

	

Angular displacement of `lower' end of fibre segment
02

	

Angular displacement of `upper' end of fibre segment
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Appendix 2

Connection between bonded area and segmental length
THEfollowing treatment is carried out for straight fibres, although it seems

likely that the final result should not be appreciably modified by moderate
curvature . Consider two fibres, oflength L and L' and width u and u', bonded
together as indicated in Fig. 8 . The apparent area of the bond is

~ = uu'/sin (B-a) 1

	

.

	

.

	

.

	

.

	

.

	

.

	

(43)
and the probability of the bond's existence is proportional to LL' sin (6-a) .
Accordingly, for a given e, the mean area of bonds for all values of a is

LL'uu'
fo

Pa da
«9,~Av

LL' f P« sin (® - a) da +LL' f"Pa sin (a - 0) da
0

uu'

2sin9 l'a cosada-2cos8 Pa siilada-1-cos® l'a sinccda
4

	

Q

	

j
p

(44)
In one of the steps leading to equation (44) ; an integral vanishes on the sup-
position that the angular distribution function is symmetrical with respect to
the principal axes . On averaging all values of 8, one obtains

<0AV =

	

o «eiAv Pe d®

	

.

	

.

	

.

	

.

	

.	(45)
f

where, of course, the first factor in the integrand is given by equation (44) .
In researches dealing with handsheets, the angular distribution function

in both equations (44) and (45) is 1/ ,,r and it is easily seen that

Isotropic:

	

«eiAv = «iAv = (Tr/2)uu'

	

.

	

.

	

.

	

.

	

. (46)

If the fraction of the external surface area of the fibres involved in bond-
ing is r, the number of bonds per unit -length of fibre is evidently 2url«>Av
and the mean segmental length would then be the reciprocal of this

<s>A, = «>Avl2ur

	

.

	

.

	

.

	

.

	

.

	

.

	

47)

When one deals with handsheets, substitution is made from equation (46)
with u = u' to obtain

Isotropic :

	

<s>Av = 7Tul4r

	

.

	

.

	

.

	

.

	

.

	

.

	

. (48)
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The reader will note that equations (47) and (48) are approximations (whose
accuracy improves with diminishing r), because no allowance is made for the
overlapping of bonds [see, for example, the Page and Tydeman type II
bond(24 )] .

Fig. 8-Idealised fibre-to-fibre bond area appropriate to the development of
equation (45)

Addendum 1

A paper by Litt [Litt, Morton, `Macroscopic properties and microscopic
structure in paper' ; J. Colloid Sci ., 1961, 16 (3), 297-310], which presents a
mathematical theory of the mechanical properties of paper, has appeared too
late for inclusion in the author's present discussion of past work in the field .
Litt's basic assumption to the effect that all fibre segments are subjected to the
same force (regardless of orientation) is unfortunate . This leads, for example,
to the conclusion that Poisson's ratio (xy plane) should be negative in very
dense papers, which is demonstrably not the case .

Addendum 2
Dr. Charles W. Carroll has made the excellent suggestion that the

products of the distribution functions be replaced with joint distribution
functions . Thus, to be most general, the product P,PAPIPS should be replaced
with the function P(e, A, I, s) because of the statistical interdependence of
the variables . His contribution follows.

17-F .S .P . : i



DISCUSSION

MR. D. x . PAGE : Dr . Van den Akker has asked whether we have observed
bond failure due to torque . Unfortunately, we have not had the opportunity
to search our micrographs for this effect, but we have the necessary data
recorded for such a search to be made and we will certainly carry this out .

I would like to comment on the question of tension failure at the end
bond of a fibre . The picture that Van den Akker has given is, as he obviously
realises, a highly idealised one . On average, in a paper sheet each fibre has
two bonds on it that are the end bonds of other fibres . As these must have
high shear stresses associated with them, it follows that the shear stress
distribution on the bonds along the fibre cannot be as he indicates, but is in
reality much more complex than this, with quite high shear forces occurring
occasionally on bonds remote from the fibre ends .

Fig. DS

The prediction that during straining of a sheet failure of bonds along a
fibre can occur from one end is borne out, however, by some of our work on
bond breakage . We have developed a technique that enables us to reveal the
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