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Synopsis

A stress fstrain law is derivedfar a hydrogen-bonded network that
is isotropic for all strains. The calculus of variations is used in con-
junction with the Principle ofLeast Work to obtain the distribution of
strain among the hydrogen bonds of the system as afunction of their
orientation . In addition to unidirectional applied stress, the theory can
be used to predict the effects of two- and three-dimensional tension .
The solutionfor unidirectional strain is comparedwith a modifiedform
of the original treatment of the theory by Nissan and experimental
evidence is used to corroborate the postulate that these two solutions
`bracket' thestress/strain behaviour for anisotropic (oriented) systems .

Théorie moléculaire de la visco-élasticité d'un réseau
tri-dimensionnel à ponts hydrogène

Une relation contrainte-déformation est donnée dans le cas d'un
réseau à ponts hydrogène isotropique vis-à-vis de toutes les déforma-
tions . Le calcul des variations est utilisé en liaison avec le Principe du
Moindre Travail pour établir la distribution des déformations parmi
les ponts hydrogène du système en fonction de leur orientation . La
théorie s'applique aux tensions unidirectionnelles et permet aussi de
prévoir les effets des tensions bi- et tri-dimensionnelles.

La solution pour les déformations unidirectionnelles est comparée
à une forme modifiée de la théorie initiale de Nissan . Les auteurs
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prouvent expérimentalement que ces deux solutions servent chacune à
expliquer en partie les relations effort-allongement des systèmes
anisotropiques (c'est à dire, orientés) .

Eine molekulare Theorie über die Viskoelastizität eines
dreidimensionalen, durch Wasserstoffbrücken

gebundenen Netzwerkes

Für ein durch Wasserstoffbrücken gebundenes Netzwerk, das
für alle Dehnungsbeanspruchungen isotrop ist, wurde ein Spannungsl
Dehnungsgesetz abgeleitet . Zur Beschreibung der Dehnungsbeanspru
chungen auf die Wasserstoffbrücken des Systems als Funktion ihrer
Orientierung wurde der Kalkül der Variationen zusammen mit dem
Prinzip der geringsten Energie verwendet. Zusammen mit der in einer
Richtung wirkenden Spannung kann die Theorie zur Voraussage der
Wirkungen von zwei- und dreidimensionalen Zugbeanspruchungen
herangezogen werden . Die Lösungfür die in einer Richtung wirkenden
Spannung wurde mit einer modifizierten Form der ursprünglichen
Form der Theorie von Nissan verglichen und mit Hilfe experimenteller
Beweise versucht, die Voraussetzung zu bestätigen, dass diese beiden
Lösungen das SpannungslDehnungsverhalten von anisotropen
(orientierten) Systemen vollständig beschreiben .

Introduction

PAPER consists of fibres bonded together at junctions that are loosely
called `bonded areas' . We wish to look deeper at these areas and see not only
what constitutes the bonds, but in what way they are different from the
bonded areas within the fibres that give coherence to the fibres themselves .

Looking microscopically at the bonded areas, we find a picture that re-
peats itself at each successive magnification . Firstly, large bundles of slender
fibrillar elements appear to join at lower levels of dimensional measures and
form smaller bonded areas, with spaces between these areas in which there is
no bonding. Next, at a higher magnification, we find small single fibrils joined
at still smaller bonded areas with empty spaces in between . Going to the
electron microscope, we find these areas themselves consisting of still smaller
bonded areas with empty spaces between microfibrils. Finally, we reach the
molecular level, at which we still find long slender molecules of cellulose with
bonded areas and non-bonded regions intervening. The bonded areas here are
the hydrogen bonds interconnecting adjoining glucosidic groups .
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In the process of increasing our magnifications, a significant absence of
a distinction must not be allowed to escape our notice . At the level of the
microfibril, we cannot tell whether we are looking at junctions between fibres
or at those within fibres . Thus, for our purposes, we shall not distinguish
between inter- and intea-fibre `bonds' . (For other macroscopic purposes, there
is a very distinct difference between these two types of junction .) Further-
more, to give clarity and precision to the present discussion, we shall use the
words bonds and bonded areas only at the molecular level and refer to the
hydrogen bonds acting between cellulosic molecules . Paper is not made en-
tirely of cellulose, but we shall simplify our model by assuming it to be made
of a network of cellulose

	

or other equivalent hydrogen-bonded molecules
joined together by randomly oriented, uniformly distributed hydrogen bonds .

Extension of cellulosic and other hydrogen-bonded materials is resisted
by forces arising from several microscopic deformations that are conveniently
classified as-(]) intermolecular deformation and (2) intramolecular de-
formation . The intramolecular forces are caused by bond angle deformation,
straining of covalent bonds and changes in the statistical configuration of the
cellulose chains. This last effect is a direct consequence of the ability of ad-
jacent glucose units to rotate about the glucosidic link . The intermolecular
forces arise from the separation of macromolecules that arejoined by covalent
links, ionic bonds, hydrogen bonds and van der Waals' forces .

Owing to the abundance of hydrogen bonds in cellulosic materials, the
glucose units are effectively prohibited from rotating about the glucosidic
links ; however, wet cellulose should be capable of such rotations, since the
intermolecular hydrogen bonds within the amorphous regions are destroyed
by the adsorption of water on the sites capable of forming hydrogen bonds
between molecules . It is plausible to expect wet cellulose to exhibit mechanical
properties that are of a rubber type (or entropy) origin . Thus, it may be
expected that completely wet cellulose may follow a set of laws regulating its
mechanical properties different from those controlling the properties of dry
cellulose . The tenacity of wet, regenerated cellulose has been considered
from the entropy viewpoint by Cumberbirch and Mack,()) who assumed the
hydrogen-bond contributions to be of little consequence in the completely
wet state .

We, on the other hand, consider the other extreme condition and
postulate that rotational (or backbone) effects in dry cellulose can be neg-
lected when compared to the weaker, more extensible hydrogen bonds, which
tend to prohibit rotation . The two views are not contradictory ; they are com-
plementary . For small strains, the covalent bond, having a decomposition
energy of about 100 kcal/mol, can be considered inextensible compared with
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the hydrogen bond, which has a decomposition energy of about 5 kcal/mol.
Thus, to a first approximation, small extensions in dry cellulose can be con-
sidered as arising from hydrogen-bond deformations with negligible covalent,
rotational or van der Waals' effects . Presumably, at high relative humidities,
cellulose will exhibit a complex behaviour subject to the combined actions of
both entropy and hydrogen-bond effects .

