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Synopsis

	

Sampled data can arise in several ways-for example, from manual
samples taken from the process at reel change, from discontinuous instruments such
as scanning basis weight gauges, also from digital computer control.
Sampled data in contrast with continuous data have the problem of how sampling

should be carried out. This is discussed in relation to the spectral characteristics of
the variable . The superiority of sampled data control for dead time processes and
the relation between sampled data control and statistical quality control are
mentioned.

Sampled data control system analysis and synthesis is introduced . The z-trans-
form and modified z-transform are included .

Direct digital control is introduced, using sampled data forms as well as PID
analog controller replacement. The relative features of pulse amplitude, pulse width
and of velocity and positional algorithms are reviewed, also the selection of the
sampling interval. A few of the applications to pulp and paper are reviewed.

Introduction
THIS paper is intended to provide a survey for the technically oriented

person who is interested in broadening his knowledge into the sampled data
control field and its application to pulp and paper process control .
The introduction defines and describes the general features and problems of

sampled data control, as well as its applications in the industry. This is fol-
lowed by a brief tutorial on sampled data control theory . The final section is
concerned with reviewing some of the reported applications in the pulp and
paper industry .

Although the theory of sampled data control is known to a relative few, the
practice is in very common use, both in the pulp and paper and otherindustries
and in our everyday lives .
We generally receive our bank statement only once per month . Those

Under the chairmanship ofProf. J. A. Van den Akker

Preferred citation: D.B.  Brewster and A.K.  Bjerring. Measurement for sampled data control. In 
Papermaking Systems and their Control, Trans. of the IVth Fund. Res. Symp. Oxford, 1969, 
(F.  Bolam, ed.), pp 130–161, FRC, Manchester, 2018. DOI: 10.15376/frc.1969.1.130.



Measurement fór sampled data control

	

131

people who merrily write cheques and look only at their monthly balance usu-
ally find themselves in debit on occasions . This is an example of a sampling
interval that can be too short unless another measurement is taken for
example, keeping a running total of all cheques written and deposits made .

Business accounting systems usually allow fixed time periods to elapse
between display ofincome and expenditure . For example, a report ofquarterly
or annual gross income and profit is quite common. These figures hide or at-
tenuate the fact that any single month was good or bad. Obviously, the fre-
quency at which these data are available has a bearing on their possible use .
We tend to take these sampled data measurement systems for granted, even
though they are capable of seriously misleading us at times .
In pulp and paper making, many of the variables of interest, particularly

those relating to quality, are available only on a sampled data basis, often
with a long sampling period . Long sampling periods (low sampling frequency)
are usually attributable to the cost of sampling and testing being considered
too high ; alternatively, they may result from the fact that a good use for more
frequently sampled data has not been determined .
The sampling and testing costs are generally reduced considerably if an

instrument can be found that can measure the property of interest on-line .
Basis weight and moisture are good examples of measurements that have
yielded to this approach . Previously, these variables were measured by des-
tructive tests on an infrequent basis, say, once per reel . With on-line scanning
gauges, strip charts are now filled up with a large amount of information,
which is usually of little value in its raw state . In order to produce a useful
measure of the basis weight for control purposes, the readings during a scan
are usually averaged, with this scan average being used for control during the
following scan . This is an example offiltering that is, removal or attenuation
of unwanted information in order to leave the useful information for control
purposes . It is also an example of a zero-order hold. These will be discussed
later .
The human operator who is manually controlling a plant equipped with

on-line instruments employs sampled data control . He divides his attention
among several instruments, as well as among other non-control tasks such as
inspecting equipment . Each time he takes an instrument reading (that is, he
samples it), he makes a mental decision about whether the variable has moved
off target significantly he filters the value, then estimates the control action
required .

If the response of the measured variable to his control action takes a long
time, he probably learns to reduce his sampling frequency . If the variable is
fluctuating quite a lot, he examines it more carefully in determining whether
it has deviated from target

	

that is, he filters it more heavily .
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Sooner or later, he would probably persuade an engineer to install an auto-
matic control loop to carry out the control . A skilled engineer, however, would
recognise that there is a choice whether to make the control action continuous
or discrete (that is, sampled data control) . The fact that the measurement is
continuous does not necessarily mean that continuous control is going to give
the best control performance . Indeed, there are situations for which sampled
data control can be superior to continuous contra

Fig. 1-Schematic of feedback control system

Soliman & Al-Shaikh(l) have made this comparison by determining the in-
crease in loop gain that can be achieved in a sampled data system compared
with that of the equivalent continuous system . The meaning of loop gain can
be seen in Fig. 1, where for a proportional controller it would be the value of
a signal increase as it proceeds clockwise round the loop . Suppose we start
with a certain error at point A, multiply it by the controller gain, then multi-
ply this product by the process gain, the signal would arrive at point B with
the loop gain times its original value at A. For most processes, particularly
those with dead time, there is a limit to which this gain can be increased (by,
say, reduction ofthe controller proportional band), because instability usually
occurs . The results(') showed that for processes in which a dead time (trans-
port lag) is the dominant feature, stable sampled data control can be achieved
at loop gains of as much as three times greater than those possible for a stable
continuous system . This improvement can be achieved only by proper selection
of the sampling interval relative to the dead time .

Processes with dominant dead times are common in the pulp and paper
industry . Buckley(2) gives an example of a simple sampled data controller for
use with a dead time process .
The digital computer is a sampled data device . When used as a controller

by necessity, it operates as a sampled data controller . It is of course well
known that the digital computer has many advantages for control purposes(3)
over more traditional methods .
For these reasons, sampled data control can be advantageous even when

the controlled variable is measured continuously .
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Variables that are measured discretely create another set of problems, to
the extent that several different approaches have been developed to deal with
them. As mentioned previously, these occur when there is no instrument
available, when the instrument is too costly or when the instrument operates
on a discrete basis .

It seems to have been the tradition that control of continuously measured
variables was the realm of the control engineer, whereas control of discrete
variables was handled by the statistical quality control engineer . In recent
years, some common ground has been established by the statisticians moving
into control engineering through adaptive quality control(4) and the control
engineers moving into statistics using sampled data stochastic control .

