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Straw pretreatment enhances the cellulose accessibility and increases the 
methane yield from anaerobic digestion. This study investigated the 
effects of alkali pretreatments with different chemical agents (NaOH, KOH, 
and Na2CO3) on the physicochemical and thermal characteristics of barley 
straw, as well as methane production from codigestion with sewage 
sludge. Artificial neural network modeling with a feedforward neural 
network (FFNN) and slime mold optimization (SMO) techniques were used 
to predict methane production. NaOH pretreatment was shown to be the 
best pretreatment for removing hemicellulose and lignin and for increasing 
the cellulose accessibility. Moreover, there was a 2.57-fold higher level of 
methane production compared to that from codigestion with untreated 
straw. The removal ratios for the total solids, volatile solids, and chemical 
oxygen demand reached 59.3, 67.2, and 73.4%, respectively. The 
modeling results showed that the FFNN-SMO method can be an effective 
tool for simulating the methane generation process, since training, 
validating, and testing produced very high correlation coefficients. The 
FFNN-SMO accurately predicted the amount of methane produced, with 
an R2 of 0.998 and a 3.1x10-5 root mean square error (RMSE). 
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INTRODUCTION 
 

Biochemical conversion to biogas through anaerobic digestion is more 

economically viable and environmentally friendly than other physicochemical and 

thermochemical methods, as it requires moderate conditions and is less energy intensive 

(Sabeeh et al. 2020). Biogas is an attractive source of renewable vehicular fuel and energy 
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for electricity and heat production (Said et al. 2020; Mirmohamadsadeghi et al. 2021). 

Sewage sludge is widely used for biogas production, since it is rich in nutrients, and 

optimum conversion of the organic components into biogas can be achieved (Abdel daiem 

and Said 2023). The production of biogas via anaerobic digestion is enhanced by 

codigestion with agricultural biomass waste (Abdel daiem et al. 2021b, 2022; Alrowais et 

al. 2023b). Agricultural wastes comprising lignocellulosic materials have attracted high 

interest as anaerobic digestion substrates due to their abundance and renewability 

(Aghbashlo et al. 2018). Straw biomass is one of the most abundant lignocellulosic 

materials found in nature. A small fraction of the straw is collected from fodder, bedding 

material, or incineration at heating plants, and after harvesting, a large amount is left in the 

field for open burning, which causes air pollution (Abdel Daiem and Said 2022). 

Anaerobic digestion of lignocellulosic materials is limited due to their complex 

structures in which cellulose and hemicelluloses are tightly bound to the lignin and prevent 

microbial degradation (Rani et al. 2022). Cellulose and hemicellulose are biodegradable, 

while lignin is not easy to degrade via anaerobic digestion, and it is difficult for enzymes 

to contact the cellulose and hemicellulose, which leads to slow degradation (Du et al. 

2019). Straw pretreatment is necessary to improve the accessibility of cellulose, lignin, and 

hemicelluloses and increase the biodegradation rate and biogas yield of anaerobic digestion 

(Ouahabi et al. 2021). Various pretreatment methods have been used in different studies 

and have had significant effects on enzymatic digestibility, lignin reduction and cellulosic 

crystallinity. Chemical pretreatment is highly effective at solubilizing hemicellulose and 

lignin (Sabeeh et al. 2020). Alkali pretreatment is an efficient and cost-effective approach. 

It removes the hemicellulose and lignin and increases the porosity and surface area of the 

straw (Tan et al. 2021). This process involves the addition of bases to the biomass, which 

leads to lignin breakdown, decreased crystallinity, and increases in the internal biomass 

surface area. 

 Recent studies have shown the significant effects of sodium hydroxide (NaOH), 

potassium hydroxide (KOH), and sodium carbonate (Na2CO3) pretreatments for improving 

methane production (Mirmohamadsadeghi et al. 2021; Ouahabi et al. 2021; Peyrelasse et 

al. 2021; Rani et al. 2022). Moreover, the incorporation of thermal pretreatment into 

chemical pretreatment has the benefits of decreasing chemical consumption and increasing 

biogas production (Dumlu et al. 2021). According to the literature and previous published 

studies (Patowary and Baruah 2018; Du et al. 2019; Mirmohamadsadeghi et al. 2021), 

thermoalkali pretreatment had a positive impact on substrate degradation and methane 

production for different contact times (1-9 h) based on the substrate type. 

Recently, various artificial neural networks (ANNs) have been proposed for 

modeling experimental data related to bioenergy production. Because of their advantages 

compared to traditional methods, such as the capacity to learn intricate input/output 

relationships, parallel computing, and generalization, ANNs have emerged as the most 

popular choice for modeling and predicting a wide range of environmental issues (Barik 

and Murugan 2015; Abdel daiem et al. 2021a; Oloko-Oba et al. 2018; Alrowais et al. 

2023a,b,c). The most important ANNs are feedforward neural networks (FFNNs), 

recurrent neural networks (RNNs), and nonlinear autoregressive exogenous (NARX) 

networks. A detailed review of studies on biogas production via ANNs has been presented 

in the literature (Alrowais et al. 2023b). Among ANNs, the FFNN is the most popular type 

of ANN and has shown high accuracy in modeling and predicting biogas and methane 

production. Ghatak and Ghatak (2018) used FFNNs to predict and model the biogas yield 
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from anaerobic digestion of mixed compositions comprising cattle dung, bamboo dust, 

sugar-cane bagasse, and saw dust. Almomani (2020) used an FFNN for modeling methane 

production from the codigestion of cow manure and agricultural solid wastes. Şenol (2021) 

used an FFNN to model the methane yield from sewage sludge digestion. Beltramo et al. 

