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COMPUTER CONTROL OF A PAPERMACHINE
USING A LINEAR STATE SPACE MODEL

S. HEM, Control Group, University Engineering Department,
Cambridge*

Synopsis Perturbation experiments on a Fourdrinier papermachine have con-
firmed that its dynamic behaviour can be represented adequately by a state space
model in the form of a matrix difference equation. The basic equations involved
have been treated in general terms, but the discussion on the model building and
control system design is made more explicit by reference to a specific system.

Methods have been developed for investigating and describing the papermaking
system as a process to which modern control theory can be applied. It has been
shown how the model can be used to determine possible control strategies to
change grade in such a way that the grade change time is at a minimum and certain
papermaking criteria are obeyed. The control objectives have been stated by
analytical performance criteria in the form of quadratic cost functions.

A simple grade change at constant machine speed was achieved by altering the
thick stock flow according to a trajectory determined by the rate constraint of the
flow valve. It was found necessary to manipulate and synchronise the thick stock and
thin stock flows together with the machine speed in order to change grade at constant
production rate.

Based on optimum control and filter theory, an on-line controller has been de-
signed to manipulate the thick stock flow in order to minimise the variance of the
measured basis weight. The developed formulation incorporates optimum estima-
tion of inaccessible state variables as an implicit feature. The control action is given
by a proportional term together with a memory term to account for past values of
control and basis weight. The controller has been implemented on a machine and is
shown to have stabilised the system considerably.

Introduction

A SERIOUS problem in the production of multi-grade paper is to make
fast and smooth grade changes and to maintain uniform and reproducible
properties of the paper.
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The process is characterised by transport delays and long-term transient
behaviour, owing to the inherent capacitance of hold-up vessels and pipe
network, which can cause the paper to drift off specification, especially im-
mediately after a grade change.

A number of variables such as certain consistencies and flows are inaccessi-
ble to measurement, consequently information about the state of the process is
incomplete and it may not be possible to compensate for disturbances.

There is a major economic incentive to optimise grade changes and thereby
minimise production of off-grade paper. Furthermore, the system is generally
not in a steady state immediately after a grade change and it is most important
to ensure that the paper is on specification while the system settles down and
that it is maintained steady for as long as it is required. Paper breaks caused
by undesirable transients during grade changes can result in a considerable
loss of production.

A basic prerequisite for the design of a control system to perform the tasks
indicated above is to establish an adequate mathematical model of the
process.

The papermaking process comprises a certain number of basic operations
such as the transport of fibre and additives between tanks and chests where
mixing takes place. Another important feature is the coming together at a
point of several streams of stock with different consistencies, then emerging as
one stream. Thus, four basic concepts are fundamental to the process—

1. Transport delays.

2. Mixing in chests and tanks.

3. Mixing at a point.

4. Flow dynamics.
Some of these are essentially non-linear in character. It is assumed in the
present investigation, however, that we are interested only in the dynamic
behaviour of the system in the neighbourhood of some specified operating
level; therefore, it will be sufficiently accurate to consider a linear model.
Further direct digital control is to be used and the attention can be focused on
a linearised, discrete time model as follows—

h

x(n+1) = Z Fix(n—i)+Eu(n)+d . . . @)
i=o
where n is the independent, discrete time variable,
x is the m X 1 state vector of the papermachine,
u is the s x 1 control vector,
d is the s X 1 plant noise vector
and F, and E are m x m and m X s transition and input matrices, respectively.
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Present methods of automation in papermaking provide for some control
of the basic process variables, but this control can be described as being partial.

Effective control, however, must provide automatic control of all the basic
parts of the process and must take into account the interrelationships of the
corresponding controlled quantities. If this is to be achieved, it is necessary to
develop a method for investigating and describing the papermaking system as
a process to which modern control theory can be applied.

This integrated approach of dealing with the interactions between variables
and their effect on the finished product remain to be established.

The objectives of the present investigation were as follows—

1. To devise a manageable and realistic model of the process in the form of
equation (/).

2. To use the model to determine possible control strategies to change grade in
such a way that the grade change time is small and certain papermaking
criteria are obeyed.

3. To design a computer controller that maintains constant grade with minimum
deviation from the desired specifications.

System description and control objectives

THE actual process on which the controls is to be implemented will be used
as an example to make the developed general methods of model building and
control theory more explicit.

