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ABSTRACT

Phenomenological theories on the effect of pulp fiber properties on the fracture
energy of paper are discussed. The effect of fiber length and strength is
clarified experimentally. Fiber length appears to affect fiber failure probability
only slightly. When fiber strength is changed, the fracture energy decreases
greatly with only a small increment in fiber failure probability. This suggests
that the fracture energy contribution of a fiber may be correlated between
fibers. The effect of fiber length and strength on the cohesive stress - crack
widening relationship is clarified.

INTRODUCTION

While considerable financial resources are consumed in adding softwood
reinforcement fibers to paper webs, optical and printability properties are
simultaneously impaired. Some phenomenological theories have been
propounded in order to gain some knowledge of how the reinforcement pulp
works. In the first type of theories [1-4], the fracture resistance of paper is
assumed to arise from frictional forces when pulling fibers out of the
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surrounding medium. Alternatively, fiber debonding and fiber failure may be
modeled as stochastic, energy-consuming processes [5, 6].

None of these theories has been properly tested experimentally. Further, the
probabilistic approach to debonding and fiber failure suffers from serious
difficulties in coupling fiber failure work, bond rupture work and fiber failure
probability. Particularly, the thermodynamic “rate” equation recently used to
illustrate this coupling [6] amounts to the probability of fiber failure in the
context of bond failure decreasing with increasing fiber length, which is very
unlikely to reflect real paper behavior. In this paper we intend to modify the
probabilistic approach, specifically what comes to the effect of fiber and bond
properties on the fiber failure probability. We then employ the two types of
theory to formulate hypotheses on the effect of fiber length and fiber strength
on the proportion of breaking fibers and the specific fracture energy of paper.
We concentrate on these fiber properties since they can be changed and
measured in experiments, and we discuss the fiber failure probability since the
proportion of broken fibers can be observed in fractured sheets. We report
experiments by which some of these hypotheses are tested. Finally, we discuss
the effect of fiber properties on stress - crack widening relationship, which is
likely to control the fracture of real paper webs.

MODIFIED PROBABILISTIC THEORY

The recent probabilistic approach [5, 6] postulates that the average work needed
to release one fiber from resisting crack propagation is

1- p n
Weiber =!:Wf +( b ) Wb} [1'(1' Pr) ] ey
f

where W, is the work needed to break a fiber, W, the work needed to break a
bond, p, the probability of fiber failure in the context of breaking a bond, and
n the average number of bonds which fail where the fiber does not break.
Assuming that bonds break on average form a quarter of fiber length, we get

k

4]

n= where |, is fiber length and I, is the length of a fiber segment

S
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between bond centroids. Naturally 1-(1-p,)" equals the fiber failure
probability, denoted as N, .

Unfortunately this theory does not provide any information on the
interdependence of W;, W,, p;, |,, and I, and thus it is very difficult to
formulate hypotheses which could be verified experimentally. Different kinds
of arbitrary assumptions about this interaction have been applied in previous
studies [5, 6], resulting in more or less unrealistic predictions.

Let us now consider the seminal finding of Cox [7, cf. 8, 9], that the second
differential of fiber load P, with respect to the distance from fiber end x is

P2x 5 [ P, J
12 = 8 G,RBAZ t/ - 2
dxz f w E‘tW € ( )

where G; is the shear and E; the Young's modulus of the fiber, t the
thickness and w the width of the fiber, RBA is the relative bonded area and ¢ is
the macroscopic sheet strain in the direction of the fiber. In the circumstances
of a fiber bridging the opening crack faces, it is reasonable to assume that the
sheet strain ¢ is small in comparison to the fiber strain. Integrating Eq. (2) and
considering the condition for bond failure as the differential of fiber load over
the bond exceeding the failure load of the bond, the critical fiber load for bond
failure becomes

[ E 2G, 2 RBA
Py (x) = F, Ea'—tanh( ?L » x) 3)
f f

where F, is the (shear) failure load of a single bond. Fibers being much longer
than their width, the value of the tan -expression is close to unity and thus the
critical fiber load is not sensitive to the distance from the fiber end. The
Young's modulus of a fiber being roughly 30 times the shear modulus [cf. 10-
15] we find that the fiber load needed to break a bond is roughly 4 times the
failure load of the bond, which agrees with experiments where single fibers
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have been extracted from a handsheet [16]. Thus the transition from bond
failure to fiber failure takes place around

Fi~ 4F, C))
where F, is the fiber tensile failure load.

