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Abstract

In this study, a mechanistic model was developed for the Elmendorf
tear strength of paper based on the fundamental physics ofthe tear pro-
cess . In the model, the tear strength was calculated as the sum of fibre
fracture energy and fibre pull-out energy. The model also included sta-
tistical considerations, such as the distribution of fibre lengths. Through
dimensional analysis, a "dimensionless tear index" was identified and
was found to be a universal function of three dimensionless parameters .
Using a bond strength obtained through non-linear regression analyses
on a particular experimental data set, the model was validated with
other sets of data. It was found that the model gave good quantita-
tive predictions of tear strength of kraft papers without the need for
adjustable fitting parameters. With a slight modification to account for
the role of fines in the furnish, the model was also successfully applied
to handsheets made from TMP pulps .
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Introduction

For many years, tear strength has been widely used as a key parameter for
evaluating the quality of paper. Many converters treat tear strength as the
most important property and use a specific tear value as a specification in
the purchasing of the paper products . Tear strength is also used to evaluate
pulp strength development during refining or beating processes, and process
engineers traditionally use tear-tensile plots to adjust refining intensity and
specific energy . Therefore, a better understanding of the fundamental physics
of the tear process will provide a useful tool for product development and
quality control .

Although some mechanistic models for tear strength have been developed
[1, 2, 3, 4, 5], there is still some controversy about the energy consumption
during tearing : some think the fibre pull-out energy is more significant, while
others claim the fibre fracture energy is dominant . Two studies have shown
that when a fibre is extracted from a sheet, a significant amount of energy is
consumed by friction [6, 7] . However, the energy needed to break the fibre may
not be insignificant, as assumed in some previous papers . Therefore, it is con-
cluded that a tear model should take into account both energy consumption
mechanisms .

The Tear Model

The model presented here is based on a calculation offibre pull-out and break-
age energy . In order to simplify the derivation, a number of assumptions were
made . However, these assumptions only affect the mathematical details of the
derivation. The approach itself is quite general .

The fibres are assumed to be elastic with a constant fibre modulus and strength .
The fibres have a constant diameter . Both the length weighted fibre length and
fibre embedded length are assumed to be uniformly distributed, although other
distributions for the weighted fibre length may be used . The bond strength
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Figure 1 : Schematic of an embedded fibre at the crack.

(sometimes referred to as the specific bond strength) is assumed to be constant
for a given pulping process, however, the RBA is derived for each pulp . Fibre
orientation around the crack line is considered to be random . In the model,
a fibre is allowed to either break or pull-out . Partial debonding, followed by
fracture away from the crack line and subsequent pull-out is not considered .

Fibres are embedded on both sides of the crack plane, as illustrated in Figure
1 . The "embedded length" of a fibre is the shorter end of the two parts of the
fibre and is considered to be uniformly distributed from 0- L/2. The number
of fibre bonds along the full fibre and along the shorter embedded end are nf
and n.-b respectively. The free fibre length, which is the distance between two
bonds, is denoted as Lf .

The force profile along an embedded fibre is assumed to be a linear step func-
tion, as shown in Figure 2. This implies that when a load is applied at the
crack line, the load is equally distributed among the bonds. When a fibre is
short, there are few bonds along the embedded length and the load on the
bonds may reach the critical value even though the load in the fibre at the
crack line is not high . In this case, the fibre will debond along the embedded
length and will be pulled out(fibre b in the figure 2) . When a fibre is long,
and there are a sufficient number of bonds on each side of the crack line, the
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Figure 2: Force profile offibres at the crack.

load in the bonds will be low even when the load at the crack line has already
reached the fibre failure load . In this case, the fibre will break at the crack
line (fibre a in the figure 2) .

When a fibre is broken, the associated energy is calculated based on the fol-
lowing assumptions . A fibre is assumed to break as soon as the central fibre
segment is loaded up to the fibre strength . All the elastic energy in the fibre
is then released . The elastic energy for a single broken fibre is therefore the
sum of the elastic energy of each fibre segment, as shown in Equation 1.
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When a fibre is pulled out of the network instead of being broken, the energy
associated with the fibre includes elastic strain energy, elastic debonding en-
ergy and frictional pull-out energy. The elastic energy is calculated using the
following equation :
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where 7-b is the bond strength . Equation 2 is similar to Equation 1 (the elastic
energy of a broken fibre) except that the maximum load at the failure is now
n,mbTbAb instead of orfAf . After debonding, the fibre will be pulled out. The
frictional pull-out energy WP is obtained by assuming a linear step force dis-
placement curve. Results of the single fibre pull-out experiments in paper have
shown that a linear force profile is reasonable [6] . Tf is the frictional pull-out
stress .