As stated, no distinction will be made between intra- and interfibre
hydrogen bonds, which is doubtless a simplification of the macroscopic
structure ; however, such an assumption is not as restrictive as it might at first
appear to be . In the theory to be presented, it will be shown that the visco-
elastic properties of hydrogen-bonded materials can be predicted and cor-
related by the results derived from the simplified model, after having defined
suitably an equivalent structure for the -material in question . The results are
found to be applicable to single fibres and to 'well-knit' multi-fibre materials,
such as paper, possessing a Young's modulus exceeding 2-3 x 1410 dyn/cm2

that is, to any material capable of being represented by the molecular model
used in the derivation ; `loosely knit' structures such as very weak papers
could not be represented in such a manner .

To summarise, several of the visco-elastic properties of paper can be
accounted for by the theory to be presented, which is based on a three-
dimensional network ofhydrogen bonds attached to approximately rigid rods
of `backbone' material . The theory contains several parameters that can be
evaluated by other than mechanical measurements, thus reducing the final
results to a one parameter problem. The phenomena of creep, relaxation and
regain effects are suitably explained by combination of the theory with the
laws of chemical kinetics ; application of the theory to ice, for which all of the
required molecular constants are known, predicts a modulus of elasticity in
good agreement with the experimental value, thus giving additional con-
firmation to the model used .

Review

BEFORE considering the three-dimensional theory, it will be instructive to
review the one-dimensional hydrogen bond theory previously published by
one of the authors . (2) It can be shown (see Appendix 1) that, for infinitesimal
strains, an isotropic, randomly oriented network of hydrogen bonds is
mathematically equivalent to one with one third the number of bonds
oriented along each of three orthogonal, principal axes . Therefore, we shall
consider a rectangular parallelepiped that is constructed from cubes of
volume 13, each cube containing three orthogonal hydrogen bonds oriented
along the three principal axes of the body. The length l can be considered as
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the average repeat distance for a hydrogen bond in any direction, since the
body is assumed to be isotropic . Let us also assume that perpendicular bonds
are independent ofeach other that is, it is possible to strain a single hydrogen
bond without deformation of the two orthogonal bonds in the same unit cube
(the cube of volume l3). The Morse function will be chosen to represent the
potential energy of a hydrogen bond, namely-

U = Uo[1 - exp (- b)(r-re)12
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(1)
where Uo is the bond dissociation energy, r e is the equilibrium bond separation
and b is a constant derivable from spectroscopic data .

The force (F) required to separate the hydrogen bond a distance r is given
by

F =
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(2a)
F = 2b Uo[1-exp (- b)(r - re)][exp (- b)(r- re) j
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.	(2b)

If the hydrogen bond is in series with an essentially rigid rod of length xe,
then it is possible to relate the total elongation of the unit cube to the deforma-
tion of the hydrogen bond-

1 = Xe + re
Al = Ax + Ar = (x - Xe)+(r - re)
F=k1 Ax=k2 0r
Al = (1 + k2/ki)Or = k Ór
e = Al/1 = k dr/l = strain
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.	(3)

In deriving equation (3), it has been assumed that the force constants k 1 and
k2 of the nearly rigid rod and hydrogen bond, respectively, are constant .
Clearly, this is inconsistent with a Morse function for the potential energy
expression ; however, ifthe hydrogen bond is highly extensible compared with
the cellulose backbone, then kl > k2 and the value ofk in equation (3) is nearly
unity, with little error introduced by a small variation in k2 or k 1 with strain.

The term (b)(r - re) in equation (2b) can be combined with equation (3)
to give

where
(b)(r - re) = b Ar = ale/r o
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(4)
a = bre
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ro = re( 1 + k2iki) = rek
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(4b)
e = Al/1 = strain .
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.	(4c)

The constant a is a dimensionless Morse constant. The group alelro also
is dimensionless and will be referred to hereafter as the strain number. The
force (F), given by equation (2b), acts on an area 12 ; thus the normal stress
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(a) is F112, which, when substituted in equation (2b) and with the use of equa-
tion (4), yields upon rearrangement

Nre1 2a _
2a áH - [1-exp (-alelr o)][exp (-alelro)] (S)

where OH=NUo is the molar heat of dissociation for the hydrogen bond and
N is Avogadro's number. The left side of equation (S) is dimensionless and
will be referred to as the stress number . It is easily shown that the right side of
equation (S) approaches (alelr o) for vanishing strain (e), thus giving for the
initial modulus of elasticity (E) the value

2a2 AHE = lim (ale) =

	

Nr r l
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(Sa)
e-->0

	

e 0

Besides a minor change in nomenclature,* equation (Sa) differs slightly from
the value of the initial modulus presented in the original derivation of this
theory ; the original derivation was based upon an assumption that the
macroscopic body as well as the hydrogen bond obeyed the Morse function,
whilst the derivation given here is based upon the assumption that only the
hydrogen bond itself obeys the Morse function, a more justifiable assump-
tion . The effect of this change is to replace the term roe appearing in the
original derivation by the term rer o appearing in equation (Sa), the difference
being negligible if k l of equation (4b) is large compared to k2 .

Equation (S) predicts a universal stress/strain curve for hydrogen-bonded
materials, which is shown in Fig 1 ; the implications of equation (S) and its
application to visco-elastic phenomena and humidity effects will be discussed
after the derivation of the three-dimensional theory when equations of
greater applicability and of more rigorous derivation will be substituted for
equation (S) .

Within the framework of our assumption that paper and other cellulosic
materials, when in the dry state, are three-dimensional networks of hydrogen
bonds with the major portion of all deformations occurring within these
bonds, there are three serious limitations on the applicability of equation (S)

1 . The assumption of orthogonal, non-interacting sets of hydrogen bonds
is true for infinitesimal strains ; it may not be true for higher strains .

2 . The isotropy of the macroscopic body .
3 . The failure to account for possible reorientation of bonds during the

straining process .
* The reader will note two changes in nomenclature from that originally used by

Nissan ; the a in the original paper corresponds to the group allro used here and the a2
of the original article corresponds to the a used here . The changes in nomenclature for
stress, strain, force, etc . are obvious.
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The first assumption shall be considered in the theory section of this
paper, in which the orthogonal sets of non-interacting bonds will be replaced
by a randomly distributed hydrogen-bond network with interaction (for
example, induced contraction in directions transverse to the direction of
strain) among the bonds . In addition to unidirectional strain, the derived

Fig . 1

equations are applicable to two- and three-dimensional tension and com-
pression . Assumptions 2 and 3 are subjects for future investigation.

Theory

IN Appendix 2 is given a detailed derivation of the theory dealing with a
three-dimensional network of hydrogen bonds . Here, a summary will be given
delineating the main features of the theory ; the mathematical equations
derived in Appendix 2 will be explained, but not derived .