(2019) conducted FFNN modeling of the biogas production rate from digestion of maize 

and grass silages together with pig and cattle manure. Biogas production from anaerobic 

codigestion of waste activated sludge and wheat straw was modeled and predicted with 

FFNN modeling (Abdel daiem et al. 2021b). 

Based on the oscillation modes of slime molds found in nature, a novel stochastic 

optimizer known as the slime mold algorithm (SMA) is proposed. It features a novel 

mathematical model with adaptive weighting to mimic the generation of positive and 

negative feedback from slime mold propagation waves based on a bio-oscillator to form 

the ideal path for connecting food; the SMA has exceptional exploratory ability and 

exploitation propensity, and the proposed SMA has several new features. To confirm its 

effectiveness, the proposed SMA was evaluated with the most recent metaheuristics via a 

large collection of benchmarks. In addition, the performance of the algorithm in optimizing 

constrained issues was estimated with four traditional engineering problems. The findings 

showed that the suggested SMA achieved competitive, frequently exceptional, 

performance across several search environments (Li et al. 2020). Most optimization 

approaches need their properties changed to fit the needs of the necessary applications. To 

avoid being trapped in local optima and to reduce the calculation time, slime mold 

optimization (SMO) features are also recommended. 

Several studies have investigated the effects of pretreating different straw types to 

enhance methane production; however, studies related to barley straw (the highest crop 

residue in Saudi Arabia, 781,000 tons/year) are very limited (Abdel Daiem and Said 2022). 

Thus, the main objective of this work was to analyze the effects of different alkali 

pretreatments with the most effective chemical agents (NaOH, KOH, and Na2CO3) on the 

physical, thermal, and chemical characteristics of barley straw and to investigate the effect 

of pretreatment on enhancing methane production from digestion of the pretreated straw 

with sewage sludge. This study was also intended to model methane production with 

FFNN-SMO techniques and use the MATLAB program (2020a) to investigate the 

accuracies of these techniques in predicting and optimizing methane production. 

 

  

EXPERIMENTAL 
 

Materials and Methods 
Sample collection 

Barley straw samples were collected from a field in the Al Jouf region, Saudi 

Arabia. The samples were ground to particle size < 1 mm and stored at room temperature 

in plastic bags until subsequent use. Waste activated sludge samples were collected from 

the Sakaka wastewater treatment plant in the Al Jouf region and stored at 4 °C. 

 

Lab analyses 

Total solids (TS), volatile solids (VS), total carbon (C), and total nitrogen (N) were 

measured according to standard methods (Rice and Bridgewater 2012). Elemental analyses 

(Si: silicon, H: hydrogen, P: phosphorus, K: potassium, Ca: calcium, Cl: chlorine, Cu: 
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copper, Ni: nickel, Fe: iron, Zn: zinc, Mn: manganese, Co: cobalt, Mo: molybdenum, and 

S: sulfur) were performed with an Oxford X-MET7500 Scrap Metal Analyzer according 

to the manufacturer’s instructions. The chemical oxygen demand (COD) was measured 

with a spectrophotometer (DRB200 Reactor 1 Block 9X16 MM/2X20 MM) according to 

standard methods (Rice and Bridgewater 2012). The pHs were measured with a pH meter 

(UL-TRAMETER 6PII FCE W/OUT PKUU KIT pocket-sized). A JEOL JEM-850 

scanning electron microscope (SEM) operating at 35 kV was used to image the straw 

samples. The lignocellulosic compositions were determined according to Sluiter et al. 

(2008) and Said (2016). The methane contents were determined by withdrawing biogas 

samples from the reactors with an airtight syringe (10 µL) and injecting them into a gas 

chromatograph equipped with a thermal conductivity detector (Agilent Technologies 

7890A). For all of the parameters, three analytical replicates per sample were conducted, 

and the mean values and standard deviations were computed. 

 

Thermal analyses 

Thermogravimetric analyses (TGA) and derivative thermogravimetric (DTG) 

analyses of the samples were performed with a SHIMADZU TGA-50H thermoanalyzer in 

an oxidizing atmosphere. The samples were heated from 30 to 1000 ℃ at a heating rate of 

10 ℃/min in air with a flow rate of 100 mL/min (Deng et al. 2013; Saddawi et al. 2012). 

The analysis for each sample was repeated to ensure that the results were consistent for the 

same conditions. 

 

Laboratory model 

Anaerobic batch reactors (1.00 L) were connected to gas collectors connected to 

open jars to collect the water volume displaced from the gas collectors by the biogas 

pressure. The reactors were placed in a water bath shaker for continuous mixing, and the 

temperature was maintained at 35 °C. Five reactors with different substrates were studied 

(Table 1). The first reactor (S) contained 500 mL of solo sludge, and the second reactor 

(ST0) contained 500 mL of sludge mixed with 5 g of untreated barley straw (T0) to 

determine the effect of sludge with straw codigestion on methane production. The third 

(ST1), fourth (ST2), and fifth (ST3) reactors contained 500 mL of sludge mixed with 5 g 

of alkali-pretreated barley straw with Na2CO3 (T1), KOH (T2), and NaOH (T3), 

respectively, to investigate the effect of codigestion with pretreated straw on methane 

production and compare it to that for untreated straw in the second reactor. The experiments 

were repeated three times, and the average values were taken. 

 

Table 1. Anaerobic Reactors Used in the Study 

Reactor Substrates 

S Sludge 

ST0 Sludge + Untreated straw (T0) 

ST1 Sludge + Pretreated straw with Na2CO3 (T1) 

ST2 Sludge + Pretreated straw with KOH (T2) 

ST3 Sludge + Pretreated straw with NaOH (T3) 

 

Statistical analyses 

MS Excel and Statistical Package for Social Sciences (SPSS 22.0) were used to 

conduct the statistical analyses. The mean values and standard deviations (SD) of the 
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parameters were computed. The relationships among different parameters were studied 

with Pearson’s correlation analysis. 