Provided that the fiber and bond failure work W, and W, are proportional to
the square of fiber and bond failure load F, and F, respectively, the transition
from bond failure to fiber failure should occur around

I~ kW, )

where k is a constant or presumably only a weak function of bond and fiber
properties. Classical fracture mechanics suggests that the fracture work of a
brittle object is proportional to the square of its failure load as long as Young's
modulus is constant. The definition of Eq. (5) is somewhat arbitrary, amounting
to the relationship between bond failure load and bond failure work. However,
the thermodynamic “rate” equation discussed above [6] giving biased
predictions, this is so far the most reasonable way we have found to couple
bond and fiber failure work to fiber failure probability.

Now we should formulate a continuous function for fiber failure probability in
the context of bond failure p; as a function of the quantities given in Eq. (5);
we assume that p, does not depend on the original length of fiber segments
between bond centroids since the length of the highly stressed fiber portion
bridging the crack faces is not determined by segment length. Unfortunately we
do not know what kind of function of the quantities of Eq. (5) py is. All we can
do is introduce a simple statistical distribution function which has seemed useful
for a wide range of distributions [17, 18]:

8

py =1-e (6)
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Eq. (6) defines the coefficient k as the square root of the particular ratio of W,
and W, at which p,; equals 0.63. The Weibull exponent m reflects the
variability of fiber and bond properties: with a large m Eq. (6) is a step
function, while a smaller m reflects greater variability in fiber and bond
properties. Quite a few simplifications and assumptions have been made in this
treatment. The advantage of Eq. (6) in comparison to previous approaches [cf.
5, 6] is that now we are using the argument derived above for the criterion
defining the transition between bond failure and fiber failure hoping to avoid
the unphysical consequences which were found previously.

HYPOTHESES DERIVED FROM THE THEORIES
The Effect of Fiber Length

Eq. (6) implies that the fiber failure probability when breaking a bond p, is
independent of fiber length. In such circumstances, fiber length affects the
estimate of fracture energy given by Eq. (1) only through the fiber failure
probability N, being affected by the number of bonds. Both of these quantities
increase monotonically with fiber length, but their second fiber Ilength
differential is below zero (Figure 1a). The fracture energy being estimated as
the fiber failure probability multiplied by a form which is independent of fiber
length (Eq. (1)), the specific fracture energy R should be linearly proportional
to the fiber failure probability N, (Figure 1b; please note that this prediction
applies only when N; is affected by changing fiber length). These results differ
slightly from the predictions of earlier probabilistic models [5, 6].
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Figure 1: The effect of fiber length on the proportion of breaking fibers and the
fracture energy of paper according to the modified probabilistic theory.

Earlier theories considering fiber pull-out friction as the main mechanism of
paper fracture energy consumption [1-4] yield quite different predictions.
Shallhorn [3, 4] proposes that a fiber fails rather than being pulled out if the
total bond shear strength within the shorter fiber end embedded in the matrix
exceeds fiber failure load. This results in a critical fiber length where the
probability of fiber failure first differs from zero:

|, =2f ™

T

where 7, is total bond shear strength per fiber length unit. This results in a fiber
failure probability of

N, =1-< ®)

provided that I, > | ; otherwise N; =0.

c

We further find that the fracture energy equations derived in references [3, 4]
become
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F2(1,)°
-2 () ©
if I, <1, and
=i'£ (10)
61, |
if I, >1,.

Shallhorn’s theory has been derived assuming that all fibers are uniform, which
is quite restrictive in a deterministic theory. However, we can easily illustrate
the effect of scattered fiber properties by numerically introducing a distribution
of fiber length. This has been done in Figure 2, where the fiber length I, has
been given a coefficient of variation of 0.15, other quantities remaining
constant.
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Figure 2: The effect of mean fiber length on the proportion of breaking fibers
and the fracture energy of paper according to the deterministic pull-out theory.