When a hydrogen-bonded material is stretched, it contracts along the
axes transverse to the direction of elongation . It is logical to assume that a
certain portion of the reversible strain energy required to elongate the sample
is stored in hydrogen bonds, which are in compression owing to their
orientation in the solid . Thus, the existence of a distribution of forces or the
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corresponding extensions (positive and negative) that are due to various
orientations of hydrogen bonds in the macroscopic body is to be expected
on a phenomenological basis .

We shall assume, in this initial treatment of a three-dimensional, inter-
acting hydrogen-bond network, that the hydrogen bonds are randomly
oriented throughout the body and that the orientation of the bonds is main
tained during the straining process . The fraction of the total number of
hydrogen bonds in the system that exist at any arbitrarily chosen direction
with respect to the three orthogonal axes that define the macroscopic body (a
rectangular parallelepiped) is obtained, for convenience, in spherical co-
ordinates . It is the invariance of this functional relationship for bond distribu-
tion with respect to strain that limits the theory to an isotropic, randomly
oriented bond system.

The isotropic body is hypothetically subdivided into small cubes that
contain, on the average, one randomly oriented hydrogen bond. The force
acting on any particular hydrogen bond is then resolved into its components
along the three body axes. These force components are summed with the aid
of the bond distribution function and, with due consideration of equilibrium
requirements, to obtain the normal stresses acting on the faces of the macro-
scopic body.

The problem is made tractable by performing the force summation on an
`unrestricted network' ofhydrogen bonds ; such a network is defined as one in
which the force acting on any particular bond is solely a function of the bond's
orientation in the macroscopic body for any given set of normal stresses act-
ing on the body. The summation so obtained is related to what would be
obtained on a `restricted network' of hydrogen bonds by a co-ordination
factor (a) . A restricted network is defined as one in which the force acting on
any particular hydrogen bond is a function both of the orientation of the
bond being considered and of the bonds connected to it . The co-ordination
factor is evaluated by comparison, at vanishing strain, with the earlier one-
dimensional model proposed by Nissan and presented in the review section of
this paper .

The energy stored in any particular bond is described by a potential
function and the force acting on the bond by the space derivative of the poten-
tial function . Since the assumption has already been made that no reorienta
tion occurs, we may choose a potential function that is only a function of the
extension (or contraction) of the bond. As discussed in the introduction, we
may, to a first approximation, consider all strain energy to be stored in the
hydrogen bond . Thus, the potential function chosen must describe reasonably
well the energy-extension characteristics of the hydrogen bond . We shall
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find it instructive and useful to solve the problem for two specific potential
functions, namely, the Morse function and a parabolic function .

The total strain energy stored in all hydrogen bonds of the system is
obtained by summing, with the aid of the bond distribution function, the in-
dividual bond contributions . The integral equations obtained by the energy
summation and the force summations, described earlier, form a constrained
minimum problem, which can be solved by the calculus of variations . This
may be demonstrated by considering the strain energy summation in greater
detail . We have already hypothesised the existence of a distribution of forces
(or strains) on a phenomenological basis . Thus, if we are describing the
energy of an individual bond by a potential function that is a function of the
extension (or compression) of the bond, it is possible to obtain the total strain
energy stored in all hydrogen bonds of the system only after we have
determined the variation of the extension of each hydrogen bond with its
orientation in the body ; however, it is to be expected that the extension of any
particular hydrogen bond will vary also with the normal stresses applied to
the macroscopic body . Furthermore, for a state of equilibrium to exist, the
strain energy stored in the hydrogen bonds of the body should be a minimum
-that is, the Principle of Least Work is applicable. Thus, the variation of ex-
tension (or compression) of the hydrogen bonds in the system with respect to
their orientation must be such that it minimises the strain energy summation
subject to the boundary conditions (or constraints) imposed upon this varia-
tion by the macroscopically applied normal stresses . The variation of strain
with respect to orientation that minimises the strain energy will be referred to
as an extremal and is obtained by solution of the Euler equation for the
chosen potential function . The boundary conditions (that is, normal stress
equations discussed earlier) are introduced into the solution by the use of
Lagrange

	

or undetermined

	

multipliers .
In summary, the solution to the problem when a Morse function is used

as the potential function for the hydrogen bond is as follows .

The boundary conditions, in stress number form, are

Nrer2ax - 2 (3)2/3 a
2a OH
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and Ai , A2, and A3 are Lagrange multipliers for the x, y and z directions, re-
spectively . The symbols 0 and 9 are angles in the spherical co-ordinates used
to describe the orientation of bonds in the macroscopic body and the other
symbols have the same meaning as in the review section (Q still refers to
normal stress and the subscripts x, y and z denote the axes of the rectangular
parallelepiped along which the stresses act) .

The total energy stored in the macroscopic body by the straining process
(Et ) is given by

NElln t AH = NFIAH = 2
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and nl is the total number of effective hydrogen bonds in the system . The
function (0) is defined in equation (9) .

We shall now consider the solution obtained for unidirectional stress in
the z direction . We shall state without proof the fact that two stress numbers
are equal if

	

and only if

	

the corresponding Lagrange multipliers are equal .
Thus, it can be shown that for A i = A2 the numerical results given by equations
(6) and (7) are equal regardless of the value of 4 Hence, for the unidirec-
tional stress problem, we shall accordingly set A, :-- A2 and consider only
equations (7) and (8) . Using a trial and error procedure and a high speed
computer, the parameter A i is determined as a function of A3 such that any
particular value of Ai when used with the corresponding value of A3 will
reduce equation (7) and hence equation (6) to zero . Values of equations (8)
and (10) are then tabulated as functions of A3 by evaluating equations (8a)
and (10a) only for those values of (Ai , A3) that reduce equation (7) to zero .
For unidirectional tension in the z direction, the range of each parameter is
found to be restricted as follows
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A macroscopic energy balance leads to the following equation for the
strain number

al eZ = (3) 1/ 3

	

I" drEr

	

Za fo r
Z

(12)

This equation is valid only for the unidirectional stress problem and can be
evaluated graphically by use of the tabulated values obtained for equations
(8) and (10) . Thus, provided the co-ordination factor (a) can be evaluated, it is
possible to calculate the stress number/strain number relationship for the
unidirectional stress problem by the solution of equations (6-12), inclusive,
as outlined above.