 

Straw pretreatment 

Alkaline pretreatment of the barley straw was conducted with three chemical 

agents: NaOH, KOH, and Na2CO3. In respective, 0.5 M solutions were prepared with 

chemical percentages of 2.0%, 2.8%, and 5.3% for each chemical agent. The solutions were 

mixed with ground straw samples (with 1 g of straw to 25 ml of solution) and then put in 

an air oven at 100 ℃ for 5 h. The pretreated samples were washed with distilled water until 

a neutral pH was reached. The washed samples were then filtered, dried, and stored in 

plastic bags until subsequent use. 

 

Artificial Neural Networks 
Feedforward neural networks 

The neuron, which resembles the human brain, is the primary component of the 

ANN layers. The sizes of the inputs and outputs for the underlying problem determine the 

numbers of neurons in each of the input and output layers, respectively. The procedure 

used to implement an ANN involves choosing the (input, output) pairs of data. The input 

data for this study included the percentage of wheat straw and waste-activated sludge 

mixed, as well as the time of day. The total amounts of methane produced over a 30-day 

period were the output data. The number of neurons (M) in the hidden layer depended on 

the data complexity. The linear activation function was chosen as the transfer function for 

the input and the output layers. For the hidden layers, a sigmoid function was employed, 

as in Eq. 1, and the output of the hidden layers was computed as in Eq. 2. 
 

ny=∑  wyxix+by

k

x=1

 
(1) 

hy=
1

[1+exp(-ny)]
  y=1, 2, …, M (2) 

where the weight factor from the xth input and the yth neuron in the hidden layer are 

represented by the symbol wyx, where ix is the x-th input to the FFNN, and k is the size of 

the inputs. The yth neuron in the hidden layer has by and hy as its base and output, 

respectively. Frequently, the neuronal output is expressed as in Eq. 3. Network training is 

the process of determining the appropriate values of the weights and biases for network 

connections between the input/hidden and hidden/output layers. 
 

O=∑ hy∙ w
y
+bout

M

y=1

 (3) 

The mean square error (MSE), defined in Eq. 4, was used in this work as the main 

indicator for the efficiency of the training algorithm applied to the FFNN model, 
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MSE=
1

N
∑(Oj-Tj)

2

N

j=1

 (4) 

where Tj is the target output and N is the total number of training sets. The training cost 

function (CF) was computed with Eq. 5: 
 

CF=Min. [MSE=
1

N
∑(Oj-Tj)

2

N

j=1

] (5) 

The FFNN weights and biases of the network connections from the output layer 

back to the input layer were adjusted with the MSE function. The FFNN can be trained 

with optimization approaches to determine the appropriate number of neurons for the 

hidden layer, as well as the weight factors and biases. The optimal structure of the 

suggested FFNN was obtained in this study with the SMO. 

 

Modeling of methane production by FFNN-SMO 

Because they affect the performance of the proposed FFNN, the number of neurons 

in the hidden layers must be carefully selected. The error between the actual outputs (target) 

and the projected values are minimized by training the suggested FFNN. To determine the 

ideal weight factors, the suggested FFNN was trained with the SMO approach. The 

oscillation modes of slime molds found in nature provided the basis for the SMO algorithm. 

With an effective mathematical model that employs adaptive weights to mimic the process 

of generating positive/negative feedback from the slime mold propagation wave, the SMA 

offers several new features. It also provides the ideal path for connecting food with superior 

exploitation ability and exploitation tendencies (Li et al. 2020; Sarhan et al. 2022). The 

mold is one of the key components of the SMO algorithm. The potential solutions that 

move in the search space are represented by molds. 

Every d-dimensional optimization phase started with an initially randomized SMO 

population of size n. Every member of the population was initialized as a d-entry vector 

with Eq. 6, 
 

Zj(0)= Zmin + rand(0, 1)·[Zmax -Zmin],  j = 1 : n (6) 

where Zmin and Zmax are the solutions that showed the minimal and maximum boundaries 

of the control variables, respectively. There are two steps in the conventional SMO: 

approach and food wrapping (Sarhan et al. 2022). The following formula was used to 

determine the activity of a slime mold during the first stage, when it may seek nourishment 

based only on the scent in the air: 
 

Zj(it+1)= {
Zb(it)+ u1·(W·Zr1 (it)-Zr2 (it))                   Pr > r

u2·Zj(it)                                                        Pr ≤ r
  j = 1 : n (7) 

In this case, Zj is the position of the slime mold, Zb is the position with the highest 

concentration of odor, and Zr1 and Zr2 are two randomly selected solutions from the 

population. Two components, u1 and u2, mirror the behavior of slime mold selection, with 

u2 linearly decreasing from 1 to 0. W is the weight of the search agent, while r is a random 

number in the interval [0, 1]. Pr was defined as follows, 
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Pr= tanh|S(j)-CF|, j = 1 : n (8) 

where CF is the overall best fitness value over all iterations and S(j) is the fitness score of 

the current person. The formula for u1 is as follows, 
 

u1= [-arctanh (1-
2

maxit

) ,arctanh (1-
2

maxit

)], (9) 

where maxit is the maximum number of search iterations. The definition of the weight W 

is presented in Eq. 10, 
 

W(Indsmell(j)=

{
 
 

 
 1+r . log (

BF-S(j)

BF-WF
+1)   ,     condition

1-r . log(
BF-S(j)

BF-WF
+1)  ,             others

  j = 1 : n (10) 

where R is a randomized value inside [0, 1], and the condition denotes the first half of the 

population. BF and WF indicated the best and worst values, respectively, obtained after 

this iteration, while Indsmell showed the sorted sequence of fitness ratings: 
 

Indsmell = sort(S) 
(11) 

In the second stage, the arrangement of venous tissue in the slime mold was 

modeled computationally throughout the search process. The type of food consumed by 

the slime mold can affect the search. This is the precise model that the slime mold uses to 

change its location, 
 

Zj(it+1)={

Zmin+ rand(0,1)·[Zmax-Zmin]rand<Y 

Zb(it)+ u1·(W·Zr1 (it)-Zr2 (it))     Pr>r

u2·Zj(it)                                             Pr≤r

 (12) 

where the random values r and rand are within the range [0, 1]. The ability of a balancing 

process to explore and use data was determined with a parameter called Y, which might 

have different values depending on the circumstances. 