The difference between the consequences of the probabilistic theory (Figure 1)
and the deterministic pull-out theory (Figure 2) are striking. In Figure 1 we
find a monotonic increase in fracture energy as a function of fiber length,
whereas in Figure 2 the fracture energy is a nonmonotonic function of fiber



length. When the proportion of failing fibers is increased by increasing fiber
length, Figure 1 predicts increasing fracture energy while Figure 2 predicts a
decrease.

The Effect of Fiber Strength

We find from Eq. (5) that the transition from boxji__failure to fiber failure when
Wf
<
dimensionless ratio being linearly proportional to fiber failure load, it can be
used to show the effect of fiber strength on the probability of fiber failure and
fracture energy. Having a small Weibull's exponent m which reflects large
variability in fiber and bond properties, p, and N; decrease smoothly as a

W
<
monotonically with fiber strength and thus decrease monotonically as a function
of the proportion of failing fibers N;.

breaking a single bond is defined by the ratio approaching unity. This

function of

(Figure 3). The fracture energy appears to increase
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Figure 3: The effect of fiber strength on the proportion of breaking fibers and the
fracture energy of paper according to the modified probabilistic theory. k = m =
2.

Less variability in terms of a larger exponent m makes the model to predict that
the fracture energy is a non-monotonic function of fiber strength (Figure 4). A
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larger value for k makes this effect more pronounced, the energy consumed in
fiber failure being considerable compared with the energy needed to break
bonds. Thus, when some of the fibers fail, the total energy consumed may be
greater than where bonds only fail. Such a complementarity of fiber and bond
failure work has been previously argued to be expectable: one of these
quantities becoming much greater than the other, the fracture energy should
decrease [6]. However, we see in Figure 3 that this effect may not be found if
the variability in fiber and bond properties is large. The real-life situation
should be clarified by a physical experiment.
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Figure 4: The effect of fiber strength on the proportion of breaking fibers and the
fracture energy of paper according to the modified probabilistic theory. k = 3, m
=5.

Shallhorn’s approach [3, 4] can be readily modified to address the effect of
fiber strength. The critical fiber failure load where the probability of fiber
failure first differs from zero is

lt
F, =1t 11
. =5 an
The fiber failure probability is

F!

N, =1- 2t (12)

c
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provided that F, <F_, otherwise N, =0.

The fracture energy equations derived in references [3, 4] become

2
R =’£—2— (13)
if F,>F,, and
2 3
3
c
if F, <F,.

Let us then introduce a distribution of fiber failure load with a coefficient of
variation of 0.15, other quantities remaining as constants, and consider the
proportion of breaking fibers and fracture energy as a function of fiber failure
load in Figure 5.
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Figure 5: The effect of mean fiber failure load on the proportion of breaking
fibers and the fracture energy of paper according to the deterministic pull-out
theory.
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Comparing Figures 3 and 5 we find the predictions of the two theories quite
similar as to the effect of fiber strength, particularly with small values of m
(Figure 3). As long as m is small, the only difference which may be
distinguished in experiments is the much stronger decrement of fracture energy
as a function of the proportion of breaking fibers in Figure 5.

EXPERIMENTS

Laboratory handsheets from bleached softwood kraft pulp, length-weighted
mean value of fiber length 2.17 mm and coarseness 0.126 mg/m, were
prepared. Wet handsheets from beaten fibers were guillotined, reslushed and
then fractionated in order to achieve a variation in fiber length. On the other
hand, handsheets from uncut, unfractionated, beaten fibers were exposed to
HCI vapor in a closed glass container in order to hydrolyze cellulose and reduce
fiber strength [cf. 19-22].