The co-ordination factor (a) is most accurately determined by obtaining
the limiting forms of equations (8) and (12) as the strain on all hydrogen
bonds in the system approaches zero . For infinitesimal strains, the hydrogen
bond can be considered Hookean in nature, both for compression and ex-
tension . This leads to a parabolic potential function as the correct energy
function to use for vanishing strains in a system that exhibits a stable equili-
brium. We choose for the bond force constant the value 2b2Uo to correspond
to the value predicted by the Morse function at vanishing strain . Thus, the
potential function can be written as

U(r) = b2 Uo(r _ re)2
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Solution of the Euler equation, using equation (13) in place of the Morse
function, leads to the following equations in place of equations (8) and (12)
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(The equations for zero stress in the x and y directions have been used to
eliminate a1 and A2 from the solution.) Combining equations (14) and (15),
we obtain

OIZ - NrerolQZ = 2 31/3 Ca2

	

.

	

.

	

.

	

.

	

16)
Ee,

	

2a2 OHeZ

	

T ()

Equation (16) is valid at vanishing strains only, for which the Hookean ap-
proximation is valid . It is shown in Appendix 1 that the one-dimensional
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model is correct for unidirectional, infinitesimal stress ; thus, on comparing
equations (16) and (Sa), we obtain-

2
(3)1/3 Cae = unity

	

.
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The use of this value of a, obtained for vanishing strains, for finite strains
implies the invariance of orientation of bonds with the state of strain . This
assumption has already been explicitly stated and is therefore allowable . In
real bodies, orientation does change at sufficiently high strains . The results of
the stress number/strain number calculations are tabulated in Table 1 and

plotted in Fig . 2 along with the one-dimensional results as predicted by equa-
tion (S) . It is expected that these curves will describe the behaviour of real
hydrogen-bonded solids at `small' strains. At higher strains, orientation effects
and the influence of covalent forces coming into play, as well as entropy
contributions and the kinetics of bond breaking will all combine to cause
increasing deviations between this theory and practice .

Confrontation with experiment
THE effects of the various molecular constants on the initial modulus of

elasticity are identical for the one- and three-dimensional theories, since

TABLE 1

Stress number
Nrel2Qz

Straialrtumber ¡ 2a OH
-e,
ro

Three-dimen- One-dimen-
sional model sional model

0 0 0
0-05 0046 0046
0.10 0091 0086
0-15 0132 0120
0-20 0169 0148
0-25 0204 0-172
0-30 0235 0192
0-40 0292 0221
0-50 0339 0239
0-60 0378 0248
0-70 0412 0250
0-80 0441 0247
0.90 0465 0241
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equations (16) and (Sa) have been equated to evaluate the co-ordination
factor (a) . Thus, both theories indicate that the initial modulus of elasticity
should vary with the cube root of the effective hydrogen bond density. The
parameter 1 is defined in the one-dimensional model as the average repeat
distance for a hydrogen bond. In the three-dimensional theory, l has a
stoichiometric interpretation only . Thus, 13 is defined as the volume of the
solid divided by one third the number of effective hydrogen bonds that is,
the volume occupied by three hydrogen bonds (the reciprocal of 13 is accord-
ingly a hydrogen bond density) ; the orthogonality and non-interaction

Fig . 2

conditions on these bonds have been removedin the three-dimensional deriva-
tion . The only difference in the results obtained by the two derivations is the
stress number/strain number relationship indicated in Fig. 2 . Thus, several
of the experimental results cited by Nissan(2 ) as verification of the one-
dimensional theory are applicable also to the three-dimensional theory

1 .

	

Using equation (Sa) or equation (16), we may calculate the modulus
of elasticity (E) for ice as 1-5 x 1011 dyn/cm2, if AH= 4-5 kcal/mol as given by
Pauling( 3 ) or 1-1 x 1011 dyn/cm2 , ifAH= 3-4 kcal/mol as given by Grunberg( 11 )
and Nissan . (4) Experimental values fall in a narrow band around 1 -0 x
1011 dyn/cm2 .
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2 . By the use of further simplifying assumptions, it is shown that
- dlnEldt, where t =temperature °C, should be between 2-1 x 10-3 and
6-3 x 10-3 for cellulose . Observations on paper yield average values of
(2-0-2-6) x 10-3 and on dry rayons of various types (4-43, 5-4, 3-0, 2-4 and
1-8) x 10-3 , respectively.

3 . Taking into account previous observations on the interaction of
water with dry cellulose, it is found that according to the theory, the effect of
water adsorption by dry cellulose should be given by loge/E,,./E0)= - iv, where
E, and Eo are the Young's moduli at water to solid ratios of w and 0, respec-
tively. This relationship should hold until one third of the hydrogen bonds of
the amorphous region are broken . Available data appear to support these
predictions .

4 .

	

The effect of the beating process on the mechanical properties of
cellulose sheets is suitably explained by the theory . (5) Thus, using equation
(Sa), the change in the number of hydrogen bonds (in the amorphous region)
per cubic centimeter (An) is related to the theoretical change in modulus (AE)
by the equation An/(DE)3 =2-92 x 10-12 . The bonded area in sheets made from
pulp beaten for various times was obtained by measurement of the coefficient
of light scattering (Lars Nordman, Centrallaboratorium Ab., Helsinki, Fin-
land, by private communication to Nissan) . The moduli of elasticity of these
sheets were measured and the number of hydrogen bonds per unit volume
calculated from the optically measured bonded areas . Thus, an experimental
value of On/(DE)3 = 3-08 x 10-12 is obtained, which is in good agreement with
the theoretical value. The theory explains the increase of modulus obtained
when the pulp is beaten as a consequence of 1 . rearrangement of bonds from
within fibres to bonds between them and 2 . an increase in the density of the
amorphous regions, thereby increasing the effective hydrogen bond density in
these regions .

S .

	

A direct verification of the theory is obtained by investigating the
effect of hydrogen-bond substitution on the modulus of elasticity (E) .(6 ) A
cellulose pulp was acetylated to various extents and the moduli of the re
sultant sheets measured for various degrees of (OH) substitution . If Eo is the
modulus for the virgin pulp, then equation (Sa) predicts a unique relationship
between 100(1-E/Eo) and the degree of substitution (owing to changes in l) .
The lower curve of Fig . 3 indicates that in fact this is so ; however, since l is
proportional to the cube root of the hydrogen bond density, the relationship
between 100(1-E3/Eo3) and degree of substitution is of primary interest .
Half of the points on the upper curve of Fig. 3 represent a plot of these
quantities .
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The area under the stress/strain curve is the rupture energy (R.E.),
which should be proportional, to a first approximation, to n UO, where n is the
number of effective hydrogen bonds per unit volume and Uo is the bond dis
sociation energy. Thus, a plot of 100 [1- R.E./(R.E.)o] against degree of
substitution should give the same curve as that given by 100 (1- E3/Eo 3 ) . The
other half of the points on the upper curve of Fig . 3 confirm this fact .

Fig. 3

The upper curve is not linear and this is probably due to the `opening up'
of the structure caused by the acetyl substitution, thus allowing additional
hydrogen bonds to come into play . It will also be noted that not all chemically
accessible OH groups are `effective' mechanically .