Unfortunately, many people are still firmly entrenched in each camp and
many communication problems arise as a result, because of the jargon used
by each group.
When a control engineer uses the word interaction, for example, he is nor-

mally referring to a process that is multi-variable and for which a single input
will produce a response in more than one output . The control engineer will
most likely assume that this process can be approximated by a set of linear
differential or differential-difference equations .
When the statistician talks about interactions in a process, he is generally

referring to the necessity (in his opinion) of assuming that the process is
mufti-variable and that it should be represented by a non-linear quadratic
algebraic model, which contains terms in the cross-products of the input
variables .

These two uses of the word are therefore quite different and it is conse-
quently well worth while for anybody working in this field to be able to cross
the interdisciplinary boundary .
The wordfrequency is another good example of this semantic problem . To

the statistician, it means the number of occurrences ofan event for example,
the number of times that a sampled value lies between two limits . To the
control engineer, it is equated with sinusoidal frequency or whether changes
in a variable are occurring slowly or rapidly . The control engineer's concept
of frequency can be helpful in discussing some factors relating to sampled
data measurement and control .
Fig. 2 shows four different time series of a variable together with the

frequency distribution and power spectrum for each time series .
Comparison of signal (a) with signal (b) indicates that, while (a) is made

up primarily of slowly changing or low frequency values, signal (b) also
contains some rapidly changing or high frequency components .
These differences are not reflected in the statisticians' frequency distribution

of signals (a) and (b)-that is, they are both normal and have the same mean
10-VOL. I
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and standard deviation . The signal differences show up, however, in the re-
spective power spectra . The power spectrum(5) gives the distribution of signal
variance in terms of the (sinusoidal) frequency. The areas under the power
spectra for (a) and (b) are the same . This is because the area under the power
spectrum is equal to the variance of the signal . The area under the power
spectrum between any two frequencies is that part of the variance contained
in that frequency band . It can be seen that signal (b) contains proportionately
more variance at the higher frequencies that does signal (a) . Signals (c) and
(d) may be compared with each other in a similar manner .

Fig. 2-Signal analysis

when making measurements, it is important to know the spectral charac-
teristics of the variables and the use that will be made of the measurements .
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This is particularly so for sampled data, because of the misleading results that
can be obtained if the sampling frequency is improperly chosen . When the
sampling frequency is too low, beating between the sampling frequency and
the higher frequencies in the signal occurs, leading to the production of beat
frequencies in the measurement .
A good example of how misleading this can be occurs when a movie film

shows spoked wheels apparently rotating slowly in the wrong direction .
This phenomenon is known as aliasing(5-1) and can be avoided by making

the sampling frequency at least twice as high as the maximum frequency
present in the signal . This criterion presents certain practical difficulties when
this maximum frequency is unknown . In such a case, the sampling frequency
may be increased until there is no more change in the power spectrum . At this
point, it may be assumed that. the sampling frequency is high enough to elimi-
nate aliasing . The use of too low a sampling frequency is a method of produc-
ing a time series with spectral characteristics approaching that of white noise
-that is, the power spectrum is essentially constant at all frequencies . (5)
The power spectrum of a variable can be used to determine
.1 . How much variance reduction we might expect to obtain by improving

control . cR, 9

2. To make hypotheses about the causes of variations . This can be helpful as a
source of solutions for reducing the high frequency variations (process noise)
that cannot be reduced by feedback control of the output variable under
consideration .

Sampled data may be used for process identification leading to controller
design .( 1 o , 11) To obtain values for, say, a process time constant and dead time,
the sampling period would need to be several times less than these two para-
meters . Further decrease of the sampling period can be advantageous to allow
filtering of both the input and output variables before identification .
Many variables in the pulp and paper industry that are at present sampled

are important measures of product quality . The control objective is generally
to minimise the variation of the variable so that it can be aimed as close to the
relevant specification as possible . (8, 9, 12) Feedback control for this purpose
has an inherent limitation, namely, that it becomes increasingly ineffective as
the (sinusoidal) frequency of the disturbance increases .(8, 9, 12, 13) There is an
upper frequency above which control is quite useless . The value of this limit-
ing cut-off frequency depends on the response characteristics (time constant
and dead time) between the manipulated input variable and the controlled
(output) variable and to a lesser extent on the maximum permissible sampling
frequency . All disturbance frequencies above the point that control becomes
ineffective can be considered as noise produced either by the process or by
the measurement . It is advisable to filter these higher frequencies from the
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measured signal before using it in any control calculations . Failure to do this
adequately can lead to aliasing (7) or to noise amplification(14) in the control
loop . The characteristics of the measuring system have a considerable bearing
on the types of filtering that may be employed . When the measurement is
from a continuous instrument, it is advantageous to use analog filtering, which
can remove frequencies from infinity down to the order of one cycle/minute .
For the removal of lower frequencies, digital filtering may be used . A moving
average or the exponentially weighted average (exponential smoothing) are
examples of digital filtering techniques .

Goff(7) describes the use of both analog and digital filtering systems and
their relation to the process control cut-off frequency in the design of direct
digital control systems . Filter systems, besides having frequency attenuation
characteristics, also have lag characteristics .

Goff(7) gives the attenuation and phase lag characteristics for two types of
digital filter . These lags are detrimental to control . It is therefore wise to
eliminate the sources ofprocess and measurement noise rather than to depend
on filtering . If the loop in question is basis weight, for example, it is advisable
to pay every attention to improving consistency control, to providing well
agitated mixing chests, to reducing head box head variations and to reducing
forming table instabilities and drive speed non-uniformities, etc.
The discussion to this point has dealt with sampling from a continuous

measurement, in which the characteristics of the analog filter, the sampling
frequency and the digital filter characteristics can be chosen with regard to the
disturbance frequency spectrum and the process response dynamics . When
continuous measuring instruments are not available and samples for testing
must be taken from the process stream, the situation becomes more difficult
to deal with .
When sampling from fluid streams, it is possible to perform some mixing

during sample collection, which has a similar effect to analog filtering . Coul-
man(15 ) discusses the theory of designing a special mixing system for this
purpose. Sampling from sheet systems, by its very nature, precludes this type
of mixing. Additionally, sampling from a sheet is destructive, so that there is
strong economic motivation for maintaining a low sampling frequency, the
latter usually corresponding to reel changing .
The literature is rather sparse on the application of the design of control

systems to utilise this kind of data and the situation leads to the often-heard
comment that the sample results come too late to take any action . This state-
ment is usually not true . It is true, however, that the cut-off frequency of the
controlled system will be quite low, but this is a relative matter .
The authors recently examined the hourly test results from a process that