The papermaking system is shown in Fig. 1. From a constant head tank,
thick stock of about 3-5 per cent consistency is continuously supplied at a rate
of 600-800 gal/min to the system at the mixing pump in a suction pipe, which
also supplies recycled backwater with a concentration of 0-4-0-5 per cent fibre.

Thin stock (0-9-1-0 per cent) is formed by mixing, then pumped by a constant
head pump at a rate of 7 000 gal/min through the cleaning equipment.
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Recirculation pipes are fitted to maintain a high flow through the cleaning
equipment for efficient performance. The flow of thin stock into the head box
is about 5 000 gal/min and is discharged through the slice opening on to the
moving wire. The machine and wire speed ranges 650-950 ft/min.

A fraction of about 0-6 of fibre and additives filters through the wire to-
gether with about 98 per cent of the water into the wire pit. This is fitted with
an overflow in order to supply the mixing pump from a constant head.

For papermaking reasons, it is necessary to maintain a constant low level
of stock in the head box; the head box is therefore pressurised and air is con-
tinuously circulated through the head box airspace by a pump as indicated
in Fig. 1.

The wire pit is the largest of the tanks and contains a constant volume of
2 300 ft® of backwater. This gives rise to a time constant of about 3 min to
changes in consistency. The combined effect of consistency changes arising
from recirculation dynamics associated with the cleaning, together with the
head box and wire pit mixing dynamics, yields a system with a very long
settling time of about 30 min. This makes manual control difficult, especially
at grade changes, when it is necessary to manipulate several input variables
simultaneously to force the system to go from one state to another.

The majority of grade changes for this particular machine are carried out at
constant machine speed or constant production rate. The first method is
mainly used for small changes in basis weight and when it is necessary to alter
production rate for papermaking reasons. A major economic incentive is to
maintain the highest possible production rate, usually constrained by drying
capacity. Under these conditions, a grade change is best effected by keeping the
production rate constant.

Sheet strength and formation depend to a great extent on the ratio of stock
velocity in the slice to wire speed, called the efflux ratio. It is particularly
important to keep the efflux ratio constant during a grade change.

A grade change subject to these papermaking criteria (constant production
and efflux ratio) can be realised by simultaneously manipulating the three
input variables— thick stock flow, thin stock flow and wire speed. If the
papermaking criteria are violated, the result is that often the sheet breaks or
the basis weight and moisture can be outside the tolerance limits for long
periods of time. A general strategy for a constant production change can now
be formulated. It is required to change the basis weight from one level to
another as quickly as possible, subject to saturation and rate constraints of the
input variables while production rate and efflux ratio remain constant.

Grade changes at constant speed are carried out by changing the thick
stock flow, subject to constraints on the valve movements.

The third control objective is to design a direct digital computer controller
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that minimises the variance of basis weight by manipulating the thick stock
flow based on measurements of the basis weight.

State space representation of the process

WATER is used as a vehicle to transport fibre in a network of pipes and
tanks, hence lags will occur with respect to changes both in flow and in
concentrations. It will be necessary to consider the past states of the system, as
well as the present states, owing to transport delays that affect the concentra-
tion of fibre and additives. Finally, the interactions between flow and con-
centration dynamics must be considered, as these determine the distribution
of fibre concentrations throughout the system.

The object of the modelling problem is to evaluate these functions and
determine the resultant dynamic behaviour of the plant.

We are interested mainly in the dynamic behaviour in the neighbourhood
of a fixed operating level and certain assumptions can therefore be made—

1. Simplified fluid flow equations in the form of a direct analog between fluid
flow and electric current in networks is considered to be adequate.

2. Perfect mixing takes place in the head box and wire pit.

3. The delays are time invariant and independent of the state variables.

4. Changes in the fraction of fibre and additives that filter through the wire is
taken to be proportional, but of opposite sign to the changes in the initial basis
weight on the wire.

The last approximation has been verified and used by several investiga-
tors, 2 and provides the mathematical link between the flow and consistency
dynamics of the head box and wire pit.