We shall now investigate the validity of the stress/strain relationships
predicted by both theories and plotted in Fig. 2 in dimensionless form . For
convenience, we shall refer to the molecular constants appearing in the stress
number as (11A) and the constants appearing in the strain number as (B) ;
thus

Stress number = Nre12Qz __ _19Z

2a All

	

A (18)
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Strain number - aleZ = Be,

	

.

	

.

	

.

	

.

	

.

	

(19)
ro

From equations (16) and (17), we find that the initial modulus of elasticity
(E) is given by-

E
= 2a2 AH - ABNrero l

. (20)

For paper, all of the molecular constants, except l, appearing in equations
(18) and (19) are known from data on cellulose . However, we shall treat all
molecular constants as unknowns and consider A and B as empirical con-
stants, for reasons to be discussed below.

We shall consider the extensive and reliable data of Andersson and
Berkyto,( 7 ) already considered by Nissan( 2 ) from a different point of view
than that to be used in this paper . As a result of a large number of determina
tions, Andersson and Berkyto concluded that the following empirical equa-
tion correlated the data sufficiently well

S = (Cl + C2 t)e' +(C3+ C4t)(e')2

	

.

	

.

	

.

	

.

	

(21)

where S is load in kg, t is temperature °C and e' is percentage elongation .
The constants (C) are given in Table 2 for various types of paper .

TABLE 2

E* = (Cl + Cet)

	

.

	

.

	

.

	

.

	

.

	

.

	

(22)

where E*= modulus x area .

Since the cross-sectional areas are not given, we shall indicate a method
of treatment of the data that does not require an estimate of these areas .
From equation (21), we note that the initial `modulus' is given by

We now assume a value of B, calculate A by use of equations (22) and (20)
and transform equation (21) into dimensionless form by use of equations (18)

Paper CI C2 C3 C4

Newsprint-
Machine-direction 3-59 -0 ,0102 -0-912 000278
Cross-direction 1-41 1 -000377 -0390 000139

Kraft-
Machine-direction 6-36 -0-0128 -1-28 000291
Cross-direction 3-27 -0-00695 -0-932 000158
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and (19) . We note that the cross-sectional area is not required, since it is in-
cluded in the value of A, calculated from B and equation (22) . (For this pur-
pose, equation (18) can be written as SIA, where S is load.) Various values of
B are assumed until a `best fit' to the three-dimensional curve of Fig . 2 is
obtained . The points so calculated, for a temperature of 50 °C, are plotted in
Fig. 4. The values of B given in Fig. 4 are corrected by a factor of 100 so that
they are consistent with equation (19) when e is strain (not percentage strain) .
We note that, for B = 39 and a Morse constant of a= 2, l/r o is 19 - 5 and Z is
calculated to be 35Á, if r o is taken as 1-8A, approximately, for the hydrogen

Fig. 4

bond in cellulose . This value of l is high when compared to the values cal-
culated by Nissan( 2 ) from the initial modulus and molecular parameters by
use of equation (Sa) .

The above treatment does not allow a critical evaluation of ' the stress/
strain laws predicted by the one- and three-dimensional models . By a suitable
choice of B, the experimental points plotted in Fig . 4 could be shifted suffi
ciently so as to fall on the one-dimensional curve . A critical evaluation of the
two models with actual stress/strain behaviour is to be found in the `chord
modulus' test. If we examine the ratio of stress number to strain number,
(Qz/A)/(Bez), we see that this ratio can be rearranged with the aid of equation
(20) to give a,lEez, where E is the initial modulus . This ratio is unity only when
23-F.S .P . : i
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the stress/strain curve is linear ; for all stress/strain relationships, the group
a,/Ee, represents the ratio of the `chord modulus' that is, the ratio Q,/e,-to
the initial slope modulus (E) . Using Fig . 2, it is possible to construct a plot of
(1- QZ/EeZ) against Bez , and the results obtained for the one- and three-
dimensional models are plotted in Fig . 5 . For brevity, we shall refer to the
presentation of data in the same form as Fig . 5 as a chord modulus test.

Fig. S

Rearrangement of equation (21) yields the following equation-

(1 - S/E*e') = -Be'

	

.

	

.

	

.

	

.

	

.

	

.

	

(23)

where B= (C3 + C4t)l(Cl + C2t) . Equation (23) is in chord modulus test form
and is represented in Fig . 5 by a line of unit slope. Therefore, any second order
stress/strain law, of the form indicated by equation (21), is represented by the
unit slope line in Fig. 5 . The one- and three-dimensional stress/strain laws
bracket the empirical relationship proposed by Andersson and Berkyto when
compared in chord modulus test form.

We postulate that this `bracketing' effect is in reality a requirement of the
one- and three-dimensional models when applied to non-isotropic materials.
The one-dimensional model has been shown to be applicable to isotropic,
randomly oriented bond systems at vanishing strains (see Appendix 1 and the
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review section) ; however, within the framework of the proposed molecular
behaviour for hydrogen-bonded materials, as given in the introduction, the
one-dimensional theory is applicable at all strains to solids that have complete
orientation of the bonds in the direction of strain . On the other hand, the
three-dimensional model is strictly applicable to those systems that remain
isotropic and randomly oriented throughout the strain cycle . Thus, the
bracketing effect observed in Fig. 5 substantiates the validity of the one- and
three-dimensional models as limiting cases . Real materials should always ex-
hibit a behaviour that is bracketed by the two models, when compared by the
chord modulus test. We conclude that the one- and three-dimensional models
are valid representations of the behaviour of hydrogen-bonded systems and
that these theories are compatible and complementary.

Extension of the theory
THE major contribution of the present theory is that it relates the

mechanical behaviour of hydrogen-bonded solids to the effective number of
such bonds per unit volume of material. The problem of visco-elasticity,
according to this view, is then not a problem of separate viscous and elastic
elements, but one of an integrated unit that is, the hydrogen bond-that on
reversible straining yields elastic parameters and on breaking and reforming
exhibits `viscous' or `flow' characteristics . Thus, such flows as seen in `creep',
`relaxation', `rheodestruction with humidity' become amenable to study by
classical methods of chemical kinetics . (2)
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Appendix I

CONSIDER a randomly distributed hydrogen bond system subjected to an
infinitesimal normal stress (fx) on one of the rectangular faces of the macro-
scopic body, which is taken to be a rectangular parallelepiped for convenience.
Since we are considering the limiting case of infinitesimal stress and strain, the
hydrogen bonds shall be considered Hookcan in their behaviour, an assump-
tion that is consistent with the Morse function at vanishing strain . Owing to

our assumption of isotropy, the hydrogen bond distribution is a spherical
surface . Consider the number of bonds oriented at the angle B taken with
respect to the x axis (the direction in which the external stress is applied) . The
number of bonds (dn) at the angle e contained within a circular hoop, of
radius p (see Fig. 6), having the x axis as the central normal to the plane ofthe
hoop, is given by

do _ (27rp sin ®)pd9 _ sin 0 den s

	

4,7rp2

	

-

	

2 (I-])



Hydrogen-bonded network

	

339

where n, is the total number of effective hydrogen bonds in the system . It is
easily shown that equation (I-]) is normalised, that is

1
n

t
dn=

n, = 1 =2

	

/2 sin6d9 = 1 .n t fo

	

n t

	

fo

	

2

The factor 2 was introduced in the above equation to account for the fact that
there are eight identical octants given by the distribution function equation
(1--1) and only four of these octants are accounted for by integrating from 0
to -a/2 .