has a delay of 3-4 h between changes in the manipulated variable showing in
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the result of the hourly laboratory test . The data showed that drifts in the
frequency range of one cycle per week accounted for more than half of the
standard deviation of this variable . The application of digital filtering and
sampled data feedback control performed manually would be quite effective
in reducing this variation . It is often a good assumption, because of the exist-
ence of mixing chests, etc ., that the variations in the sampled variable can be
separated into a low frequency component and a high frequency or uncorre-
lated (white noise) component . The latter component may be filtered by per-
forming a number of tests on each sample and averaging the result . The
sample average is then a better estimate of the low frequency variation or
what Loeb(14 ) calls the true process average.
Two publications of interest in this connection concern the control of a

process for making glass bulbs . (14, 16) In this case, some filtering was accom-
plished by averaging the test results from several bulbs at each sampling
interval . The time delay introduced by testing was directly proportional to the
number of samples averaged, so there was an optimum in the number of
samples that would produce the minimum product variance . This sort of
averaging is effective when the variations are due to very high frequency or
uncorrelated causes such as measurement errors or, in the case of a sheet,
local non-uniformities .
As mentioned earlier, a knowledge of the power spectrum of the variable

to be controlled is valuable in designing a system such as the above. Although
its determination in the case of a sheet may be expensive and tedious, it can
help provide the correct perspective in designing the optimum control system .
Because of aliasing, the major problem is determination ofthe proper sampling
scheme .
Astrom(17 ) reported on the use of Kalman filtering for the estimation of

cross-direction (CD) stretch from reel samples . He claimed that the variations
could effectively be grouped into those below about 5 cycles per shift and into
high frequency uncorrelated variations, which he called measurement error .
The latter can be detected as a spike on the autocovariance function at zero
lag roughly equivalent to white noise . Astrom used his method to supply
the operators with a prediction of CD stretch for feedback control, as well as
for estimating the interpolated value of CD stretch for product acceptance
purposes .
Both Loeb(14 ) and Astrom(17 ) comment on the statistical quality control

engineer's use of control charts . These charts are a means of revealing extreme
variations in a process output . From these, it is concluded that a variation has
occurred from an assignable cause (low frequency disturbance), but no rules are
provided to determine the sequence of adjustments that must be made to the
manipulated input variable to minimise the variance ofthe controlled variable .
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Cumulative sum (Cusum) charts suffer from the same disadvantage as

control charts . They perform the function of a digital arithmetic filter . Another
disadvantage of control charts is that they do not take into account the fact
that much ofthe disturbance is low frequency (that is, correlated) .

Adaptive quality control, proposed by Box & Jenkins, (4' was probably the
first attempt to incorporate a knowledge of the process dynamics into design
of a quality control system . This method, although differing in terminology
and some detail, is basically the same as linear stochastic control . Not only
are the dynamics of the process utilised in the controller design, but a model
ofthe low frequency disturbances is used for prediction purposes . The method
ofBox & Jenkins has been utilised by several papermachine computer control
systems for basis weight and moisture control .
Linear stochastic control theory has been applied by Astrom(11 ) to com-

puter control of a papermachine . Like Box & Jenkins, this makes use of
prediction of low frequency disturbances and at the same time filters the noise .
A reduction of variance by a factor of 7 was obtained for basis weight .
These and other applications will be discussed in more detail after the

following discussion on sampled data theory .

SAMPLED DATA CONTROL ANALYSIS AND DESIGN

Introduction
IN CONTRAST to a continuous system (which has data available at all times),

a sampled data (or discrete) system has data available only at specific instants
called sampling instants . When dealing with process control systems in which
the process is continuous, the sampled nature of the system arises either from
measurements that are taken and/or are available only at certain times (say,
laboratory analyses or hand samples) or from controllers that take action only
at specific times . An example of the latter is a digital computer, which is
necessarily discrete, since it is constrained to perform only one calculation at
a time . (For general tests on sampled data control, see two papers . 118, 19')

Sampling process
BASIC to the concept of a sampled data system is the process of sampling

the value of a continuous variable . Although in many cases the fact that
continuous knowledge of a variable is not available is incidental and continu-
ous analysis techniques such as those afforded by the Laplace transform may
be used without significant error, many instances do arise in which the sampled
nature is a critical factor and sampled data analysis must be used . 1191
Given the continuous signal f(t), it can be seen in Fig . 3 that sampling or

`reading' it every T s results in the sampled signalf*(t), where
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P(t) f(nT)U(t-nT)

n=o
and where U'(t-nT) is the unit impulse* train shown in Fig. 3 . Clearly, in a
real system, a sample is not obtained instantaneously and the impulse train
should be replaced by a pulse train (finite height and width) ; but, as this actual
sampling time becomes small compared with T, the impulse assumption is
very little in error and is much easier to deal with analytically.

Fig. 3-Sampling a continuous system

men dealing withf*(t), it should be remembered that it is a representation
of a continuous signal and that information has been lost in the sampling
process . Although Shannon's sampling theorem (that is, by making T less
than one half the period of the highest frequency component off(t), complete
reconstruction of fromf*(t) is possible) tells us how to sample in order to
gain full information from the signal, in control applications this approach is
not practicable and reconstruction of the original signal is seldom attempted .
Instead, the signal is assumed to be of a certain form between sampling
intervals, as outlined in the following section .

* A unit impulse (the Dirac function) is a pulse of infinite height and zero duration
occurring at time zero . The integral of the function (area under the curve) equals unity .
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Holds
A zero-order hold maintains for holds) a signal value over a sampling

interval (from one sampling instant to the next) . Ifa zero-order hold is applied
to the output of a perfect sampler (which is an impulse modulator), the result
is a series of steps as illustrated in Fig . 4 . This type of hold is a reasonable
assumption for the behaviour of the signal during the sampling intervals, if T
is small and the signal smooth .

Fig. 4-Zero-order hold output

Yet other holds are possible . A first-order hold, for instance, provides a
signal between sampling instants that is a linear extrapolation based on the
previous two measurements (Fig . 5) .