WP = TfAbnembLf+TfAb(n,,,b-I)Lf+ . . .+7fAbLf

;t-,
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(3)

Therefore, the energy consumed by a single pulled out fibre, Wp.,,11, is equal to
the sum of elastic energy W~(Equation 2) and pull-out energy WP(Equation
3) .

WP.11 =W, +W,	(4)
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Whether the fibre breaks or pulls-out is determined by the relative value of
the fibre embedded length and critical embedded length . The critical fibre em-
bedded length is obtained through a simple balance between the force needed
to pull the fibre out and the force needed to break the fibre. This calculation
assumes that the bonds act cooperatively, and would not be accurate for fibres
with many kinks or microcompressions . If n,,it denotes the critical number of
bonds along the embedded length, then the following equation will describe
the force balance:

o,fAf = TbAbn,,it	(5)

Where, the critical number of bonds, n,,it is equal to the ratio between the
critical embedded length and the free fibre length, i .e . L,lLf .

In summary, there are two classes of fibres in the system after the fibre length
distribution is accounted for.

1. When L__ is smaller or equal to 2Lc, all fibres will pull out and no fibres
will break.

IL When L,,,,, is larger than 2L, fibres

(A) will break if L,-b is larger or equal to L, .
(B) will pull out if Lemb is smaller than L, .

The derivation for the model based on these two cases is as follows :

L Lmax < 2L,

If the maximum fibre length is smaller than the critical fibre length, all the
fibres are pulled out and the energy consumption is given by:
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Here, P(L-b) and F,,(L) are the probability density functions, PDFs, of the
fibre embedded length and weighted average fibre length . Although we may use
any practical PDFs for the weighted fibre length distribution, for simplicity we
have used the uniform distribution function . The uniform distribution function
for the fibre embedded length is given by Equation 7:

L/2,if 0 LebP(Le-b) L/2

	

(7)
0 if otherwise .

The weighted fibre length distribution function is shown in Equation 8.
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NL ,O is the number of fibres of angle 0 and length L crossing the crack line .
For a random network, it is given by :
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Here, W is the basis weight of the sheet, R is the sheet width and w is the
fibre coarseness .

After substituting the equation for each term in Equation 6, and integrating,
we get the total work for the case I as :
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IL

	

> 2L,

When the maximum fibre length is longer than the critical fibre length, there
axe two subclasses of fibres . (A) Fibres which are shorter than 2L, will be
pulled out. The corresponding energy is obtained through Equation 11 :
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The difference between Equation 6 and 11 is only in the limits of the fibre
length integral . In case II(A), the weighted fibre length is integrated from 0
to 2L, while in case I the integration runs from 0 to Lmax.

(B) Fibres which are longer than or equal to 2L, will be broken or pulled out
depending on their embedded length . Fibres with an embedded length shorter
than L, will be pulled out and the energy consumption may be calculated
using Equation 12 :
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When the embedded length is greater than L, the fibres are broken and the
elastic energy consumption is :
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The summation of the results of Equations 11, 12 and 13 gives the total tear
energy for case II :
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Finally, the model for the tear energy absorption is obtained by combining
Equations 10 and 14 :
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Normalization

Equation 15 has, 11 input variables and a rather complex form . It is extremely
difficult to see the functional relationships between the variables. It is also hard
to identify the primary variables . However, dimensional analysis can help to
simplify the form of the equation and reduce the number of variables . More-
over, dimensional analysis can be used to identify the critical combinations of
variables .

The free fibre length for arandom sheet assembly of fibres can be approximated
as [8] :

Lf

	

(16)4dp

The above equation was obtained assuming that fibres are straight cylinders
and fibre end effects were neglected . The fibre cross-sectional area is given by
7rd'/4 . The fibre bonded area Ab is here assumed to be d2. This approximation
is reasonable for the case of collapsed kraft fibres but will overestimate the
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bonded area between fibres because the area where fibres crossing each other
may be only partially bonded or partially touching .