The stress on a bond at angle 8 is given byfx cos 8, that is, the projection
of fr on the bond's line of action . The bond is assumed to be irrotational,
hence allowing us to neglect the bending force (fx sin ®) . The energy stored in
the bond due to elongation is given by

U - 1 (f cos e)2

	

1-22 k'

where k' is the Hookean force constant for a hydrogen bond . The total energy
stored in all bonds contained within the circular hoop is given by-

u, = Udo
n, (fx cos e)2 sin B d8or

	

Ue =

	

.
2

	

k'

	

2

	

.

	

.

	

.

	

.

	

. (1-3)

The total energy stored in all bonds is obtained by integrating equation (1--3)
from 0 to v/2 and multiplying the resultant integral by 2 (for the same reason
stated earlier)-

n, (fx)2 ,r/2
Zjr =

	

'

	

cose 8 sin 8 d82 k 0

or - n t (Îx)2
r 6

k'
(1-4)

Now consider a system with n' hydrogen bonds all oriented along the
x axis. If the system is subjected to the stressfx, then the energy stored in the
system is given by

U. - n'CÎx)2

	

I-S

However, both models are being used to describe the same system, hence
U't = Ut , so we obtain, on equating equation (1--5) to equation (1--4), the
following result

n ' ..._ n/3 Q.E.D . (1-6)
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Appendix 2

LET the macroscopic body be a rectangular parallelepiped of dimensions
lx , 1,, and 12 and let the body contain n r randomly oriented effective hydrogen
bonds that are attached to essentially rigid rods of backbone material as dis
cussed in the introduction. If V is the volume of the body and R03 is defined as
the average volume occupied by a single, randomly oriented hydrogen bond,
then

lxly12 = V = n,Ro3

	

.

	

.

	

.

	

.

	

.

	

.	(II-1)

Ifwe now consider nx, ny and n2 to be the number of unit cubes (cubes of side
Ro , which contain a single hydrogen bond) bordering along the x, y and z

Fig. 7

axes, respectively, which define the macroscopic body (refer to Fig . 7), then
we may write

lx = nxRO,

	

ly = nyRO,

	

12 = nzR0
V = 1,1y12 = nxnynzR03 - ntRo3

Therefore,

	

nt = nxnynz

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

(11-2)
The hydrogen bond in any unit cube may have any particular orientation

with respect to the axes x, y and z, but the macroscopic body is assumed to be
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sufficiently large so that all bonds taken together will form a random array
with respect to orientation, thus forming an isotropic body . In the derivation
that follows, it will be assumed that no reorientation occurs, that is, all bonds
maintain their orientation in space before and after straining . The orientation
of each hydrogen bond will be described by spherical co-ordinates (see Fig. 8)
with respect to the axis system x, y and z . Considering any bond in the system
stretched (or compressed) to some length r by a force F, we obtain for the
components of the force F along each of the co-ordinate axes x, y and z the
values-

F,, = F sin ~ cos ®

	

.

	

.

	

.

	

.

	

.

	

.

	

(II--3a)

F, = F sin ~ sin ®

	

.

	

.

	

.

	

.

	

.

	

.

	

(II--3b)
FZ = F cos

	

.

	

.

	

.

	

.

	

.

	

.	(II-3c)

Fig. 8

Equation (2a) can be used in equations (H-3) to relate the force F to the
derivative of the potential energy function U(r)-

du siFx = dr

	

n

	

cos 6

	

.

	

.

	

.

	

.

	

.

	

(II--4a)

dU siF =
drn

	

sin e

	

(
. . . . . II--4b)`~

F~ -
dU
drcos

	

(H-.

	

.

	

.

	

.

	

.

	

.

	

,

	

4c)
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The energy stored in the hydrogen bond is given by U(r), since we shall
assign a value ofzero to the energy in the unstrained state, in accordance with
equation (1)

E'= U(r)

	

. . . . . . . (II-- S)

Let the length of a hydrogen bond and the essentially rigid rod to which
it is attached be p . Since the bond distribution is isotropic, a spherical surface
is the correct distribution to use when relating the number of bonds (dn) at
any orientation (~, 8) to the total number of bands in the system (n,)-

do (P sin 0 d8)(p do)

	

sin 0 do d
n --

	

4~r 2

	

-

	

4~r

	

. . . (II-- 6)
r

	

p

Equation (11-6) is strictly valid only for an isotropic system with no reorienta-
tion effects.

Referring to Fig . 7, we see that there are nZ slabs parallel to the xy plane,
each slab containing nxny cubes . Since these slabs are in equilibrium, the total
force in the z direction must be the same for each slab . If equation (II-4c) is
multiplied by do from equation (II--6) and then integrated over all 0 and 8, we
would obtain the total z component of all hydrogen bonds in the system ;
however, the required normal force in the z direction is nxnyin, times the total
summation, since there are nz slabs in parallel. For convenience, we shall only
consider 0 and 8 as varying from 0 to -,r/2 and multiply the resultant integral by
eight (8) to account for the eight identical octants that exist when the distribu-
tion function, equation (II--6), is considered for all 0 between 0 and 7r and all
8 between 0 and 2Tr.

In combining equations (II-4c) and (II-6) according to the arguments
presented above, it would be implicitly assumed that the force acting on a
bond (or its elongation) is only a function of orientation, that is, F= F(O, 0) ;
however, there is another variable that influences the force exerted on any
particular hydrogen bond, namely, the orientation of all the bonds connected
to the hydrogen bond under consideration . We shall account for this effect by
multiplying the force summation integral by a co-ordination factor (a), then
consider the force (F) to be only a function of orientation, that is, F= F(O, 8) .
Using the above arguments and equations (II-4c) and (II--6), we obtain for
the normal force in the z direction (F'Z) the equation-

1
FZ

= nr
(8)

nxny a

	

~/2

	

,/2 dU(r) sin

	

cos

	

d

	

d8 .