The total hydraulic pressure at the slice opening is of particular interest and
this, together with the stock level, form the variables of the simultaneous
differential equations that describe the head box flow dynamics—

dapP, dpP,

CIE' = Gai—qao+(C1 +C2)Z . . . @
dP,

CZW =(qdi—qo . . . . . . (3)

The input and output concentrations in the mixing tanks, head box and wire
pit are assumed to be related by the first-order differential equations—

av ) “
7o qo+ () - . . . ‘ )
i—1

d(c,V) . 5
— oot (c)i(qi); . . . )]
=1
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The thick stock flow, the recirculation flow and the wire pit flow converge
immediately before the mixing pump. The output concentration from the
pump can be derived as a special case of equations () and (5) by putting
V=0andr = 3.

The head box and wire pit equations were derived with r = 1.

The basic equations (2)—(5) were linearised about a chosen operating level.
In order to obtain a discrete model as indicated in the introduction, it was
assumed that information of the state variables was available only at periodic
intervals of time (every 10 s) and the forcing functions were to be held con-
stant throughout the interval and changed in a step manner at the sampling
instants.

In order to account for delays, a modified version of a method described by
Tou®, was used to form the difference equations of the linear continuous
equations. This yields the complete deterministic model in the discrete form
given by equation (/), where now h = 3, m = 5 and s = 4.

3

x(n+1) = z Fix(n—i)+ Eu(n) . . . 6)

1=0

The system is characterised by five state variables and four control variables,
thus the transition matrices F; and control matrix E are 5x5 and 5x4,
respectively.

The dynamic behaviour of the system is the n given by the discrete time
history of it state variables, which constitute—

x, = Hydraulic pressure at the slice,

x, = Stock level in the head box,

x, = Consistency immediately after the mixing pump,

x, = Head box consistency,

xs = Wire pit consistency.
The dynamic behaviour can be controlled by the four inputs—-

u; = Head box air flow,
u, = Thin stock flow,
u3 = Thick stock flow,
u, = Machine speed.

It is difficult to determine a rational criteria for the adequacy of the model;
nevertheless, it is of paramount important to establish that the model repre-
sents the plant behaviour sufficiently well in order to devise practical control
schemes.

The thick stock flow on the machine was changed according to a predeter-
mined pseudo-random binary sequence of thick stock valve positions and
the response of basis weight was observed from beta-gauge measurements.
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The model was then perturbed by an identical sequence of assumed thick
stock flows u,. The response was observed by augmenting the state space of
equation (6) by a linear discrete output equation to represent changes in basis
weight—

xs(n+1) = Mx(n+1) . . . . )

where M is a 1 x5 matrix and x is the state vector of equation (6). The simu-
lation thus represents a tie between analysis and experiment and, as can be
seen in Fig. 2, the agreement between the predicted behaviour of basis weight
and the actual behaviour seems quite satisfactory for our purpose.

It should be pointed out that the basis weight trace contained a small
amount of noise and was smoothed by eye before it was plotted on Fig. 2.
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Fig. 2—Perturbation experiment (this refers to a plant and
model with the additional recirculation indicated in Fig. 1)

Statement of control problems

WE WILL attempt to control a process that can be described by a linear,
discrete matrix difference equation of the following form—
b

LN
x(n+1) = Z Fix(n—i)+ Eu(n) N )
i=o
For grade changes, it is required to find the input vector—
u(n)a n = 0,11_ - _’p_la
which minimises a performance criterion of the form—
p—1
J = z Fxa(n+1)—x(@m+1)|2 . . ()
n=o
subject to equation (8) and the rate constraint—
|u(m)—u(n—1)| £ v ) . . . 3o
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A quadratic non-linear programming method developed by Kishi, suitable
for on-line computation, was extended to multi-variable systems with delays
in order to solve the above problem.® With some modifications, the same
method was used to solve the regulator problem by minimising a performance
criterion of the form—
p—1
J = Z %*|x(n+1)\32 +2(u()] 2 N )
i ‘Q R
n=o0o
subject to equation (8). This leads to a feedback control law—that is, the

controls are given as a function of the state variables, thus—
h

un) = — z Dix(n—1) . . . . (2

1=0
where D, are s X m matrices.
The discrete form of dynamic programming® can also be used to derive
the feedback law, but it is then necessary to augment the state space of
equation (8) to account for the delays.