Since the logarithmic term of Equation 15 has to be a dimensionless group,
this term is therefore defined as one of the dimensionless variables, 6 . This
variable is proportional to the ratio of the fibre length to the critical length .
It is a function of the bonding strength and sheet density for handsheets of a
chosen furnish . The other two dimensionless variables are suggested simply by
inspection of Equation 15 . All three dimensionless variables are defined below:

4p-rbAbL L
af7r2dw L,
Tf

7-b
Uf

	

(17)
Ef

0 is the ratio between the frictional pull-out stress and fibre bond strength .
The value of 0 corresponds to the drop in load after the peak in the pull-out
curve for a single fibre [6], as shown in Figure 4 . 3 affects the contribution
of the pull-out energy to the total tear energy. In previous work by Shallhorn
and Karnis, 0 was assumed to be 1 [2] . a is the fibre elastic strain and affects
the contribution of fibre fracture to the tear energy.

By defining three dimensionless parameters and replacing Lf with Equation
16, Equation 15 can be normalized as follows :
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where, Work* is the normalized work and is obtained by factoring out the rest
of the terms in the right side of the equations after using the three dimensionless
variables :



1259

Figure 3: The normalized tear curves, 0 = 0.25 .

Work* _-

	

Work
-	(19)WRd2,fL

Work* is the tear index divided by the maximum pull-out energy in the system -
The maximum pull-out energy can be obtained by assuming that all fibres are
pulled out by a force just slightly smaller than the force needed to break a
fibre.

Figure 3 shows the normalized tear curves versus c for different a when 3 =
0.25 . Clearly, the effect of a is not significant for the range of I -2% . 0 = 0.25
is obtained through the single fibre pull-out tests and has been fixed at 0.25 as
discussed in [6] . The 0 value affects the energy contribution from pull-out but
does not change the shape of the curve, as illustrated in Figure 4 . This figure
corresponds to the so called "beating curve" : the tear index of paper has been
found to pass through a maximum when the degree of bonding is increased by
increasing the wet pressing or increasing the degree of refining,

Dimensional analysis

Dimensional analysis is an alternative way to probe some of the findings of
the tear model. The tear index of paper is a function of fibre and paper
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Figure 4: The normalized tear curves, a = 1% . A schematic of the single fibre
pull-out test with a definition of 3 is included in the inset .

characteristics:

TearIndex = f(L, d, w, af, Ef, p, Tb, Tf)

	

(20)

Based on the Buckingham 11-theorem [9], the dimensionless tear index can
be expressed in terms of (8 -3 = ) five independent dimensionless variables.
Using L, w and of as the repeating core variables, we get:
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(22)

Based on the rl-theorem, any multiplication, division, or power of the inde-
pendent variables (7r i 's) can be considered as a new 7r . Then :

Work* = h(,E, C', 0, 71, 73)

	

(23)

where:
75 73

16 __

71
C, 7r2
,3 7r4

7r3
2Work*

	

7r6 ~71

This is partially consistent with the result of our tear model, where the im-
portant dimensional groups were identified simply by inspection, with the ex-
ception of the two additional variables, 7r, and 73-

Using SYSTAT software package, regression analysis was performed on ex-
perimental data [10] to find out the significance of these two dimensionless
variables. Based on the results of this analysis (Table 1), the dimensionless
tear index is only a weak function of 7r, and 7r3- Meanwhile, the dimensionless
tear work was found to be strongly dependent on theE (coefficient of determi-
nation is 0.79) . This analysis supports the prediction of the tear model, i.e .
that dimensionless tear is primarily a function of F, 3 and a.

Apparent diameter and coarseness for TMP
papers

For sheets made from TMP, the effect of fines on mechanical properties is
known to be significant . One objective of this modelling effort was to incorpo-
rate the effect of fines in the tear model. Fines have several structural functions
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Table 1 :

	

The coefficient of determination (r2) obtained from the regression
analysts on experimental data .

in the sheet depending on their size and type [12] . These effects can be cate-
gorized into three mechanisms . Firstly, fines replace long fibres . This yields a
reduction in the number of fibres crossing the crack line . The second effect is
the increase in bonded area . The addition of high specific surface area fines is
believed to increase the degree of bonding in the sheet. The third effect is the
increase in sheet density. Based on these effects, the model can be modified
for a furnish containing a substantial amount of fines .