	

.
47r

	

nn

	

fo dr

	

~ ~ ~

	

(II-7)

The normal force (F'z) acts on a face of area (n,,n~,Rn2) and can be related to
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the average normal stress (o,,) by the equation a = F'zlnxyzy,R02, which can be
substituted in equation (II--7) to yield, after rearrangement, the equation

,l2 fr12 dU r
-R 2~

	

= a

	

() sin

	

cos

	

d~ de

	

.

	

.

	

(II--8c)2 o Z
f dr0 0

Similar equations can be derived for the x and y directions
7r R

2Q

	

= a

	

~l2

	

,r12 dU(r) sin 2	cos8 d~ de

	

.

	

.

	

(II-8a)
2 0 x

	

0 fo dr

7r
R 2Q

	

-
a
f,r12 f,Tl2 dU(r) sin2

	

sin 8 do d®

	

(II-8b)
2 0 y

	

0 0 dr

The assumption of isotropy allows us to use the same co-ordination factor (a)
in each of equations (II--8) .

The total strain energy (Er ) stored in all the hydrogen bonds of the system
is obtained by combining equations (II--S) and (II--6) and integrating over all
bonds in the system, which yields, on rearrangement, the equation-

7r E_
2 f

,'12

	

,r12
U(r) sin 0 do d8

	

.

	

.

	

.

	

.

	

(II--9)
0 0

where E-Etln t . Equation (II--9) should be written with a co-ordination factor
(say, ß) to be strictly correct ; however, if the derivation is carried out with the
term ß included, it is found that only the factor (alß) appears in the final
result . Hence, we shall not use a co-ordination factor in equation (II--9) and
we shall consider the factor a, introduced in equations (II--8), already divided
by the factor ß.

To integrate equations (II--8) and (II--9), we must first choose a suitable
expression for the representation of the potential energy of a hydrogen bond
with strain ; the Morse function, equation (1), will be quite adequate for this
purpose. It is necessary to relate the extension (or compression) of a hydrogen
bond that is, r-to the orientation of the hydrogen bond within the body,
namely, as a function of 0 and 8. We shall now consider the macroscopic body
to be loaded with a set of normal stresses, thus determining to within a factor
R02 the left sides of equations (Î1-8), equations (II-8) being referred to as the
boundary conditions . If the system is in equilibrium, it is reasonable to expect
that the strain energy, given by equation (II--9), will be a minimum, subject
to the given boundary conditions ; hence, we must determine r = r(o, ®) such
that equation (II--9) is minimised

	

that is, r(o, e) must be an extremal that
also satisfies the boundary conditions . This is a problem that is capable of
solution by the calculus of variations and we shall accordingly make use of
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the Euler condition, which must be satisfied if r(o, 0) is to be an extremal
(Courant,($) Bliss,( 9 ) Forsyth( 10 )) . We note that the Euler equation is a
necessary, but not sufficient, condition for the existence of an extremal and
we shall rely on the physics of the problem, in the form of the Principle of
Least Work, to ensure the existence of an extremal, that is, r(o, 0), which
minimises the strain energy equation .

Denoting the integrands of equations (II-8a), (II-8b), (II-8c) and (II--9)
by I1 , 12, 13 and I, respectively, we have

Il = U'(r) sin 2 ~ cos 0

	

.

	

.

	

.

	

.

	

.	(1110a)
12 = U(r) sin 2 ~ sin 0

	

.

	

.

	

.

	

.

	

.

	

(II-10b)
13 = U'(r) sin ~ cos

	

.

	

.

	

.

	

.

	

.	(II-10c)
I = U(r) sin

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

(II-10d)

The Euler condition for the extremal r(o, 0) required to minimise equation
(II--9), subject to the given restraints (that is, boundary conditions), is-

am a am a am
ar

	

=

	

0 ' are + ao ' Or,, (II-11)

where

	

M --- 1+ 7111 + 7212 + 7313

	

.

	

.

	

.

	

.

	

.

	

(11-12)

and where re and r. are the partial derivatives of r with respect to 0 and 0,
respectively ; each to be considered as an independent variable in the variation
ofM-that is, M= M(0, 0, r, r e , r.) and y1 , 72 and 73 are Lagrange multipliers
to be determined so that the boundary (restraining) conditions given by
equations (I1-8) are satisfied .

Upon inspection of equations (II-10) and (II--12), we note that M is not
a function of any derivatives of r, thus reducing the right side of equation
(III1) to zero, giving-

am
= 0 .

	

.

	

.

	

,

	

.

	

.

	

.

	

(II-1 7n
ar

	

)

Combining equations (II-11a), (II-12) and (II-10), performing the required
differentiation and dividing by the constant factor sin ~, we obtain-

UV) + [(Y1 cos 0+ 72 sin 0) sin 0 + 73 cos 0] U"(r) = 0

	

.	(II-11b)

Making use of the Morse function, equation (1), we have

U(r) = UJ1 - exp (- b)(r - r,)] 2

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

(1)

U'(r) = 2bU0[1- exp ( - b)(r - re)][exp (- b)(r - r,,)]

	

.	(II-12a)

V(r) = 2b2 Uo[2 exp (- b)(r - re) -1] [exp (-b)(r- rJ]

	

.	(II-12b)
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Substituting equations (II-12) into equation (II-11b) and solving for
exp ( - b)(r- r)e , we have

or

exp (- b)(r - re =

	

1- ~

	

.

	

.

	

(I1-13a)1-2 . . .

b(r - r ) = ln l - 2~

	

(II--13b)1- . . . .

_-. al sin ~ cos 0+4 sin ~ sin 8 + A3 cos ~

	

.

	

.	(II--14)where

and X11, ~2, and A3 are Lagrange multipliers with the Morse constant (b)
included

Al = by, ;

	

A2 = bY2;

	

A3 = bY3

(Since y always occurs multiplied by b, the term A has been defined for
convenience .)
Substitution of equation (II-13a) into equations (1) and (II-12a) yields-

U(r) = Uo (1 ~20)2 (II-1Sa)

U'(r) = 2b U0(0)(0
--1)

(1-20)2 (II-]Sb)

Substituting equation (II-15b) into equation (II-8c), rearranging and denot-

ing the integral involved by

	

results in the following equation
Z

Ro20rZ __ 2

2b Up

	

?r
a . (II--16)

where

	

I

	

Z = fo

	

fo

	

(1-20)z Sin ~ cos ¢ do dB

From a stoichiometric point of view, the parameter 13 (which has been dis-
cussed in the review section) is the volume occupied by three effective hydro-
gen bonds, while R03 is the volume occupied by one effective hydrogen bond,
thus we are able to relate the two parameters as follows

l3 = 3Ro3

	

.