The mechanical properties of the handsheets were examined by the short-span
tensile test [23-25]. With a testing span of 8 mm the elastic energy stored in the
specimen was small enough to achieve stable fracture. Strips of 15 mm wide
were elongated at a rate of 10%/min. Load-displacement curves were recorded,
and the fracture energy was determined as a sum of the elastic energy stored at
the moment of greatest load and the additional external work needed to tear the
specimen. Tensile stiffness at the moment of maximum load was assumed to be
equal to initial stiffness [cf. 26-33]. Confidence limits of 95% for measured
quantities varied between +-3% and +-7%.

Two percent of the fibers were dyed with Congo Red prior to sheetmaking. In
each sample, 200-400 dyed fibers crossing the failure path were inspected for
fiber failure under a microscope. Tensile loading was terminated at 95% load
decrement from the maximum load, which allowed relatively convenient
detection of the failure path, there being a clearly observable displacement, but
some cohesion was still holding the crack faces together.
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Fiber Length

It is difficult to change the distribution of only one property within a population
of fibers and leave others unaffected. We find from Table 1 that in addition to a
very considerable variation in the length-weighted mean fiber length, there is a
small variation in coarseness. The variation in the apparent density of the
handsheets implies that there is a small variation in fiber flexibility as well.
However, these variations being small in comparison to the variation in fiber
length, it is likely that the effect of fiber length can be deduced from this
experiment.

Mean  MeanFiber Apparent Tensile  Tensie Rupture  Total Workto  Fracture  Breaking
Fiber  Coarseness density, Stiffness Strength  Stain, Workto  Maximu Energy,  Fibers,

Length, ,mg/m kglmS Index, Index, % Fracture, ~m Load, Jrvkg %
mm kNm/g Nm/g Jmkg Jm/kg
0.8 0.127 560 45 39 34 13 8 6 2
1.4 0.125 560 54 54 4.2 21 14 9 6
22 0.125 520 55 63 44 26 16 13 8
3.1 0.138 500 5.0 60 4.1 30 14 19 8

Table 1: Properties of fractionated fiber populations and handsheets made from
them.
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Figure 6: Stress-strain curves of handsheets of different fiber length.
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We see in Table 1 and Figure 6 that the tensile stiffness is not sensitive to fiber
length. This agrees with the seminal theoretical approaches in that as long as the
fibers are long in comparison to their width, stress transfer efficiency between
fibers does not depend drastically on fiber length [7, 8]. Micromechanical
models have not been successful in explaining the effect of fiber properties on
the tensile strength and rupture strain of paper [34]. We see in Table 1 and
Figure 6 that the rupture strain is a weak function of fiber length, and tensile
strength not much affected either unless the fiber length is very low. This
agrees with previous observations with softwood kraft pulp handsheets [20, 35].

The tensile energy absorption being the integral of load over displacement, the
weak effect of fiber length naturally applies to the energy absorption up to
maximum load as well (Table 1, Figure 6). Instead, the effect of fiber length on
the fracture energy is very considerable (Table 1). This is further illustrated in
Figure 7, where we find that the fracture energy appears to be linearly
proportional to the fiber length.

1+
08 | Fracture energy
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02 [ Fiber failure probability
0 1 D PR 1 n 1
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Figure 7: The effect of fiber length on fracture energy and fiber failure
probability. The fracture energy has been normalized by 19 Jm/kg which was
the greatest value achieved in this experiment.
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From the point of view of testing the hypotheses given in Figures 1 and 2 one
might consider it unfortunate that the proportion of failing fibers in the
experiment was quite low and hardly affected by fiber length (except in the case
of very short fiber length). However, the small effect of fiber length on fiber
failure probability is in agreement with Eq. (4) and in striking conflict with Eq.
.

Another issue supporting the probabilistic bond failure theory rather than the
deterministic theory based on fiber pull-out friction is that as long as the fiber
failure probability is small, Eq. (1) predicts the fracture energy will be linearly
proportional to fiber length, which is seen in Figure 7. On the other hand, the
pull-out theory predicts a quadratic fiber length dependency, of which no signs
are apparent.