The simplest way to modify the model to account for the fines fraction is to
introduce two new parameters(the effective diameter and effective coarseness) .
The effective coarseness is used to describe the portion of fines which only fills
in the holes between fibres and does not contribute to bonding in the sheet .
These fibres cause the sheet to behave as though the fibres are thickened. The
effective coarseness is defined as the original coarseness divided by the fibre
fraction .

W"ff - --- -- *

	

W

	

(24)1 - fZnesfraction

The use of an effective fibre coarseness yields a reduced number of fibres in the
sheet at a constant basis weight, and hence reduces the tear strength .

The objective of introducing the effective diameter is to imitate the contribu-
tion of the portion of fines which enhance bonding by increasing the bonded

Independent r2
variable TMP kraft
7r1 0.25 0.04
n3

0.01 0 .22
IE 0.79 0.78
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area locally. A higher diameter means a higher bonded area since in our model
the bonded area is assumed to be equal to d2 . The effective diameter is defined
as follows :

(25)

where, the Pwall is the fibre cell wall density which is normally found to be
constant at around 1.5g/cm 3 .

Replacing the original fibre diameter and fibre coarseness in the model by the
newly defined effective fibre diameter and effective fibre coarseness, the model
can be used to describe the effect of fines in the sheet. Note that the density
of the sheet is also an input parameter for the model, so that the effect of fines
on density will also be accounted for in the tear model.

Model verification

All of the parameters needed for the model, with the exception of the bond
strength, can either be measured directly or be roughly estimated. There have
been a number of methods developed for measuring bond strength, but none
of them is really satisfactory . In this study, non-linear regressions are used to
obtain the'bond strength .

The data sets used for the regression are taken from Lee [10] . The data sets
contain of softwood TMP and kraft pulps of a wide range of species which have
been refined to various freenesses . The required parameters for the model are
fibre length, width, coarseness, strength, modulus, sheet density and bond
strength . The fibre strength was taken as the zero-span tensile strength mul-
tiplied by a factor of 8/3 [11] . The fibre modulus was not measured in the
study. Instead, the fibre elastic strain, a, was set to be 0.01 . According to the
literature, a is typically in the range of I - 5% for general papermaking fibres .
Figure 3 has shown that the effect of a in the range of 0 - 2% is not partic-
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ularly significant, so a = 0.01 should not introduce a large error . The fibre
characteristics of the data sets used for the regression analysis were measured
by Lee [10] .

Regression for the -rb value

In order to obtain the numerical value of 7-b, a MathematicaR program was
written to minimize the mean absolute difference between the model predic-
tions and the experimental data . The bond strength corresponding to the min-
imum average relative error was selected as the optimum -rb for each pulping
process. Although the bond strength(critical shear bond stress) may depend
on factors such as external fibrillation and species, it is treated as a constant
for each type of pulp . The number of bonds varies however, as a function of
density, through Equation 16 . Mayhood et al. [13] found that the maximum
shear stress of fibre to fibre contact did not vary with variations in the nature
of the fibre or chemical and mechanical treatments .

TheTMP pulps used for the regression consisted of 8 species where each species
was refined to three different freeness levels [101 . The kraft pulps were prepared
in a batch digester with the same target Kappa number [10] .

Results of the regression

Based on nonlinear regressions on 24 TMP and 8 kraft handsheets, the bond
strength, -rb , was found to be 13MPa for TMP handsheets and 16MPa for
kraft handsheets . Using these calculated values of bond strength, the average
relative error between the model and the experimental data was about 10%
for the TMP and 22% for kraft (see Figures 5) .

The ratio between the values of bond strength for kraft and TMP is consistent
with what has been reported in the literature . However, the calculated values
of the bond strength are substantially higher than those reported in previous
studies [13, 14, 16, 17] . The bond strength for fibre/shive bonds of Lobolly pine
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holocellulose fibres was found to be in the range of 1 - 5MPa for springwood
and 3-1OMPa for surnmerwood [17] . The strength of fibre/cellophane bonds
has been reported to be in the range of 3-5MPa [16] . The bond strength for
kraft, CMP, CTMP andTMPestimated by Gorres et al . was in the range of I -
6MPa [15] . The higher value of bond strength determined through regression
could be caused by errors in other input parameters and/or assumptions made
in this model. For example, the model did not consider the collapse of the
fibres . In the case of the fully collapsed fibres, the potential bonded area is
equal to 7r2d'/4 which is more than d2, the value used for the bonded area
in the model. An underestimation of the bonded area would result in higher
bond strength values .