Control strategies

Grade change at constant machine speed—The object was to determine the
input trajectory of thick stock flow u, in order to raise the basis weight 10 g/m?
from the assumed operating level. At the same time, it was required to mini-
mise the variance about the target subject to the rate constraint—

|us(n) —us(n—1)| < 0-15 ft3/s per 10 s
Fig. 3 shows the determined optimum trajectories. It can be seen that it is
required to increase u, as fast as possible for about 60 s, to slightly more
than twice the change in flow necessary to achieve the new grade. The thick
stock is then gradually brought down towards the demanded change in flow
of 0-37 ft3/sec. As a comparison, the response of basis weight to a hypothetical
step change of 0-37 ft3/sec in u, is also shown in Fig. 3.

The minimisation of quadratic performance criteria often results in oscil-
latory input trajectories being determined, as that exhibited by the thick
stock flow. In this case, a less oscillatory grade change could be obtained by
imposing a more severe rate constraint—for example, 0-05 ft?/sec per sam-
pling interval (10 s). The time taken to achieve the new grade is then ob-
viously longer, but compares very favourably with the faster oscillatory
response.

The method used above to determine thick stock trajectories can be imple-
mented on-line as a feedback control system, especially with a single input/
single output system like the one considered here. A large grade change at
constant machine speed is likely to cause the dryline to change position (the
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position on the wire at which no stock remains above the sheet) with the
result that the sheet is either too dry or too moist to be transferred from the
wire without breaking. In the present investigation, the dryline position was
assumed to be adequately represented by—

kWvy,
AP

Sq = (13)
which was derived from general filtration theory, as stated by Meadley. A
grade change at constant machine speed is therefore likely to require adjust-
ment of AP, the suction box vacuum.

A more elaborate and complicated equation for the dryline position has
been used by Sullivan & Schoeffler,® who considered grade changes subject
to the constraint that the dryline position be invariant.

Grade change at constant production rate and efflux ratio—For the sake of
15—Vor. I1
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ease in presentation and discussion of this topic, it is considered necessary
first to deal briefly with the problem of head box control.

The formation of the sheet depends to a great extent on a constant stock
level being maintained in the head box. This problem has previously been
studied using conventional means.® In the present investigation, a time
optimum control law was determined and used both on-line and in simula-
tions to regulate the stock level by the air-flow valves, thus—

uy(n) = alx1(n)g—x(n))+bx.(n) . . NCZ))

where a and b are constants computed from the head box model and x, q is the
desired value of the total pressure at the slice opening. Equation (/4) was then
substituted for u; in equation (6) to reduce the number of control inputs to
those of particular interest in the present grade change problem—namely,
thin stock flow u.,, thick stock flow u, and machine speed u,.

Before the grade change trajectories are determined for these three control
inputs, it is necessary to examine the specific performance requirements of the
present problem. It is assumed that the following linear output equation
relates changes in total head, head box consistency and machine speed to
basis weight, production rate and efflux ratio—

AW X1
AM = M| x,
A us S as)

For the grade change problem in question, AM = 0 and A = 0. In addition,
the change in machine speed is severely limited by the rate constraint given
by—

|u4(n)—u4(n—1)| < 0278 ft/ s/ 10°s

This simplifies the problem, as the desired trajectories of x, and x, can now be
determined explicitly assuming that it is required to change u, as fast as
possible to the new value, governed by the choice of AW,

We then envisage using the available control inputs in an optimum sense
such that the process outputs (x, and x,, in particular) are kept close to the
desired trajectories. This operation has then to be maintained throughout a
predetermined optimisation interval so that the process is left in a state ready
for the on-line regulator to maintain constant conditions.

The transport delay from the mixing pump to the head box makes it im-
possible to alter the head box consistency x, immediately by the thick stock
flow u,. No changes should therefore be made to either thin stock flow u, or
machine speed u, until this delay has elapsed.

All the available control inputs affect the consistency distribution in the
system and this is, of course, taken into account by the model when the input
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trajectories are determined. The control inputs must be synchronised to pro-
duce the desired trajectories of total head and head box consistency. Failing
to do so often results in paper breaks, owing to insufficient strength, excessive-
ly high moisture content or low basis weight. Experience on the plant has
shown that the dryline position remains constant for grade changes carried
out at constant production rate; this can also be inferred from equation (13)
as M= Wy,

In order to raise the basis weight by 12 g/m? at constant production rate and
efflux ratio, it was required to manipulate the control variables as shown in
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Fig. 4—Control trajectories for a grade change
at constant production rate and efflux ratio

Fig. 4. The demand was to increase the head box consistency from 0-88 per
cent to 0-99 per cent and decrease the total head by 42-8 1b/ft2, according to
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the predetermined trajectories. The machine speed was lowered as fast as
possible by 2-78 ft/s.