Fiber Strength

The vaporization experiment decreased the zero-span tensile index effectively,
and retained sheet density as well as tensile stiffness except in the case of most
intensive vapor treatment where the fibers became very brittle (Table 2). All
mechanical properties except tensile stiffness (and possibly yield strain) seem to
be strongly affected by fiber strength, both strength and rupture strain
decreasing considerably with increased vaporization (Figure 8). Both pre-failure
tensile energy absorption and fracture energy depend strongly on fiber strength.

Zero-  Apparent Tensile  Tensile  Rupture Total Workto  Fracture  Breaking
span Density, ~ Stiffness  Strength  Strain,  Workto  Maximum  Energy, Fibers, %

Tensile kg/m3 Index, Index, %  Fracture, Load, Jm/kg

index, kNm/g Nm/g Jm/kg Jm/kg

Nm/g
33 520 4.0 20 0.6 1 0.8 0.5 100
56 510 5.0 36 22 7 5 3 58
78 510 5.0 50 3.9 17 12 7 20
114 520 5.0 70 5.8 38 23 19 8

Table 2: Properties of vaporized handsheets.
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Figure 8: Stress-strain curves of vaporized handsheets.

The fiber strength experiment resulted in a very considerable variation in the
proportion of breaking fibers. Both the fracture energy and the proportion of
breaking fibers appear to be somewhat nonlinear functions of the zero-span
tensile index as was indicated in Figures. 3 and 5 (Figure 9)). No non-
monotonic fiber strength effect on fracture energy, as was hypothesized recently
[6] and illustrated in Figure 4, is apparent.
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’Figure 9: The effect of fiber Strength on fracture energy and fiber failure

probability. The fracture energy has been normalized by 19 Jm/kg which was
the greatest value achieved in this experiment.
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Figure 10: The relationship between fracture energy and fiber failure
probability with changed fiber strength.

An interesting and significant observation is that the fracture energy as a
function of fiber failure probability seems to display a concave rather than
convex shape (Figure 10). This agrees with Figure 5 which is calculated from
the deterministic fiber pull-out theory, and disagrees with Figures 3 and 4
which have been calculated from the theory of stochastic debonding. However,
the initial decrement in fracture resistance in Figure 10 is so steep that it is
difficult to explain just by assuming that fibers failing fail without bond failure
and that the fiber failure work is negligible (cf. Figure 5). It is possible that
even a moderate proportion of fiber failure decreases the width of the fracture
process zone and possibly reduces the work consumed in debonding other
fibers.

Conclusions

The fiber length experiment (Figure 7) demonstrates that the fiber failure
probability is a weak function of fiber length. Thus it is very questionable to
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assume that a fiber fails rather than gets pulled out if the total bond shear
strength within the shorter fiber end embedded in the matrix exceeds fiber
failure load. This discourages applications based on Eq. (7) or (11) [3, 4].

On the other hand, the fiber strength experiment (Figure 10) shows a very
considerable decrement in the fracture energy with a relatively small increment
of fiber failure probability. This can hardly be explained in terms of a theory
where the work consumed by releasing any fiber is calculated independently
and the contribution of any fiber on the fracture energy is then totalled. It is
rather likely that the energy-consuming contributions of fibers are correlated,
possibly because of variations in the width of the fracture process zone.

DISCUSSION

The fracture toughness of paper has been discussed above in terms of critical
energy release rate reaching the autonomous end region of crack propagation
[36-38]. This equals the critical value of the J-integral provided that the
integration path is taken around the end region [39-42]. It was assumed that
traction-free crack surfaces are opened. In the experiments, the straining was
terminated at 95% load decrement (from the maximum) which means that the
crack surfaces were nearly traction-free and the remaining work needed to
separate the surfaces was a negligible part of the total fracture energy.

However, it is questionable whether the specific essential work of fracture
really is critical for the durability of real paper webs. Mode 1 fracture
properties of a material are mainly determined by the cohesive stress appearing
between the surfaces of an opening crack, and this attraction is a function of the
crack widening [43, 44, 25]. The specific essential work of fracture (or the
critical value of the J-integral as defined above) equals the integral of the
cohesive stress over the crack widening (crack opening displacement).