Fig. 5-First-order hold output
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The z-transform
PROBABLY, the most useful single tool in the analysis of differential equa-

tions describing continuous systems is the Laplace transformation, which
transforms differential equations into an algebraic form . Analogous to this in
the study of difference equations and discontinuous system is the z-transform .
The sampled signal is represented by-

Co

f*(t) f(nT)U(t-nT)
n=o

Taking the Laplace transform of both sides yields-
Co

F*(S) f(nT)e-Ts

n=o

The form of this equation is not particularly convenient for the study of
sampled data control systems, so by introducing the variable-

z = eTs

the equation becomes-
Co

F*(S) =-- F(z) =z

	

f(nT)Z-n

n=o

Simply stated, this means that the z-transform of a continuous signal is an
infinite series of negative powers of z with the coefficient of the Z-n term
being given by the value of the function at the nth sampling instant . This
definition can often lead directly to z-transforms of functions through direct
summing of the infinite series . For example, the unit step hasf(nT) = 1, n _> 0,
thus yielding-

Co

F(z) =-:

	

Z'

	

z
I

;IZI > I

n=o
The restriction I zj > I for the unit step transform to be valid is equivalent to

! zl =- es = leaT II > 1

or a = Real part of s>_ 0,

which is the same condition that must apply in order to assure the existence
of the Laplace transform. This illustrates the following point. Since the z-
transform is mathematically the Laplace transform with a change of variable,
no new restrictions are imposed for its existence .
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TABLE I-z-TRANSFORMS

Table I lists some of the more common z-transforms . As with the Laplace
transform and continuous systems, the z-transform becomes most useful
when characterising the dynamic properties of sampled data systems . It
should be appreciated, however, that, owing to the hybrid nature ofa sampled
data system (that is, some components are continuous, Fig . 6), it may not
always be possible to derive a sampled data transfer function, which is usually
the desired end result in Laplace analysis . The following is an example of a
system for which a transfer function can be obtained.

Fig. 6-Typical `hybrid' sampled data system

filmefunction Laplace transform z-transform

Description fit) F(s) F(z)
Unit impulse U,(t) I I
Unit step u(t) I/S Z/(z- 1)
Ramp t JIS 2 TIZ(Z-1)2
Exponential e-at 11(s+a) z/ {2--e-t}

Sinusoidal sin cot (01(S 2+0) 2) z sin cot

z 2 -2z cos wt+1
Multiply by e-aT e-Tf(t) F(s+a) F(z+eaT)
Delay by time nT f(t-nT) e-nTsF(s) z-nF(z)
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Fig. 7-Continuous and pulse transfer functions

Given the continuous system KG(s) as in Fig . 7, with sampled input and
output (synchronously), the sampled Laplace output is

Fo *(s) = KG*(s)F1*(s)

which yields the transfer function-

z)

	

*(s)
KG(z) = F1*(s)

For cascaded continuous networks as in Fig . 8a, however, the final relation-
ship is

80 (Z)
= K1G1K2G2(Z)6i (Z)

where the superscript bar indicates that the z-transform is taken of the
product of the terms and there can be no intermediate transfer function

	

for

example 8a(z)

	

This is because the output of the first continuous system is~

	

$i(z)

continuously supplied to the second, which clearly is different from only
sampling the output of the first system as in Fig . 8b . To illustrate this point
consider--

K1 = 1
K2 = 1
G1 = 1/(s+a)
G2 __ 1l(s+b)
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Then

	

KK2G,.G2(Z)
(A

(1 -Az-1 ) (I - Bz-1)

where A == eaTand B == ebT, although-

1
K,G,.(z)K,G,(z) =

(I -Az-1 ) (I -Bz-1)
1

	

1

Clearly, the two functions are not the same and it can be appreciated that
z-transform analysis is not simply substituting z-transforms for Laplace
transforms wherever they arise .

Before proceeding to the analysis of closed loop sampled data systems, it
would be worthwhile to summarise a few properties of z-transforms . A full
theoretical treatment is not possible without making extensive use of complex
variable theory, so it would be out of place in this paper .

1 . The inverse .z-transformation may be carried out by methods analogous to
those of inverse Laplace transformation . Another technique, power series
expansion (simply dividing numerator by denominator), is also applicable and
is in many instances simpler and easier to use .

Fig. 8-Cascaded continuous systems
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2 . The z-transform contains information about the corresponding time function
at the sampling instants only .

3. The initial value theorem states-
limf*(t) = lim F(z)

t --> 0

	

z ---> C)O

4 . The final value theorem states-
limf*(t) == lim Z-1 F(z)z
t ->Co

	

z -> 1
5. When a system function G(S) contains a term e-as (that is, a delay), the sampling

iDeriod should be chosen so that a =: kT, where k is an integer, otherwise the
standard z-transform is not applicable and the modified or advanced z-
transformation must be used . This technique allows the calculation of the
response at times other than the sampling instants . Fig . 9 illustrates the deriva-
tion of the modified z-transform . A fictitious delay element is placed between

Fig. 9-The modified z-transform

the system and the fictitious output sampler (that is, the output is really
continuous) . Define

Gx(s) G(s)e-aTs
then Ca(z) Gx(z)F(z)

CO

where Gx(z) ===

	

g(nT-AT)z-n

n=J
CO

CXW c(nT-XT)z-n

n=1
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Since ga(nT) = g(nT-AT) and Cx(nT) = c(nT-AT), introducing the parameter
m = 1-A, we find equation (1) may be written-

CO

CJz) =

	

c[(n -1)T+nzT]z-n

n=o
and, by'redefining the dummy index on the summation, we have-

CO

C(Z,m) = z_1

	

c[(n+m)T]z_n

n=o
which is the definition of the modified z-transformer . Through the use of the
fictitious delay element, the value of the response has been obtained at times
other than the sampling instant and can then be used in calculations involving
dead times that are not integral multiples of the sampling interval .

Closed loop control systems
THERE is no generalised sampled data system as there is for continuous

systems, since the number and location of samplers greatly influences system
performance . Two common situations are often encountered, however,
especially when dealing with digital computer control

1 . Continuous controller with sampled measurement (Fig . 10) .
2 . Sampled data control system with a sampled data controller (Fig . 11) .