The FFNN-SMO algorithm was applied to model methane production and predict 

the output amount with minimal error. The following steps were used to apply the 

suggested FFNN-SMO algorithm: 

1. Input: the assigned FFNN inputs (time, reactor type, mixture) and the output 

target (cumulative methane production) were chosen; 

2. The search parameters of the designed SMO (number of slime mold agents, 

maximum number of search iterations, and upper and lower bounds of search vectors) were 

set. 

3. Within the limits of the lower and upper bounds, initial random populations of 

slime molds were collected, and the slime molds were considered predictable solutions. 

4. The fitness function was evaluated in terms of the MSE of the FFNN model for 

the slime mold with Eq. 6. 

5. The search populations were sorted according to their fitness values, after which 

the best slime mold was identified. 

6. The positions of the slime molds were updated based on the new positions of the 
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flames, as shown in Eq. 9 and Eq. 10. 

7. If the problem constraint conditions were satisfied or the maximum number of 

search iterations was exhausted, then the optimal solution corresponded to the first slime 

mold. 

8. The best slime mold position that represented the optimal attained values of the 

model weights was output. 

Figure 1 provides an illustrative flowchart showing the process of identifying 

weights and biases while utilizing the suggested SMO algorithm to reduce the MSE.  

 

 
 

Fig. 1. Diagram of the FFNN-SMO algorithm 
 

The suggested FFNN-SMO model was trained and tested on a set of eighty patterns. 

To determine the ideal FFNN structure, these gathered data were input into the suggested 

FFNN-SMO model. MATLAB (2020a) implemented the training technique (SMO). The 

suggested FFNN was created and trained with the m.file program, and it was simulated 
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with the ANN toolbox. As previously mentioned in describing the algorithm and as shown 

in the flowchart in Fig. 1, the SMO approach was used to identify the appropriate 

weight/bias factors. The quantity of neurons in the hidden layers affected the ANN 

performance. A relatively small number of neurons may restrict the ability of ANNs to 

learn the relationships between the inputs and outputs of the model. In contrast, employing 

numerous neurons in the hidden layer(s) might lead to overfitting. The ideal structure of 

the suggested FFNN-SMO comprised a hidden layer with 13 neurons. This led to the best 

performance of the FFNN-SMO model in simulating the methane generation process, 

which had the fewest errors. With a sufficient level of accuracy, the FFNN-SMO modeled 

the biomethane synthetic process. The first hidden layers employed the sigmoid function, 

whereas the output layer used the linear activation function. The type of reactor, day 

number, and chemical agent mixture were the input data, and the total amount of methane 

produced (cumulative methane) over time was the output data. 

 
 
RESULTS AND DISCUSSION 
 
Physicochemical Characteristics 

Table 2 shows the characteristics of the untreated and treated straw samples (based 

on the dry weight, % DW). The results indicated that the major constituents of barley straw 

were cellulose (37.54±0.25%) and hemicellulose (27.36±0.37%). Alkali pretreatment 

enhanced the destruction of the hemilignin structure, resulting in lignin removal and 

hemicellulose solubilization, as well as increased susceptibility of the microbes to 

anaerobic digestion (Hassan et al. 2017; Tan et al. 2021). As shown in Table 2, compared 

with no pretreatment, the alkali pretreatment decreased the hemicellulose and lignin 

contents in the straw (Hassan et al. 2017; Jaffar et al. 2016; Liu et al. 2015; Memon and 

Memon 2020; Ouahabi et al. 2021). Moreover, increased cellulose content was detected 

because of degradation and decreased lignin and hemicellulose contents (Liu et al. 2015; 

Hassan et al. 2017; Tan et al. 2020; Sabeeh et al. 2020; Samar et al. 2021). A previous 

study also showed a reduction in the hemicellulose and lignin contents and an increase in 

the cellulose content after NaOH pretreatment of the barley straw, which indicated 

improved biogas potential (Fjørtoft et al. 2019). On the other hand, the degradation of VS 

indicated dissolution of the organic matter due to substrate pretreatment (Du et al. 2019). 

In the present study, alkali pretreatment resulted in a decrease in the VS content, as seen 

previously (Liu et al. 2015; Jaffar et al. 2016; Rani et al. 2022). This was attributed to the 

effect of the alkali treatment in degrading some of the lignin and hemicellulose, which 

caused a decrease in the VS content of the straw (Fjørtoft et al. 2019; Tan et al. 2021). 