It should be noted that the data bank used for regression, although quite ex-
tensive, covered a relatively small range of furnish characteristics. As a result,
no data points lie to the left of the tear energy peak . Furnishes containing
short, strong or very weakly bonded fibres are expected to lie to the left of the
peak .

The normalization described by Equations 18 to 17 yields a universal tear curve
when 0 and a are fixed . In order to show the advantage of the normalization,
a and 3 were set to be 0.01 and 0 .25 respectively.

Application of the model

Using regression analysis, the Tb value obtained for TMP and kraft pulps were
13MPa and 16MPa respectively. The model can now be tested with new
experimental data.

Two sets of experimental data reported in the literature[18, 19] were used to
examine the model predictions . The pulp properties for the data sets are listed
in [18], [19] . The experiments carried out by Gurnagul et al . [18] used bleached
and unbleached hardwood kraft of six different species . Pulps for each species
had two beating conditions :unbeaten and beaten at 11000 revs . The studies
done by Kazi [19] used mature black spruce unbleached kraft pulps with six
different levels of beating. Handsheets of pulps at each beating level were wet
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Figure 5: The universal curve for TMP and kraft pulps . Experimental data
are from [10] .

pressed with four different pressures . The original pulps in Kazi's study were
taken from Lee's study, but Kazi's data was not used to -fit the values of Tb .

After substituting the pulp properties from each study into the model and
setting 3 = 0 .25 and a = 0.01, the model gave reasonable predictions of the
experimental values for tear index. The results are shown in Figure 6. The
experimental data produced by Lee were used in the regression analysis to
obtain the bond strength value . The model predictions for the experimental
data from Gurnagul and Kazi's studies were made with no fitting parameters .
The average relative error for the data from Gurnagul is 28% and 37% for data
from Kazi .

One important feature of Figure 6 is that although there are large numbers of
pulps with a wide range of properties, they fall actually close to one universal
curve. This demonstrates the importance of the dimensionless groups which
have been identified . Figure 6 supports that there is a universal relationship
between Work* andE as predicted by the model.
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Figure 6 : The application of the tear model for various pulps .

In Figure 6, Work* and E share some variables which may introduce cross
correlation . However, since Work* is also a function of tear index and ( is
dependent on the bond strength and sheet density, the cross correlation caused
by the shared variables should have aminor effect on the relationship . Similar
dimensionless plots are normally used in many other areas, such as in fluid
mechanics.

Another important feature of Figure 6 is that the softwood kraft pulps lie in the
highest c region, while the hardwood kraft and softwood TMP pulps clustered
in the medium E region . The model also predicts that the initial part of the
curve might be populated by hardwood TMP data if they were available .

One trend the model seems to be unable to predict is the effect ofwet pressing.
In Figure 6, the data points with the highest relative error from the series
generated by Kazi is the result of unbeaten and unpressed handsheets .

Figure 7 is a plot of the relative error between the model predictions and
the experimental measurements at different wet pressures for six degrees of
refining . Clearly, the highest relative error occurred for the unbeaten and
unpressed sheets . With increasing wet pressing at the moderate beating levels,
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Wet Pressure (Psi)
Figure 7: The relative error in tear index versus wet pressure at various beating
levels for Kazi's data .

the experimental results approach the model predictions, with unpressed sheets
representing the largest deviation from the model. For a given wet pressure,
increasing the level of beating in the moderate ranges also reduces the relative
errors . For the heavily beaten pulps, the effect of wet pressing on the relative
error between the model predictions and the experimental results does not
show a clear trend. One reason that the model may not have predicted these
results properly is the assumption that the bond strength is constant for each
pulping process. This assumption does not take into account the effect of wet
pressing and degree of beating on the bond strength . Meanwhile, the variable
E is a function of density. The sheet density is linearly related to wet pressing,
and therefore, the effect of wet pressing and beating should be accounted for
in the term describing the number of fibre crossings, (Equation 16). However,
for sheets made without wet pressing, the bond strength itself may be much
lower than the bond strength obtained through regression on Lee's kraft data.
Note that all of Lee's handsheets were made with a standard wet pressure of
50Psi. For the heavily beaten pulps, the bond strength could be much higher
due to the external fibrillation which can produce mechanical locking of the
fibrils .
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A mechanistic model was developed for the tear strength of paper. A univer-
sal equation was obtained by using the normalization technique . Non-linear
regression analysis was performed on 24 TMP and 8 kraft samples. Using the
bond strengths obtained from this analysis, the model can make quantitative
predictions of tear index for a given furnish . The bond strength for kraft pulps
was 16MPa and for TMP was 13MPa. However, the bond strength obtained
in this way was higher than the values typically reported in the literature . The
discrepancy could have been caused by the errors in the assumptions associ-
ated with other input parameters . These errors will be built into the bond
strength values through regression analysis . The relative errors for the model
predictions and the experimental data used in the regression analysis were 10%
and 22% for TMP and kraft pulps respectively .