Fig. 10

	

Continuous controller (sampled measurement)
In the first type, no total transfer function between set point change and

response can be obtained, but the closed loop response equation is found
to be

C OC
BSP

(z)

8.(z) =
1 +CocH(z)G(z)
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In response to a disturbance, the transfer function is
6 .(z)

	

1
OD(z) _ 1 +C«H(z)G(z)

For systems of the second type (such as direct digital control), a setpoint
change transfer function is found to be

8 .(z) C(z)Hx(z)

esp(z)

	

1+C(z)GH«(z)

While the disturbance transfer function i s not obtainable in an explicit form
from the equation

1 . Sampled measurements
As an example of the first type of sampled data system described above

with the sampling taking place in the measurement channel, consider the
first-order system and conventional two-term controller of Fig . 12 . The usual
function of such a control system is to regulate against load disturbances
rather than to follow setpoint changes, so this is what will be considered .

Standard continuous control system design techniques such as the transient
response, frequency response, root locus and Nyquist plots are all equally
applicable to the design of sampled data systems, but in many cases their
application is more difficult . Therefore, the use of sampled data control theory

Fig . 11-Sampled data controller
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for the selection of controller settings for satisfactory control is often a simple
trial and error approach (2'

1 . Start with the system pulse transfer function (or system output equation),
choose a value for gain (and/or integral time constant) and system disturbance
(say, a unit step) and solve for the system output as a function of z .

2. Expand this equation as a power series in z .
3 . Read off the sampled time response as the coefficients of the z terms.
4. Repeat steps 1, 2 and 3 with different controller settings until satisfactory

response is obtained .

Fig. 12-Typical system

Treating the system in Fig . 12 in this way, we have

x(s) = 1/(Ts+1)

	

(first-order system)

1
C(s) = K,(1-}-- )

	

(PI controller)
TIs

H(s) = (1-e-TS)ls

	

(zero-order hold)

Following the same approach as in the preceding section, we arrive at the
equation

-U(Z)

1 +CaH(z)
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The characteristic equation-
I + CaH(z) == 0

the roots of which are the poles of the closed loop system, may now be
analysed as a function of Z. Substitution of the given Laplace transforms for
a, C and H, then taking the transform of the product CaH, the following
equation results

Although any value rl may be chosen, it is often practical to choose it
equal to the first-order lag --r, as is the case in continuous systems . This means
a process pole is being cancelled by the controller zero,* which is a reasonable
design criterion .
The characteristic equation reduces to

-(I -KT/,r) == 0

which has a root
Zr == (I -KTI-7)

The response of the system may be characterised as a function of K, in the
following way

K,T/,r < 0

	

Unstable
0 <KT/,r < I

	

Overdamped
I <KT/,r < 2

	

Underdamped
2 <KT/,r

	

Unstable

Usually, the underdamped response is desired . Specification of the decay
ratio (ratio of adjacent peaks in the response) desired (say, 41) will then totally
specify the system (assuming T is fixed) and the system response may be
calculated .
For this case, it turns out to be

An _(lK T/,r)n
c(nT) == (I -A)-

	

C

A -(I -KeT/,r)

which, it must be emphasised, is valid only at sampling instants . (21'

2. Discrete control
1HE second type 01 sampled data system b one in which the measurement

may be continuous, but the controller has been replaced by a discrete system .
Two types of discrete control are possible, analog or digital . A discrete analog

Root of the transfer function numerator
II--VOL. I
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controller may be of the pulse width modulation (PWM) variety (see below),
in which the controller drives a valve motor forward or reverse (for a certain
length of time) at discrete intervals only . This latter restriction is required,
otherwise the motor might easily wear out . The other kind of discrete control
has been labelled direct digital control (DDQ.
With a digital controller, one is not constrained to choose only three-term

algorithms such as proportional plus integral plus derivative (PILO . This may
be seen in the following generalisation .
The two-term PI (proportional plus integral) analog controller algorithm

may be written-
t

m(t) =: Kc e(t)-I----- c(e)de

where K,

	

= the proportional gain,
e(t) = the error signal,
T,

	

= the reset rate constant,
0

	

= a dummy integration parameter,
m(t) = the controller output signal .

In discrete form, this algorithm becomes
-I- I

m(nT) == Kc	e(nT)+

	

e

	

(n-l-j)T

	

~ .

	

(2)
Ti I ]i

j=0

where the continuous integral has been replaced by the sum of all previous
sampling instant errors . This discrete two-term algorithm may be rewritten-

n-1

m(nT) = kie(nT)+k,

	

e[(n-I -j)T]
j=0

and it can be seen that the integral and proportional modes may be tuned
independently . In practice, the full benefit of this advantage may not be felt
immediately, as instrument engineers are used to tuning controllers that have
mode interaction and some training will be necessary . Equation (2) may be
simplified by substituting the previous controller output m(nT-T)

m(nT) == Kc~e(nT) - 1--
T
)e(nT-T)

	

+m(nT-T)

	

(3)

which is the operational digital equivalent to the two-term controller . It- re-
quires the storage of only three signals, the latest two error signals and the
previous controller output . The obvious generalisation of this algorithm is

n

	

n

m(nT)

	

qje(nT-jT)+

	

pjm(nT-jT)
.T=D

	

j=1
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which requires the storage of all previous errors and all previous outputs and
the specification of the (2n+ 1) coefficients qj and pp In a practical algorithm,
many of these will be zero, but even so the tuning of so many parameters on-
line is a difficult task . In practice, some coefficients will be fixed in value as a
result of the controller design, whereas others will be fixed using numbers
derived from process identification experiments, leaving only one or two to
be tuned on-line .

It should be noted that it would be possible to start with this form of the
sampled data controller algorithm and, by proper choice of the coefficients,
derive a standard two-term algorithm in other words, the reverse of what
has just been done .
Replacement ofconventional analog controllers with PID digital algorithms

is only one DDS application . Such functions as compensation, cascade con-
trol, feedforward control, dead time compensation, digital filtering and se-
quence control may also be implemented using a digital computer . In many
instances, the use of such advanced control techniques would otherwise be
impossible .