Decreases in some elements, including C, Si, N, P, K, Cl, and H, was attributed to the alkali 

pretreatment and washing of the pretreated straw with water; this decreased the contents of 

some elements, such as Cl and the alkali metals, and K also dissolved well in water (Said 

et al. 2013; Rani et al. 2022). Siddiqi et al. (2022) also detected a reduction in C, H, and N 

contents, as well as extraction of some minerals, due to wheat straw pretreatment with 

NaOH. As a result of the loss of these elements, the contents of other elements, such as Ca, 

Cu, Ni, Fe, Zn, Mn, Co, Mo, and S, increased, as reported previously (Jaffar et al. 2016; 

Hassan et al. 2017; Al-Da’asen et al. 2022; Rani et al. 2022). Moreover, a statistical 

analysis showed a significant difference between the T3 and T0 values for most parameters, 

and straw pretreatment with NaOH (T3) was associated with the greatest reductions in the 
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reducing elements, followed by those of KOH (T2) and Na2CO3 (T1). This indicated that 

NaOH pretreatment had the greatest effect on solid degradation, followed by the KOH and 

Na2CO3 pretreatments, in accordance with the literature (Rezania et al. 2020; 

Mirmohamadsadeghi et al. 2021; Ouahabi et al. 2021). Sabeeh et al. (2020) studied 

different alkaline pretreatments of rice and proved that, compared with other chemical 

pretreatments, the NaOH pretreatment was most effective in solubilizing lignin and 

increasing the surface area available for microbial attack; a small portion of the 

hemicellulose removed and swelling of the crystalline structure of cellulose was observed. 

 
Table 2. Characteristics of Untreated and Pretreated Straws with Different 
Treatments (mean value±SD) 

Parameters (% 
DW) 

T0 T1 T2 T3 

Cellulose 37.54a ±0.25 37.95ab ± 0.18 38.17ab ± 0.32 38.43b ± 0.27 

Hemicellulose 27.36a ± 0.37 26.98ab ± 0.05 26.81ab ± 0.08 26.52b ± 0.28 

Lignin 18.20a ± 0.38 17.93ab ± 0.06 17.79ab ± 0.32 17.21b ± 0.09 

VS 86.20 ± 0.37 84.76a ± 0.68 84.21a ± 0.16 82.35 ± 0.08 

C 45.50a ± 0.91 44.20a ± 0.45 43.05ab ± 0.12 41.40b ± 1.03 

Si 12.52 ± 0.09 10.96 ± 0.07 9.61 ± 0.29 7.75 ± 0.18 

N 0.60a ± 0.05 0.57a ± 0.03 0.51ab ± 0.02 0.45b ± 0.05 

H 7.40 ± 0.07 7.05a ± 0.07 6.90a ± 0.02 6.20 ± 0.11 

P 1.90 ± 0.08 1.20 ± 0.04 0.98a ± 0.09 0.80a ± 0.01 

K 1.25a ± 0.07 0.98b ± 0.05 1.21a ± 0.05 0.95b ± 0.04 

Ca 14.70a ± 0.35 15.20a ± 0.36 16.80 ± 0.26 18.20 ± 0.49 

Cl 2.3 ± 0.15 0.87a ± 0.02 0.92ab ± 0.02 1.15b ± 0.04 

Cu 0.00 ± 0.00 0.12a ± 0.01 0.13a ± 0.01 0.16a ± 0.02 

Ni 0.02 ± 0.01 0.16a ± 0.02 0.17a ± 0.01 0.19a ± 0.01 

Fe 0.95 ± 0.02 1.59a ± 0.16 1.80a ± 0.04 1.85a ± 0.12 

Zn 2.80a ± 0.14 2.90ab ± 0.08 3.15abc ± 0.04 3.35c ± 0.20 

Mn 0.00 ± 0.00 0.29a ± 0.03 0.31a ± 0.02 0.35a ± 0.04 

Co 0.00 ± 0.00 0.15a ± 0.02 0.18ab ± 0.02 0.20b ± 0.01 

Mo 0.94a ± 0.03 0.99a ± 0.16 1.03a ± 0.06 1.17a ± 0.09 

S 2.80a ± 0.14 2.95a ± 0.02 3.15ab ± 0.19 3.50b ± 0.07 

Note: Values in the same row with the same letter showed insignificant difference at p ≤ 0.05. 

 

Structural Analyses 
The untreated and pretreated straw samples were inspected to determine the 

structural changes in the barley straw samples caused by the alkali pretreatment process. 

The morphological features of the untreated straw showed a flat, smooth, and compact 

surface structure (Fig. 2 a). Because the NaOH pretreatment had the greatest effect on the 

lignocellulosic composition, an SEM image of the straw pretreated with NaOH was taken 

as an example of the pretreated straw samples (Fig. 2 b). The alkali pretreatment destroyed 

the straw surface, which was composed of hemicellulose and lignin. As observed, the 

hemicellulose and lignin of the pretreated samples were partially broken and removed, 

causing internal surface exposure, as found by the authors (Siddiqi et al. 2022). Therefore, 

the alkali pretreatment destroyed the complex lignocellulosic structures and removed some 

external fibers. This process increased the cellulose accessibility and improved 

biodegradation, which was consistent with the results of previous studies (Jaffar et al. 2016; 

Memon and Memon 2020; Mirmohamadsadeghi et al. 2021; Ouahabi et al. 2021; Tan et 

al. 2021). 
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a) b) 

 

Fig. 2. SEM images of a) untreated straw and b) pretreated straw 

 
Thermal Analyses 

Thermograms from the TGA and DTG studies of the untreated and pretreated straw 

samples were obtained to determine their thermal properties and are shown in Fig. 3. These 

thermograms revealed insignificant differences between them. The TGA thermograms 

indicated mass losses from the different straw samples. The initial mass loss was due to the 

removal of moisture and light VS compounds, while sharp reductions in the masses were 

due to degradation of the samples; subsequently, little additional mass loss was detected. 

The DTG thermograms showed three peaks, indicating three stages of mass loss. In 

the first stage (0 to 120 °C), the first peak occurred below 100 °C, which was attributed to 

moisture removal (Said et al. 2013). A slight increase in the mass loss was observed after 

moisture removal due to the removal of light volatile components, which decomposed 

earlier than the lignocellulosic matrix (Marin-Batista et al. 2021). In the second stage (250 

to 320 °C), the mass loss corresponded to straw devolatilization. In addition, the volatile 

compounds of hemicellulose and cellulose were decomposed (Sidi-Yacoub et al. 2019). 