The control strategy can be resolved into three distinct phases—

1. Initial recirculation dynamics and head box level control demand an abrupt
change in thick stock flow and a slight relaxation in the thin stock flow in order
to realise the initial path of the desired trajectories of x, and x,.

2. The system is quickly stabilised and a period of almost uniform change in the
input controls follows until just before the desired targets are reached.

3. During the grade change, the system has gained a considerable consistency
‘momentum’, which is dissipated by the gradual decrease of thick stock flow
in the last phase. In fact, the thick stock flow will change until it is slightly
below the reference value before the system has reached the new steady state.

The control strategies described above are at present being implemented on-
line.

Basis weight control

THE specific task of maintaining the basis weight constant is particularly
important, not only immediately after a grade change, but also in face of
disturbances such as drifts and fluctuations in thick stock consistency and
changes in the drainage properties of the fibre.

In order to realise a feedback control law as the one suggested in equa-
tion (12), it is required that all the papermachine state variables are known or
can be measured. The object of the regulator problem must therefore be to
design a controller that makes optimum use of information about the state
variables contained in the basis weight measurement.

Kalman?® has derived a linear estimator for the state variables that has the
property that it minimises the discrepancy between observation and the state
variable estimate according to a criterion based on the noise characteristics of
the process and the measurements.

The present problem requires estimates of the state variables at the sampling
instants as well as estimates of the past state to account for the transport
delays in the system. In order to do this, it is best to think of the system in an
augmented state space, thus—

xX*(n+1) = Fo Fi . . F1 x*ow+ E™Y u(n)
I 0 . . 0 o)
oI . .o o)
0o 0 .10 0 N 1)

where the augmented state vector x*(n) includes all the vectors—

x(n),x(n—1),...,x(n—h); as follows—
x*m)7T = [x)Tx(n—DT. .. x(n—h)T]
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The augmented plant state x*(n) and the measurement y(n) can then be
described in a stochastic environment by the following matrix equations—

x*¥(n+1) = Ax*(n)+Bu(n)+z . . . U7
y(n) = Mx*(n)+w . . . . {8

where M is an 1 X mh output matrix.

It is assumed that z and w are Gaussian random independent variables
representing the plant and measurement noise, respectively.

The linear estimator has the following structure—

x*(n,n) = x*(n,n—1)+K[y(n) —Mx*(n,b—1)] . . 19
X*(n-+1,n) = Ax*(n,n)+ Bu(n) . . . (0

The initial estimate x*(0,0) = 0, that is, the best estimate of the state at time
n = 0 given 0 measurements (the intial state has zero mean). After taking the
measurements y(n), the best estimate of the state at time n given all n» measure-
ments is equal to the best estimate before the nth measurement plus a weighting
matrix times the difference between the actual measurement and the
expected measurement.

The control law is given by—

u(n) = —Cx*(n,n) . . . . @)

The gain matrix K and control matrix C can both be computed by various
iterative methods. v

The thick stock flow was chosen as the control variable in the present in-
vestigation and, for a particular set of machine conditions, it was found to be
given by—

us(n) = 0-544[3-79x5(n)+0-02x4(n) +4-34x5(n) +1-17x3(n —1) +1-07x3(n—2)
+0-08x5(n—3)] . . . . (22

with 10 s sampling interval. It can be seen that this is not immediately
realisable, as u; is a function of inaccessible state variables. If equation (22)
is to be used as a control law, it is first necessary to estimate the state variables
involved from the measurement of basis weight.

A considerable computational load is placed on the computer control
system if equations (19), (20) and (21) have to be evaluated on-line at every
sampling instant to produce a control action. To meet this problem, the basis
weight controller was here based on a canonical form of minimum arithmetic
for the given state space representation, as developed by Lee.1® For ease of
on-line implementation, the control action was formulated as a z-transform
of the basis weight. A general computational procedure was developed to
derive the controller directly in the required z-transform—
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mh
2apz "
u@ =c| —dx-=——  e@. N ¢£)
1—2byzn
n=1
which is based on the developed state space model of the process together
with plant and measurement noise characteristics.