Positional and velocity algorithms

	

Inthe conventional PI control algorithm
derived above, the calculated value m(nT) is related to the new valve or other
control actuator position . Actually to impress this value on the actuator, a
digital to analog (D to A) converter is required . Furthermore, the computer
must recalculate the required valve position at every sampling instant . This
type of algorithm is called a position algorithm .
Looking at equation (3), however, it is possible to see that

T
m(nT)-m(nT-T) = vm(nT) =K, je(nT)-

(
1 _,ri) e(nT- T)~

	

.	(4)

is the change in controller signal required as a result of a change in error
signal during the sampling interval and in essence represents the velocity of
the control actuator, since the time interval is fixed . Hence, the term velocity
algorithm . If the computer output goes to a stepping motor or integrating
amplifier, no D to , A converter is required and the output may be a digital
pulse train .
Two unique properties of the velocity algorithm should be noted

1 . Some small amount of integral action is always required . Examining equa-
tion (4) and rearranging the terms, we see

KcT
Vm(nT) - Kc e(nT)-e(nT-T) +-e(nT-T)

If we substitute-
e(nS) x V, - S
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where T == set point and Vn === measurement at t == nT, this becomes--

pm(nT) = &(V,, - V,,-1)+
K,
TI

'
T
(S- Vn-1)

and it can be seen that only the integral term contains any reference to the
set point and that the elimination of this term would result in severe controller
drift.

2 . At any given sampling instant, proportional and integral contributions to the
controller output could be of opposite sign (in this case, if V is moving away
from S, the sign is opposite ; if towards S, the signs are the same) . This may
be utilised by including only the proportional term for both increasing and
decreasing errors when V is within a certain band around S and excluding it
for decreasing errors outside this band . This limited proportional action may
be accentuated by having different proportional gains in the two regions with
a higher value outside the band . This would allow for much faster response
to process upsets . (23)

Pulse amplitude andpulse duration control'

	

The final step in a digital control
system is the application of the calculated control signal to the final control
-actuator. This can be accomplished by a zero-order hold, which maintains the
calculated signal as input to the actuator over the next sampling intervals .
This type of actuation is calledpulse amplitude modulation (PAM) and results
in a controller signal as in Fig. 13 .

Fig . 13-PAM control signal

An alternative to PAM is pulse duration control, that is, pulse width modu-
lation (PWM). There are several advantages in using PWM, as Emery & Lin
summarised(25)-
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V. PWM systems are less susceptible to the influence of signal noise, since the
information contained by an individual pulse resides in the duration of the
pulse and not in its amplitude .

2 . The output stage of a PWM system can be a simple relay circuit . Thus, very
high gains can be realised with little equipment complexity and relatively low
cost .

3 . The torque limiting problems that are encountered in pulse amplitude modu-
lated (PAM) and continuous systems are easily handled in a PWM system,
since only one value of torque (pulse amplitude) is ever applied in the latter.

4 . No hold circuit is required in PWM systems .
5 . Loss or interruption of the input signal in a PWM system yields a fail safe

condition .
6. PWM or pulse duration actuators are commonly employed in industrial plants

for push-button adjustment of process variables . It is advantageous to employ
PWM control when installing computer control systems so that the existing
actuators can be left intact . This preserves normal operating procedures
throughout the installation and thereafter, during computer shutdowns . In
addition, it reduces the complexity in switching from manual to automatic
modes of control(26 ) and the overall installation costs are considerably less.'

A velocity type of algorithm is almost always used with PWM systems, as
can be appreciated by considering the PWM signal as a sequence of instruc-
tions to the control valve- `open a bit', `open a bit more', `close a bit', etc .,
with the duration of the pulse indicating how much and the polarity indicat-
ing open or close . PWM control can be implemented using a digital computer,
which would allow complete flexibility in the design of the control law.
Emery &Lm( 25' describe the use of Lyapunov's second method in the design
of an approximately optimum PWM controller .
The algorithm they arrive at is equivalent to a PI controller, with both t

-
he

sign of the control signal and its duration being functions of the present and
past errors as below-

sgn{c(t) } = sgn{K,e(nT)+KJe(nT)-e(nT-T)]J

and d(n) = JK,,e(nT)+KJe(nT)-e(nT-T)]J

for nT < t <(nT+ T)

where d(n)

	

= duration of the pulse starting at t = nT,
K, K, = tuning parameters .

They showed that near optimum K, and K~ could be chosen as functions of
process parameters . Note that, although the algorithm may appear to be pro-
portional plus derivative, the process used, in the derivation contained an
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integrating term I/S

	

for example, an electric motor driven valve,, which
would convert this to proportional plus integral . An example of PWM signal
is seen in Fig . 14 .

Fig. 14-PWM control signal

Stability of sampled data control systems

	

No discussion of sampled data
control systems would be complete without a mention ofthe stability problem .
In linear control theory, the stability of a closed loop system is determined by
the location of the transfer function poles on the S-plane (Fig . 15) . If all the

Fig. 75-The S-plane
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poles of the system (roots of th
plane (that is, they have negative real parts) for a particular gain, then the
system is stable for that choice of gain . The poles should be far enough from
the axis so that the system remains stable when process parameters change .

Fig. 16-The z-plane

The equivalent condition for a sampled data system is found by mapping
the left half of the S-plane to the z-plane (Fig. 16) by using the transform
tion-

z == eTs

This is a multi-valued transformation and the results in the mapping of each
strip cr > 0, nT< co < (nT+ T) on the S-plane into the unit circle of the z-plane .
The Routh stability criterion described above for continuous systems then
requires that the poles of the sampled data transfer function lie within the unit
circle . The root locus technique may thus be applied to determine the motion
of the poles as the controller settings are varied and the closed loop gain
changes .
Using this Routh criterion, Soliman & Al-Shaikh") have investigated the

stability of a first-order system containing a finite delay and have shown that
discrete control gives stability region improvement over continuous control
for various delay time to sampling interval ratios . The largest improvement
cited was a trebling of the maximum allowable controller gain . The delay time
to sampling interval ratio was found to be a critical stability parameter as may
be anticipated from discrete system theory .
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Selection of the control interval

	

One question that has not yet been an-
swered is `How often should a control action be takenT Note that this con-
trol sampling interval is not necessarily the same as the measurement sampling
interval, as in many cases a number of measurements are taken for each
control action . The choosing of the control rate is still very much a matter of
engineering judgment, as it represents a compromise between poor control
(which results from too low a rate) and increased computer loading and
equipment wear (which result from too high a rate) . Guidelines can be set
down, however, as has been done by the DDC Users Workshop (33) and
discussed by Goff. (7) The guidelines proposed are control sampling rates of

1 . Once per second for flow loops.
2 . Once every 5 s for level and pressure loops .
3. Once every 20 s for temperature and composition loops .