The maximum peaks in the DTG profiles for the different samples occurred in this stage 

and were detected in the temperature range 300 to 320 °C due to exothermic reactions of 

the cellulose. Moreover, the peaks for the pretreated samples were greater than those for 

the untreated samples, which was explained by the increased cellulose proportion after 

pretreatment, similar to the findings of Marin-Batista et al. (2021). 

In the third stage (320 to 480 °C), the mass losses corresponded to lignin 

decomposition (Mahmood et al. 2016). The decomposition rates were very low and became 

negligible after this stage. Similar results were found by the authors (Marin-Batista et al. 

2021; Siddiqi et al. 2022). The TGA curves indicated that there was less degradation 

residue (char) from the pretreated straw than from the untreated straw. Moreover, T3 had 

the least char residue from the TGA and the highest peak in the DTG profile among the 

different samples since T3 gave the greatest cellulose decomposition and lowest lignin 

content compared to the other samples. These results confirmed the lignocellulosic 

compositions of the untreated and pretreated straws, as indicated in Table 1. 
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Fig. 3. TGA and DTG curves for the untreated and pretreated straw 

 

Anaerobic Digestion 
Table 3 shows the characteristics of the raw barley straw and sewage sludge used 

in the anaerobic digestion process. The straw had a high content of solids (93.40±0.54%), 

while the sludge had a low solids content (1.45±0.01%). Moreover, the straw had a high 

volatiles content (80.51±0.20%) and a high carbon content (31.25±0.32% TS), indicating 

its potential for biogas production via anaerobic codigestion with sewage sludge.  

 

Table 3. Characteristics of Raw Barley Straw and Sewage Sludge (mean 
value±SD) 

Parameters Raw barley straw Raw sewage sludge 

TS (%) 93.40±0.54 1.45±0.01 

VS (%) 80.51±0.20 1.04±0.00 

COD* 1250.00±40.00 23.20±0.04 

P(%TS) 1.90±0.08 0.91±0.04 

K(%TS) 1.25±0.07 0.82±0.01 

C(%TS) 45.50±0.91 31.25±0.32 

N(%TS) 0.60±0.05 4.46±0.19 

C/N 75.94±8.75 7.01±0.32 

Note: * COD value of the straw in g/kg and the sludge in g/L. 

 

The anaerobic digestion process was sensitive to the C/N ratios of the feedstocks. 

Anaerobic codigestion of a feedstock resulted in a higher C/N ratio than straw 

(75.94±8.75), and a feedstock with a lower C/N ratio than sludge (7.01±0.32) increased the 

efficiency of biogas production due to the synergistic effect of the feedstocks. Moreover, 

mixing straw with sludge maintained the nutrient balance for healthy growth of the 

microorganisms essential for anaerobic digestion (Al‑Da’asen et al. 2022). The C/N ratio 

of the sludge (7.01±0.32) was increased to 12.27±0.23 by the addition of barley straw to 

the sludge. Figure 4 illustrates the cumulative methane production from the different 

100 200 300 400 500 600 700 800

Temperature (ºC)

0

20

40

60

80

100

120

140

M
a
s
s
 L

o
s
s
 (

%
)

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

D
T

G
 (

m
g

/s
e
c
)

 DTG (T0)
 DTG (T1)
 DTG (T2)
 DTG (T3)

 TGA (T0)
 TGA (T1)
 TGA (T2)
 TGA (T3)

TGA

DTG



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Alrowais et al. (2024). “Methane from straw & sludge,” BioResources 19(2), 2179-2200.  2191 

 

reactors. The cumulative methane production increased with increasing digestion time, and 

after Day 26, negligible methane production was detected. Reactor S (solo sludge) recorded 

a total methane production of 97.01±5.31 mL/g VS. Codigestion with the barley straw in 

(ST0) increased the methane production by a factor of 1.45 compared to that for digestion 

of sludge alone. 
 

 
Fig. 4. Cumulative methane production from different reactors 

 

Rani et al. (2022) investigated anaerobic codigestion with raw and KOH-pretreated 

wheat straw and showed that codigestion helped in balancing the nutrients; hence, 

optimizing the conditions for methanogenesis by microbes and pretreatment exposed the 

complex materials to methanogens by enhancing depolymerization of the celluloses, 

hemicelluloses, and lignin. In the present study, compared with that from ST0, the methane 

production levels from ST1, ST2, and ST3 were 1.62, 1.99, and 2.57-fold higher, 

respectively. This was attributed to the fact that the cellulose in the untreated straw was 

highly protected by lignin and hemicellulose, resulting in low accessibility to the active 

sites for the cellulose reaction; thus, less methane production resulted. Otherwise, 

pretreatment of the straw broke the physical barrier and hydrogen bonds between the lignin 

and hemicellulose and increased the cellulose accessibility to enzymatic hydrolysis 

(Hassan et al. 2016; Tan et al. 2021). Thus, the digestibility and anaerobic digestion rate, 

biodegradation rate, and overall methane yield were improved, as found in previous studies 

(Hassan et al. 2016; Nargotra et al. 2018; Memon and Memon 2020; Ouahabi et al. 2021; 

Tan et al. 2021, 2020). 