Astrdm®® has derived similar control expressions based on experimentally
identified processes and noise models. Equation (23) represents an optimum
control transform relating the change in thick stock flow necessary to com-
sensate for an observed deviation in basis weight. The control and estimation
are both implicit features of this formulation, which consists of a proportional
term and a memory term to account for past values of both control action and
basis weight.

In place of equation (22), the new controller, which accounts for inaccessi-
ble state variables and noise, is given by—

0:144z71—0-294z72—0-126z-3 —0-06z* > )
1+0:058z71—0-5222"2—0-3222z73—0-07z* Yol

us(n) = 0-544 ( —0-681 x

29
with a sampling interval of 10 s.

This controller has been successfully implemented and tried on the process
itself, but has not been in operation long enough to have been fully evaluated
quantitatively. There is, however, ample indication that the system has been
considerably stabilised as can be seen from the plant records shown in Fig. 5.

Manual control

Autdbmatic control

% deviation of basis weight

Time, hours

Fig. 5—Comparison between manual control and on-line
computer control of basis weight

The above controller was derived under the assumption that the thick stock
consistency could take on values with equal probability between certain
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limits. The developed methods are, however, not limited to problems with
random noise disturbances. The following controller was derived by assuming
the thick stock consistency to behave in a random walk manner—

0-58z71—1-6527240-182z73 045127 +0-36z—
1—087z1—0-564z 2+0-01z +o-3r4+0-1zz—s> Xo(n)

(25)
This has not yet been implemented, but simulation tests indicate that more
integral type action has been introduced, which will tend to eliminate offsets to
a greater extent than with the first controller.

us(n) = 0'544( —2-71+

Conclusions

CoONSISTENT with certain assumptions, a linear, discrete time, state space
model was derived for the papermachine in the form of a matrix difference
equation. Perturbation experiments on the plant were used to confirm the
validity of the model. The system dynamics was found to be adequately pre-
dicted by the model. It comprises an independent flow model (which repre-
sents the flow of water as a vehicle for the transportation of fibre and additives)
and a fibre model (which depends on the flow model and represents the con-
centration and distribution of fibre throughout the system).

Having formulated and established a mathematical model, the control ob-
jectives were stated by analytical performance criteria in the form of quadratic
cost functionals, which were to be minimised, subject to the model equations
and constraints on the control inputs.

The intent of this work has been to exploit the state space model and to
develop a number of direct digital control systems compatible with available
instrumentation and on-line digital computers, in order to improve the
performance of a papermachine.

The optimum grade change strategies were formulated, one for grade
changes at constant machine speed and the other for grade changes at constant
production rate.

It has been shown that a systematic treatment of the problem of inaccessible
variables is possible provided the state equations are known. This approach
led to the synthesis of an on-line basis weight controller that was found to
stabilise the system considerably when implemented on the papermachine.

It is thought that further studies of the treatment of inaccessible state
variables would reveal the importance of being able to measure other state
variables such as thin stock, head box and wire pit consistencies in order to
approach an optimum feedback control system where all the state variables
are used.
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Nomenclature

Physical representation

C,,C, = Hydraulic capacitance, of head box air space and stock volume, respec-
tively.

¢i,co, = Consistencies before and after mixing.

P,,P, = Hydraulic pressure at slice and pressure attributable to head box stock
level alone.

M = Production rate, defined as M = Wy,

AP = Applied differential pressure at suction boxes.

qai,4ao = Airflows in and out of the head box.

gi,.90 = Stock flows into and out of mixing tanks.

r = Number of converging streams before mixing.

Sq = Dryline position as measured from the point where suction is first

applied.
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t = Time, independent variable.

V = Volume of stock in mixing tanks.
Vi = Machine speed.

w = Basis weight.

@ = Efflux ratio.

State space representation

= Augmented transition matrix (mh X mh).
= Augmented input matrix (mh Xxs).

= Augmented control matrix (s x mh).

= Control matrices (s x m).

= Input matrix (m xs).

= Measured deviation of basis weight.

= Jdentity matrix.

= Transition matrices (m x m).

= Number of delay matrices.

= Filter gain matrix (mh x 1).

= Number of accessible state variables.

= Number of state variables.

= Discrete time.

= Positive semi-definite weighting matrix (m X m).
= Positive definite weighting matrix (s X s).
= Number of input variables.

= Input vector (s X 1).

= Vector of input rate constraints (s x 1).
= State vector (m x 1).
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X4 = Desired state vector (m x 1).