In practice, the dynamics of the specific loop must be taken into account .
The control algorithm used and the type of disturbance expected also have a
bearing on the selection of the sampling rate, as do such considerations as the
speed of response to set point change requests from the operator, who is used
to having immediate response and may not like having to wait until the next
control sample instant . This latter problem may be handled by having special
routines to act on set point changes immediately.
Some representative values of control sampling rates are

Head box control

	

2-8

	

s
Basis weight and moisture
Scan average

	

30-270s
Single point

	

10- 30s
Refiners

	

5- 60s

APPLICATIONS OF SAMPLED DATA THEORY TO THE CONTROL OF
PULP AND PAPER PROCESSES

THE literature abounds with articles describing the application of computer
control to pulp and paper processes . For information on the literature avail-
able, attention is drawn to Brewster & Bjerring's paper, (32) which has an
extensive bibliography as well as a review of pulp and paper application areas
and a summary of major computer control installations in U.S.A .

Applications of computers to control of pulp and paper making are des-
cribed also in papers given at this symposium . For example, three
papers, (30 , 34, 35) all describe some application of computer control .
The application areas and the techniques used in these installations vary
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widely,

but almost all involve more than

simple

DDC replacement of PID

analog

controllers

. This

latter application is still very controversial, owing to

the

questionable economic justification of installing a computer to perform

simple

PID DDC

when

analog controllers are often required for back-up

anyway . For

this reason, most installations have been performing such non-

PID

functions as cascade control, non-interacting control and feedforward

control . Since

dead time processes are very

common

in the pulp

and

paper

industry,

a few of the major papers

dealing

with the design of digital con-

trollers

for such systems will now be reviewed

.
Dahlin( 13 )

describes a controller synthesis method based on cancellation of

process

poles by controller zeroes, which gives good results once the open

loop

process transfer function has been determined

.

He assumes a first-order

plus

dead time process in his design ofbasis weight and moisture control

.

The

identification

of the model parameters is accomplished by an on-line pertur-

bation

technique

.
The

controller synthesis method also requires the specification ofthe desired

closed

loop response to a step change in set point

.

Dahlin specified a damped

exponential,

which resulted in a controller transfer function

SZ(1-e-ATZ_.1)D(z) -
	K(1-e-AT)

where

	

~2

= (1- e

),T
)/ [l -e-),z1- (1-e

-),T
)z-N1]

NT

= the process transport lag,

-A

=

the

process

pole,
K

=

the

process

gain
and

A is the time constant ofthe desired closed loop transfer function

.

Dahlin

uses

A as the on-line tuning parameter, while 1V, A and K are determined from

the

on-line identification experiments

.
Although

this algorithm looks fairly complex, it can be reduced to a form

that

shows the ease with which it can be implemented on a digital computer

.
The

discrete form of the algorithm is

c(n) = a ye(n)+a 2e(n-1)+a 3c(n-1)+a,c(n-N-1)

	

.

	

(5)

where c(n) =

the controller output at t = nt,

e(n) =

the error at

t = nt,
aY

= (1-e-)T)!K(1-e-AT)

a2

= --altAT

a3

= e-),T

a4

= I -a3
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It can be seen that the coefficients are functions of A (the tuning parameter),
hence all control modes are affected as A is varied . It should also be noted that
as the delay (N) goes to zero, the algorithm becomes identical in structure to
the discrete PI controller--equation (3) . Algorithms developed in this manner
have been used successfully providing stable head box, basis weight, moisture
and colour control . ( 2'-30)

In a series ofarticles dealing with computer control at Pilleruds, Astrom in
one of them("' describes the development of control laws based on linear
optimum stochastic control theory, specifically(") for basis weightand moisture
control . Sampled data theory is used extensively in modelling and process
dynamics, modelling the dynamics of the disturbances (which are assumed to
be stationary random processes) and eventually in formulating the control
law . He uses a minimum variance design criterion, but shows that, if there is
a non-minimum phase process singularity (that is, a zero outside the unit
circle on the z plane), then this design strategy will give unstable control as
process parameters change . A modified criterion can be used partially to
eliminate this stability problem .
A typical control algorithm derived by Astrom is the following for a first-

order model : relating wet basis weight to thick stock flow with a dead time of
four sampling intervals (36)

U(t) = --K
i -biz-1

1 +a zz _, +a 2z-2+aZ 3_~ Y(t)

which can be converted to the easily programmed form

wu(t) = KY(t)-Kb iy(t-1)-a,Qu(t--1)-a 2wu(t-2)--a 3uV(t--3)

where vu(t) = u(t)-u(t-1),
u(t) = the controller output (thick stock flow,
y(t) = the process output (wet basis weight),

K, bx , a l , a,, a3 are all positive constants .
Although Astrom did not do so, this velocity algorithm can be converted

to the equivalent positional algorithm so that it may be compared with
Dahlin's

u(t) = a1Y(t)+oc2Y(t--1)+oc3u(t-1)+a4u(t-2)+(x5u(t-3)+c,u(t-4)

Since a r, a, and a3 are all very nearly the same, a,, and a,, are small compared
with a 3 and a,, and the algorithm is approximately-

U(t) = 'XlY(t)+M2Y(t-l)+OG3U(t-1)+OGgu(t-`'t)
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Comparing this with Dahlin's equation (5) and noting that in Astrom's
example the delay N = 4, it can be seen that the only structural difference
lies in the fact that Astrom uses the control action taken one delay ago in his
prediction, whereas Dahlin uses the control action taken a delay plus a
sampling interval ago .

This same sort of difference exists between Astrom's algorithm and one
derived by Buhr et al. (31) from a model reference feedback structure . In this
latter approach, Buhr used the identified process delay time in a process
model to predict what the output (as a result of the control action taken one
delay time previously) should now be . Comparing this to the actual measured
output gives a measure of the input disturbance that existed at that point in
time . The prediction of the present input disturbance on the basis of this and
past disturbances is where Buhr deviates slightly from Astrom's approach .
Firstly, the prediction is a weighted linear extrapolation of the just-measured
disturbance and one a fixed number of intervals ago . Secondly, the extra-
polation is made to a point more than just a dead time in the future as with
Astrom's, the advantage being that this reduces the stability problems intro-
duced if the original plant model is in error.