In the present study, ST3 exhibited the greatest improvement in methane 

production, followed by ST2 and ST1. This occurred because the alkaline NaOH showed 

excellent delignification performance and was more effective than the other alkaline 

substances in enhancing the digestibility and methane production, as found in previous 
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studies (Fjørtoft et al. 2019; Rezania et al. 2020; Mirmohamadsadeghi et al. 2021; Ouahabi 

et al. 2021; Samar et al. 2021; Dumlu et al. 2021). Moreover, compared with carbonate 

radicals, hydroxyl radicals caused greater degradation of straw, increased the accessibility 

of the substrate to microorganisms, and increased methane production. Rani et al. (2022) 

showed that alkaline pretreatment of wheat straw with KOH resulted in significant changes 

in the physical and chemical properties of the substrates, increased their biodegradabilities, 

and yielded greater biogas production than pretreatment with a complex composition. 

Peyrelasse et al. (2021) also reported that codigestion with NaOH-pretreated wheat straw 

provided a 31% greater methane yield than that of untreated wheat straw. 

Mirmohamadsadeghi et al. (2021) studied a thermoalkaline pretreatment of straw with 

NaOH and Na2CO3, and NaOH was more effective than Na2CO3 and resulted in a higher 

methane yield. Thus, NaOH and KOH were the most effective alkali pretreatments for 

improving biomass digestibility (Ouahabi et al. 2021; Meenakshisundaram et al. 2023). 

The characteristics of the substrates from the different reactors are presented in 

Table 4. The addition of straw to the sludge had a significant effect on the characteristics 

of the substrate. The TS content of the sludge in the first reactor (S) was 1.45±0.01%, while 

it increased to 2.36±0.02% with the addition of (raw/pretreated) straw to the different 

reactors. The VS content for S was 1.04±0.00%, while it increased in ST0 to 1.90±0.03% 

after straw addition and was slightly lower for reactors ST1, ST2, and ST3 for pretreated 

straw (1.77±0.03 and 1.81±0.02%). This occurred because of the effect of the alkali 

pretreatment on the degradation of hemicellulose, which caused a decrease in the solid 

content of the straw (Tan et al. 2021). The COD value for S was 23.20±0.04 g/L, and this 

was increased by the addition of raw straw to 40.20±0.37 g/L for ST0, while lower values 

were detected after the addition of pretreatment and were in the range 34.21±0.24 to 

36.60±0.27 g/L for the remaining reactors. This difference was attributed to precipitation 

of complex compounds due to alkaline pretreatment of the straw, as found in previous 

studies (Liu et al. 2015; Rani et al. 2022). 

The pH for S was 7.10±0.04 and decreased to 6.86±0.01 in ST0 after the addition 

of raw straw to the sludge. Moreover, the addition of pretreated straw to the sludge resulted 

in higher pH values than those from the addition of untreated straw, ranging between 

6.89±0.01 and 6.95±0.02. This was due to the straw alkali pretreatment, as found in 

previous studies (Jaffar et al. 2016; Memon and Memon 2020). In these studies, alkaline 

pretreatment of the straw with KOH increased the pH above that of untreated straw. It was 

also observed that, among the different pretreatment methods, ST3 showed the lowest 

values for the different parameters, indicating that this was the most efficient pretreatment 

method. 

The TS, VS, and COD values for the different reactors decreased after digestion 

due to biodegradation of the organic matter into biogas (Table 4). The percentages of TS 

and VS removed from S were 43.4% and 54.0%, respectively. Meanwhile, ST0 showed 

higher percentages of TS and VS removed, 47.03% and 56.32%, respectively. Moreover, 

the reactors with pretreated straw showed higher removal ratios than those with untreated 

straw, with ranges of 53.0 to 59.3% and 60.7 to 67.2% for TS and VS, respectively. This 

occurred because pretreated straw was more biodegradable than untreated straw (Jaffar et 

al. 2016). Thus, compared with no pretreatment, the alkali pretreatment produced  desirable 

changes in the barley straw characteristics, and it improved the degradation efficiency via 

TS and VS losses, resulting in greater solid reduction (Jaffar et al. 2016; Rani et al. 2022). 

Furthermore, the highest removal percentage was found in the case of ST3, while ST1 had 
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the lowest removal percentage among the reactors with pretreated straw. Therefore, 

pretreatment of the straw with NaOH led to the highest reductions in solids contents, 

followed treatments with KOH and Na2CO3. VSs are composed primarily of organic matter 

and normally represent the amount of organic matter in the feedstock. Greater VS 

consumption during anaerobic digestion indicates a greater maximum volume for biogas 

production. Pretreatment of the straw appeared to increase the biodegradation rates of 

organic compounds and maximize the consumption of VSs during the anaerobic digestion 

process, hence improving the process performance and increasing biogas production 

(Al‑Da’asen et al.  2022). The TS and VS results confirmed methane production from the 

different reactors, and the solid reduction percentages were proportional to the methane 

yields of the reactors (Alrowais et al. 2023b). 

After digestion, the COD values had decreased by 61.6% and 64.4% for S and ST0, 

respectively. The COD values of the pretreated straw reactors showed higher removal 

ratios, from 68.6 to 73.4%, than those of the untreated straw. This was because pretreated 

straw was easily decomposed by microorganisms due to structural loosening (Dumlu et al. 

2021; Rani et al. 2022). Moreover, it was noted that, compared with the untreated straw, 

the alkali-pretreated straw showed greater biodegradability, which led to greater methane 

production. The NaOH pretreatment gave the greatest reduction in COD among all 

pretreatments. Therefore, the alkali pretreatment of straw had a positive effect on the 

anaerobic digestion process because the high COD removal rate was related to the 

substantial amount of methane produced (Hamzah et al. 2019; Turek et al. 2019). 