It has been shown that if the cohesive stress is a decreasing function of the
crack opening displacement, the fracture process zone does not develop fully
prior to failure, i.e. completely traction-free surfaces are not created before
instability [45, 43]. This means that even if the specific essential work of
fracture is a material property, it is not the factor determining the durability of
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a real paper web. The material property directly contributing to the fracture
behavior of an object is the cohesive stress - crack widening curve as such. Let
us now look at the effect of fiber length and fiber strength on the stress - crack
widening behavior.

On the assumptions that the crack widening is uniform and that the Young's
modulus of the paper outside the fracture process region remains constant, the
crack widening can be calculated from the total specimen displacement by
subtracting the uniform displacement remote from the fracture process zone.
Crack widening then becomes

w=A - A, +°°E"°L (15)

if A=A, where A is total displacement, A, is displacement at maximum
stress o, E is Young's modulus and L specimen length.

Let us then plot the stress-widening curves from the fiber length experiment in
Figure 11. We find a concave form of curve as has been previously
demonstrated for paper samples [25]. The maximum stress equals tensile
strength, and the critical crack widening where the cohesive stress approaches
zero is obviously determined by the length of the longest fibers. The front end
of the curve is more critical for the failure of an object than the rear end [25,
43, 45].

Stress, Nm/g

Widening, mm
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Figure 11: Stress - crack widening curves for softwood kraft pulp handsheets of
different fiber length.

We find in the stress-widening curves of the fiber strength experiment that both
the maximum stress and the critical widening are strong functions of fiber
strength. The reason for the critical widening being strongly affected by fiber
strength is that with increasing fiber failure probability the relevant length scale
turns from the length of fibers towards the length of fiber segments between
bonds.

Stress, Nm/g

0 04 0.8 12
Widening, mm

Figure 12: Stress-crack widening curves for softwood kraft pulp handsheets of
different fiber strength.

There are strong geometry and size dependencies in the fracture behavior of
objects with a decreasing stress-widening curve [43]. Thus it is hardly possible
to draw conclusions on the fracture of real paper webs on the basis of material
properties directly. The authors are looking forward for numerical treatments
[cf. 25, 43, 46].
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Transcription of Discussion

Fibre Properties and Paper Fracture - Fibre Length and Fibre Strength
Yongzhong Yu, Consultant, University of Helsinki, Finland
Professor C T J (Kit) Dodson, UMIST, UK

Can I just clarify whether you have addressed a mixture of two theories - pull out and
fracture?

Yongzhong Yu
No I haven’t yet.
Professor Jacques Silvy, Universidade de Beira Interior, Portugal

Don’t you think that the stress concentration near the crack propagation has something to
do with the length of the fibres. I mean that the effect of the length could provide a factor
for the stress - only depending on a geometrical effect involved in the stress concentration
phenomena?

Yongzhong Yu
Sorry I did not catch the question
Jacques Silvy

What I mean usually in crack propagation there is a geometrical effect of the stress
concentration as paper is not homogeneous. This factor could change in respect of length
of the fibres that are involved in the propagation of the crack.

Yongzhong Yu

Yes, the effect of the fibre length on paper fracture will be affected by the stress
concentration near the crack propagation. I mean in addition to the fibre properties, the
geometry of the tested samples and the loading will influence the fracture behaviour of
paper as well. However, keeping the geometry and loading conditions unchanged for all
samples, then the effect of fibre lengths can be detected. From the experimental results,
we found that the fibre length affected fracture process zone, and further affected the
fracture energy of paper.



Jacques Silvy

Could you verify the value of the fibre load that you need to assume in respect of your
results.

Yongzhong Yu
No I cannot comment.
Steve Eichhorn, Student, UMIST, UK

Do you think that it’s possible in the future to find the energy release in the sheet during
fracture from measurable parameters?

Yongzhong Yu
I think it is very likely.
Steve Eichhorn

That’s very interesting because of our own probabilistic theory of bond failure which
requires the energy release in the sheets to prove whether they are actually correct.

Yongzhong Yu

In this paper we use short span tensile test which seems to be a very convenient method
for measuring the fracture energy of paper.
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