X*(i,j) = Best estimate of augmented state vector at time i, given j measurements.
y = Measurement vector (1 x1).

z = Delay operator.

x|l = Quadratic form (for example, HxHé = xTQx).

T = Transpose of a vector or matrix.



Transcription of Discussion

Discussion

Mr A. J. Ward Could you please indicate whether you tried this auto-
matic grade change on the actual mill. If so, did you find that the constant
values of the parameter in the equations remained valid over the whole range
tried ?

Mr S. Hem No. Unfortunately, I have been unable to implement these
control strategies in full, but the grade change at constant production rate and
efflux ratio have been implemented practically by synchronously changing
the thin stock flow and wire speed. There is no doubt that, by manipulating
the thick stock flow as well, an even better response could be achieved.

Mr H. B. Carter Can you give some figures on the improvement made in
basis weight variation with the implementation of this control?

Mr Hem This is an experimental project, not long enough in operation to
have reliable figures, but the sort of variance that we hope for on basis weight
is 0-3 per cent.

Mr W. T. Whight A certain amount of investigation on the results has
been done by Mr Burrows of our research and development department. We
have at the moment another controller of our own that gives the basis weight
in the machine-direction to within +1-25 per cent. The information on
Mr Hem’s controller (in the experimental stage) is that it is as good as this and
there is evidence to believe that it is suitable for our purposes. If more tuning
effort were put into it, it would perform better.

Mr R. E. Johnston Would you like to guess at the major contributing
effect to the difference between your controller and any other controllers that
might be used ? Is it the fact that a more complicated state space model than a
linear estimator was used or is it that the amount of stock valve movement
was included in the cost function?
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Mr Hem There is a considerable difference between this controller and
the one used by Astrom, for instance. With this controller, we have the
possibility of weighting the inputs in order to tune the controller. We can then
prevent wear on valves, especially when, in this case, we were taking corrective
action on the thick stock valve every 10 s. I think that the controller used
here contains a larger memory than the Astréom controller; in addition, it is a
multi-variable approach applicable in a general sense.

Mr O. Alsholm 1 would add a few words that may be of interest. What I
have encountered during this session is very much the same as Mr Johnston
said earlier. It seems to me that everybody is trying to do the same thing, but
using more and more complicated mathematics. I do not intend to discuss the
differences between the Astrom controller and other controllers presented
here today or explain how much more efficient you could work with our DDC
package than in CONRAD, but I would like to ask the authors to translate
their nice mathematics into somewhat simpler terms. I enjoy listening to these
excellent mathematicians and I really believe we need them for the future, but
the majority of the problems that we implement today could be presented in a
much simpler manner. If, instead of using the term Astrom controller, for
instance, one explains that there is a digital controller corresponding to PI
plus dead time correction, people would not be so confused that they do not
dare implement the strategy in practice. On the other hand, we should give
credit to the mathematicians, because, if they do not continue with their
advanced work, we will be left stranded.

Mr Hem May I say that, although the mathematics may sound awfully
complicated, the actual process, once it has been done, can be performed on a
fast computer in about 30 s and the implementation takes no longer than
to implement the Astrom controller.

Mr J. A. S. Newman s it possible to use such mathematical models not
only to predict how they can be controlled by the application of, say, DDC,
but also how they can be made more inherently stable or controllable by
modifications to their structural parameters such as pipework and tank sizes.

Mr Hem Yes, the structure of the plant is easily recognised in the formu-
lation of the model. The parameters are very quickly changed if you want to
investigate their effect on the plant behaviour.

Mr T. J. Boyle In 1959, dynamic programming was in vogue. I was in
graduate school and applied this method on a chemical reactor problem
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similar to a grade change. I was successful in finding an optimum change on a
simulated basis, but was very disappointed to find that some very simple
strategies did quite as well as the optimum strategy. In this paper and that by
Johnston & Kirk, we seem to have a similar situation with one being an
optimum change, the other selecting the best version of a heuristically developed
strategy. Has either author applied his technique to the other’s model and thus
developed a comparison?

Mr Hem Well, the grade change strategy at constant production rate and
influx ratio was obtained purely and simply by solving the equations. There
are no special optimisation procedures involved at all. This is mainly because
the wire speed can be changed only at a certain rate. When one computes all
the other manipulated variables, we find their trajectories never violate their
constraints. It is therefore very easily obtained.