Moreover, the pHs of the different reactors increased after digestion, ranging from 

6.85±0.01 to 7.20±0.18. The pHs before and after digestion were within the standard range 

(6.5 to 7.5) for maximum methane yields, improved performance, and high stability during 

the anaerobic digestion process (Kitessa et al. 2022). This was attributed to variations in 

the pH caused by biological conversion during the anaerobic digestion process, when high 

volumes of organic acids were produced by the acidogenic bacteria. Acid accumulation 

occurred and disrupted this process, while under normal conditions, the pH is controlled 

by the bicarbonate produced by methanogens and the ammonia formed in the reaction 

medium (Dobre et al. 2014; Abdel daiem et al. 2021b). 
 

Table 4. Characteristics of the Substrates Before and After Digestion (mean 
value±SD) 

Digester S ST0 ST1 ST2 ST3 

TS (%) 
B 1.45±0.01 2.36a±0.02 2.36a±0.02 2.36a±0.01 2.36a±0.02 

A 0.82a±0.01 1.25b±0.01 1.12bc±0.10 1.05cd±0.04 0.96ad±0.01 

VS (%) 
B 1.04±0.00 1.90±0.03 1.81a±0.02 1.79a±0.04 1.77a±0.03 

A 0.48±0.02 0.83a±0.03 0.71±0.02 0.68a±0.01 0.58±0.02 

COD (g/l) 
B 23.20±0.04 40.20±0.37 38.60±0.27 35.75±0.39 34.21±0.24 

A 8.90a±0.10 14.30±0.36 12.10±0.20 10.90±0.10 9.10a±0.20 

pH 
B 7.10±0.04 6.86a±0.01 6.89a±0.01 6.91a±0.02 6.95±0.02 

A 7.20a±0.18 7.15ab±0.02 7.00ab±0.20 6.92ab±0.03 6.85b±0.01 

Methane Yield 
(mL/g VS) 

97.01±5.31 141.13±9.32 228.05±20.21 281.12±26.10 363.06±34.21 

Note: B shows values before digestion and A shows values after digestion; values in the same row 
with the same letter showed insignificant differences at p ≤ 0.05. 
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ANN Application 
Overall, division ratios of 70%, 15%, and 15% for the training, validation, and 

testing portions, respectively, were applied to the input data patterns (80 patterns).  

 
a) 

 
b) 

 
c) 

Fig. 5. Outputs of the FFNN-SMO model (predictions) and comparisons with a) trained data 
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samples, b) test data samples, and c) all data samples 

 

 

Fig. 6. Linear regression models for each training, validation, testing, and overall dataset with the 
FFNN-SMO algorithm 

 
The SMO succeeded in training the proposed FFNN in 52 iterations, and the MSE 

reached 3.1x10-5 with the FFNN structure (3-13-1). The three inputs to the authors’ model 

were the type of reactor, the day number, and the chemical mixture. Figure 5 a) shows both 

the output of the designed FFNN-SMO and the measured value for methane production. 

The two curves were very close; thus, the designed FFNN-SMO modeled the methane 

production process well. The training process proceeded until the predetermined 

performance was met, after which the weights/biases of the hidden layer were frozen. 

Figure 5 b) shows the results from applying the proposed FFNN-SMO algorithm only to 

the test patterns (15% of the input data patterns); these results were examined. The recorded 

MSE for the test patterns reached 2.76 with the FFNN-SMO model. This acceptable MSE 

for the testing set reflected the high accuracy of the proposed model in predicting the 

amount of methane produced. Figure 5 c) compares the output from the proposed FFNN-

SMO (i.e., predictions) with the experimental values for methane production. Using the 

data generated by the model (FFNN-SMO) and the measured samples for the same input 

values, Fig. 6 introduces the regression results for the training, validating, and testing 

processes with the FFNN-SMO, as well as the R2 values recorded by the FFNN-SMO 
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algorithm. This approach provided one common verification step for the performance of 

the neural network model. The R2 values for the optimal attained FFNN-SMO model were 

0.99995, 0.9994, and 0.9998 for training, validation, and testing, respectively. Moreover, 

the presented results determined the stabilities of the FFNN-SMO outputs under various 

conditions and rapid convergence of the model. These results ensured the adequacy and 

effectiveness of the designed FFNN-SMO in predicting experimental biogas production. 

Therefore, the methane production modelled with machine learning techniques 

such as ANNs reinforced the experimental findings. This approach provided an opportunity 

to elucidate the underlying mechanisms for such processes. Moreover, this approach 

facilitated generalization of the model and provided a procedure for addressing other 

datasets from similar experimental work. Moreover, employing a metaheuristic technique 

such as SMO proved useful in enhancing the performance of the ANN. However, this 

promising model may need to be retrained with new experimental data or when one of the 

crucial conditions is changed. 
 

 

CONCLUSIONS 
 
1. The codigestion of waste activated sludge with barley straw (T0) increased the methane 

production 1.45-fold compared to that from digestion of sludge alone (97 mL/g VS). 

2. Codigestion with pretreated straw (T1, T2, and T3) increased the methane production 

levels to 228, 281, and 363 mL/g, respectively. 

3. Pretreatment T3 was the most significant pretreatment. There was a 2.57-fold increase 

in methane production compared to that from codigestion with untreated straw; 

moreover, the greatest reductions in TS (59.3%), VS (67.2%), and COD (73.4%) were 

recorded among the different pretreatments. 

4. Training an FFNN with the SMO algorithm notably improved all of the experimental 

methane production data. The recorded MSE values for training and testing of the 

designed FFNN-SMO model were 3.1x10-5 and 2.75, respectively. 

The alkaline pretreatments used in the present study produced desirable changes in 

the barley straw characteristics and increased methane production. Therefore, this study 

suggests that barley straw would be an ideal feedstock for biogas production if it was 

properly pretreated. Furthermore, the applied model showed high accuracy in predicting 

methane production. However, future studies will be carried out to explore additional 

conditions for alkaline pretreatments with different chemical concentrations combined 

with thermal effects and different contact times. 
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