In comparing these various alternatives, personal preference is probably
the most reasonable excuse for choosing one over the other . Part of this, of
course, will depend on the ease with which the algorithm can be implemented
and, in} particular, tuned . Neither Astrom nor Buhr discusses the practical
difficulties in tuning their algorithms, whereas Dahlin describes a simple
method that can be programmed and implemented on-line .
Many other DDC installations have been reported in the literature . For

example, Bockstanz & Keyes,( 37 ) writing about an Eastex installation, men-
tion that sampled data control synthesis methods were used to do preliminary
control algorithm design and that pulse duration control was used . Again,
attention is drawn to(32) and its extensive bibliography for other references
to computer control applications in the pulp and paper industry .
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Mr R. E. Johnston I would like to confirm the results presented by
Mr Bjerring on the equivalence between the two design methods . The proof
can be made more rigorous than this presentation and, in fact, leads to the
time constant that you should choose for the closed loop response being
uniquely described by the disturbance characteristics that may be determined
during the process ofidentification .
My question is that, since ` statistic' control systems are usually designed

to cope with a disturbance that has a zero mean, how do you finish up with a
controller that does not give you any offset after drifts or stop changes ?

Mr A. K. Bjerring

	

1. have no personal experience with that, but I am sure
that there are people here who have . Perhaps, they would like to comment .

Mr R. E. Jones

	

The terms in the numerator of the dead time control
algorithm can be shown to be equivalent to proportional plus integral control .
Hence, there is reset action against long-term offset .

Mr Bjerring

	

yes, but, in Astrom's case, I believe that the reset terms are
not there . This might have been what has been referred to by Mr Johnston .
If you remove the dead time, you do not take into account the controller
output a sampling interval ago . That does not enter into it.

Mr Johnston

	

May I just add to that . The problem appears to be that in
the first part of Astrom's paper be has assumed a model that in effect has a
zero mean and a variance that is finite ; but, in the last part, he assumes a
model of the disturbance that has an infinite variance, yet eventually leads to
a system that gives no offset . How you identify the constant parameters I do
not know .

Dr A. P . Wardle

	

When statistical methods are used for system identifica-
tion, sampling is carried out over a finite time and the infinite limits of the
summation terms involved become finite . What error does this introduce and
how will the length of sample affect the accuracy of the results?
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Dr D. B . Brewster Unfortunately, I did not have time to discuss this
point. The estimation of the autocorrelation and power spectrum and the
theory of stochastic control depend on the assumption of stationarity. This
states that the statistics such as the mean, standard deviation, autocorrelation,
etc . do not change with time . With a sample of finite length, very low fre-
quency variations (which have a period greater than some submultiple of the
sample length) will in effect show up as drifts in the mean . These drifts should
be removed from the data before starting the calculations, otherwise a spuri-
ous result will occur . Jenkins & Watts' paper(5) goes into more detail on this,
in particular on the relationship between length of sample and the lowest
frequency that can be estimated . At the other end of the frequency range is
the problem of abasing, which is dealt with in the paper . When the sampling
interval is restricted to reel changes, for example, the power spectrum almost
inevitably will contain abasing . The autocorrelation (or autocovariance),
although normally more difficult to interpret, is more useful in this case.

Mr D. L. Cooper

	

The procedure that we normally follow is this . If we
have a very long series of results, we will see whether there is any long-term
drift . In interpreting the spectrum, long-term drifts show up as frequencies ;
because you have only one or two peaks perhaps in the whole series . The
errors associated with the estimate of those frequencies are very large . We
normally do some very simple smoothing of the curve, taking out as far as we
can what appears as long-term trends before we apply the autocorrelation
function and obtain spectral estimates .

Dr J. N. Chubb

	

The impression I receive from these two papers is that it
would be wise to put more effort into improving the hardware side of data
sampling techniques instead of concentrating so much on mathematical
analysis . I suggest that, for example, instead of sampling at a fixed repetition
rate, it would be better to sample only when there has been a significant
deviation of a signal from the previous sampled value . This requires some
signal storage and comparison on each input signal line and the ability to call
the attention of the main processor when information transfer is required .
This system would minimise the amount of computer attention required to
ensure fully detailed tracing of a number of input signal variations .

Mr Bjerring

	

To your first point, one comment is that this would be all
right so long as we maintain the same control interval, which is the interval
at which the controller output is sampled . A technique called modified
z-transform analysis may be used here and must be used when using a samp-
ling interval somewhere in your system that is not an integral multiple of the
sampling measurement interval .
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A Speaker There has been some work done with so-called sensitivity
models . This sensitivity approach has been used for more generally adaptive
schemes where you adjust your parameters on-line as in your Dahlin control,
on a model reference approach . You can also extend that to the case of adjust-
able sampling parameters, for example, the sampling period . The basic work
in these areas was done by Prof. George Beckie of the University of Southern
California .

Dr Brewster I would like to ask a question that may sound a little
heretical for a fundamental research symposium . Has this actually been used
in industry?

A Speaker

	

It is my understanding that the basis of the sensitivity model
approach has been applied to the steel industry by Beckie and his associates .

Dr L B. Sanborn

	

One should remember, with the idea of sampling on the
basis of a change of signals, that there will probably be a change of signal
from the beta-gauge, owing to basis weight profile variations . One ofthe large
problems in getting basis weight samples at high frequencies on papermachines
is that one should be taking control actions on the average basis weight. In
addition, the papermaker likes to see his profile so that appropriate corrective
action can be taken at the slice .

There is a possibility that one could mount a second beta-gauge in a fixed
position, but that costs 60 000 dollars or more . There are other approaches
as well . For example, one could sample consecutively while traversing the
web and estimate the deviation from the average profile (obtained via a 10
scan average) as a best estimate for basis weight change . How well this would
work, however, is a difficult question .
One final comment about some practical information on Dahlin's approach .

We have been using this approach at CPE for approximately two years and
we have found that the basis weight stability of our papermachine has im-
proved significantly . I think that the most important factor in the improve-
ment, however, is that mass flow rate of stock to the machine is controlled by
a tight loop with a 4-8 s sampling intervals . As a result, it would be foolish
to use an algorithm such as Dahlin's to adjust the stock valve directly. Instead
one should adjust the set point of a tight DDC loop on the stock valve.

Mr Johnston We have all been referring to Dahlin's approach and we
should realise that this all stems from Smith's original work on designing con-
trollers for systems with dead time . In that respect, the controllers designed by
Dahlin, Smedhurst and Ramaz et al . and by others will all be identical, no
matter how they are dressed up and in what terms they are expressed .