	

.

	

.

	

.

	

.

	

.	(II--17)

The following constants have been previously defined

where N is Avogadro's number.

a = br,,

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

(4a)
AH = NUp

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

(4d)
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Substituting equations (II--17), (4a) and (4d) into equation (II--16) and re-
arranging so that the left side of the equation is in stress number form gives
the following-result

Nre l2QZ - 2

	

aIr,

	

.
2a OH

	

r
(3)2/3 . (II-18e)

A similar treatment for the x and y directions yields the following equations

NYel2Qx
-

_2

	

-I8a2a OH

	

~r (3) 2/3 a

	

(11

	

).

	

.

	

.

	

.

	

.

where

	

rx

	

fo ~2 fo ~2 ( 1
)~20)2 sin 2 ~ cos 8 do dB

Nrel Q, _ 2

	

a II-18b2a OH

	

(3)2/3

	

(

	

)

,r/2

	

' ri2 (0)(0-1)where

	

=
o (1-20)2 sin2 0 sin 8 do dB

y o

Equations (II--9) and (II- 1Sa), when combined and rearranged, give the
following equation for the strain energy

:=
?

	

. (11-19)
Uo ]rE

where - ,r/2 1r/2. 0 2

E of o 1- 2

	

sin ~ d~ d9f ( )
and

	

E = Etlnt.

The strain corresponding to the set of stresses given by equations (II--18)
and to the strain energy given by equation (II-19) is obtained by a macro-
scopic energy balance . The work done on straining the body by differential
strains de, de, and de, will be denoted by dW and is equal to the product of
the forces involved and the differential elongations produced, namely-

dW =
(lxly°'z)( 1zdéZ) + (1v1ZQx)(lxdex) + (lxlz°'y)(lydey)

or dW = V[orzde,+ axde,,+Qyde,] .

	

.

	

.

	

.

	

.

	

.

	

.	(II--20)

since V= 1,1,1,. To obtain the strain energy stored in the hydrogen bonds, we
can, to a first approximation, divide each of the strains in equation (II--20) by
the factor k, defined in equation (4b), to obtain the elongation produced in
the hydrogen bonds, hence the energy stored in the hydrogen bond, that is,



Hence, we may write-

Hydrogen-bonded network

dWlk=dEr . Thus, combining equations (II--20) and (II-1) gives the following
result, after rearrangement

dW - dEr
-- dÉ - Ro3

Q

	

e +a de +Q de
nrk

	

nr

	

k

	

~d
z x x y y~

	

(11-21)

It has been assumed that the strain energy is stored reversibly in the hydrogen
bonds .

For the case of unidirectional stress in the z direction, ax ='g, = 0 and
equation (II--21) becomes, after rearrangement and integration

Combining equations (II--22), (II--18c), (II--17), (4a), and (4b), rearranging in
strain number form gives

where = _
z x

F,.

Ro3
ez _ fÉdE

	

C. . . . . II--22
k

	

o az

al

	

(3)1/3

	

rE
d

	

E-ez =ro z

	

2a fo T-1
z

For hydrostatic compression, Qx = oy = Qz=P and equation (II--21) be-
comes, after integration

3Ro3 e

	

E dE
= f

	

,k

	

o P

We note that the volume change, (0 V)lV, for small strains is given by-

AV =

	

I+e)3 _I - 3e.V (

Finally, combination of equations (II--24), (II--18) and (II--17) yields

z

obvious and is discussed in the theory section of this paper .
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(II--23)

Ro3 A V/V

	

fE dÉ
k

	

_
o P

al(à VIV) _ (3) 1 í 3 (~rE dl

	

E

	

.

	

.

	

.

	

.

	

(II-2.~
Yp

	

Za ,)0 r
The interpretation of the integrals in equations (II--23) and (II--25) is not



348 Hydrogen-bonded network

Terms used

11A

	

= molecular constants in the stress number (empirical)
a, b

	

= Morse constants (dimensionless), a = bre
B

	

= constants in the strain number (empirical)
b

	

= constant derivable from spectroscopic data
C

	

= constants Cl , C2 , C 3 and C4
E

	

= initial Young's modulus of elasticity
E'

	

= U(r), the energy stored in the hydrogen bond
Eo	=Young's modulus of cellulose at a water to solid ratio of 0 (virgin pulp)
Et	= total energy stored in the macroscopic body by the straining process
E,

	

= Young's modulus of cellulose at a water to solid ratio of w
E*

	

= initial modulus x area
e

	

= strain
e'

	

= percentage elongation
de�
de,

	

= differential strains
de, ~
F

	

= force required to separate (or compress) the equilibrium bond a distance r
Fz

	

= normal force in z direction
AH

	

=NUo , the molar heat of dissociation for the hydrogen bond
k1

	

= force constant of a nearly rigid rod of length xe
k2

	

= force constant of the hydrogen bond
l

	

= average repeat distance for a hydrogen bond in any direction
M

	

see equation (II--12)
N

	

= Avogadro's number
n

	

= number of effective hydrogen bonds per unit volume
n t	=total number of effective hydrogen bonds in the system
Ro3

	

= average volume occupied by a single, randomly oriented hydrogen bond
re

	

= equilibrium bond separation
R.E .

	

= rupture energy
S

	

= load (kg)
t

	

= temperature ( °C)
U

	

= potential energy of a hydrogen bond
Uo	= hydrogen bond dissociation energy
V

	

= volume of the body
dW

	

= work done in straining the body
ale f ro = strain number, where ro= re (1 +k2/kl)
Nrel 2o'
2aAH

= stress number (dimensionless)

a, ß

	

= co-ordination factors of a `restricted network' of hydrogen bonds
Yi
Y2

	

= Lagrange multipliers in boundary (restraining) conditions
Y3 ~





DISCUSSION

DR . C . w. CARROLL : The simplifications in your initial model imply that
it is basically a steady state model with regard to the least work principle.
Building in dynamic features, which are important in reality, would increase
the complexity of the model considerably. A mathematical approach that
may be useful in solving such complex, constrained optimisation problems
resulting from dynamic analysis of the hydrogen-bonded network is the
method of dynamic programming. This method has been developed during
the past few years principally by Richard Bellman of the Rand Corporation
in the United States and has been successfully applied to certain complex
problems falling in the realm of the calculus of variations . Dynamic pro-
gramming, especially in conjunction with the digital computer programmes
that are becoming available, could well be used to make possible complex
dynamic analyses that would be impossible from a practical point of view, if
one had no other recourse than to use the conventional calculus of variations
technique in the classical fashion .

Transcription of Discussion