Using the bond strength values obtained through regression analysis, the model
predictions were compared with experimental data from the literature without
further parameter adjustments . Most experimental data followed the trend of
the model predictions rather well .

A simple, novel approach has also been introduced to take into account the
effect of fines. The data of sheets made under various conditions from a wide
range of species were lying close to one universal curve as predicted by the
model. The relative average error for the model predictions was 28% for the
hardwood kraft pulps and 37% for the data from the beating and wet pressing
studies on the softwood kraft pulps.

On the universal tear curve, the softwood kraft pulps lay in the region with
the highestE while the hardwood kraft and softwood TMP pulps were located
in the medium E region . The low c region was not tested with experimental
data . It was expected that very poorly bonded or very strong wood pulps
would be located in that region . The dimensionless analysis approach has not
been applied to paper strength models previously. When plotting the data in
terms of dimensionless groups, a single curve relating tear energy to bonding
was predicted . The experimental data supports the associated model.
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Christer Fellers, STFI, Sweden

Ning Yan

Dr Derek Page, IPST, USA

Ning Ian

Micromechanical modelling of tear strength in kraft and TMP papers

Ning Yan, Paprican, Canada

I think it is a very interesting and ambitious theory you presented but I have difficulties
with a few things, especially that which addresses the differences between the theory and
the true fractography oftear. Ifyou take a piece ofpaper and tear it, it doesn't tear along
an in-plane line - it is more like a delamination type of failure . So I don't think what you
model is actually occurring in reality.

That is true . I agree . Our model is just a simplification ofthe real fracture process . There
are many phenomena going on when a piece of paper is torn. There is delamination .
However, in the case of 4-ply tear test, the degree of delamination is smaller in average
comparing to 1-ply tear test .
About the comment that the fracture path during the tear does not follow a straight line, I
agree with you on this as well. The tear path may tend to pass through some of the low
basis weight regions while avoiding high basis weight regions . However, if that is the
case, the tear path will be longer than a straight line . The resulting tear energy may be
equivalent to energy consumed along a straight line that passes through the mean basis
weight regions . This we do not know . We have to make some simplifications in order to
construct the model . Therefore, I totally agree with you that the real fracture process is
much more complex .

I agree with Christer. It seems to me that what you've done is to simulate the in-plane
tear test not the Elmendorf plane tear test. Now the results from the in-plane and
Elmendorf tests differ enormously and so I am not impressed that you get any agreement
at all with Elmendorf tear because if you get agreement with Elmendorf tear then I'm
afraid you wouldn't get any agreement with in-plane tear results.

The reason I have chosen Elmendorftear is because, in my opinion, it is more close to this
kind of modelling. The stress field at the crack tip in the Elmendorf mode is perhaps than

Transcription of Discussion



the in-plane tear mode . We know that in the in-plane fracture test, the stress is distributed
over a quite large region. The effect of neighbouring fibres should be taken into account .
In the Elmendorf tear mode, the stress field is perhaps more concentrated at the crack tip .
About the fracture process, the idea behind modelling fracture energy based on fibre pull-
out and breakage will be the same for the in-plane and Elmendorf (out-of-plane) tear, but
each parameter involved in the modelling will have different values .

Derek Page

Could I just make a quick second point . I find it difficult to understand your paper
because it doesn't make clear what the relationships are between properties that we all
know . For example, supposing you take a well bonded sheet, what is the relationship
between work of rupture and fibre strength, keeping everything else constant in the sheet?

Ning Yan

I'm glad you are asking this because in our thesis we also carried out further work that I
like to explain to you. Ifyou recall the curve ofnormalised tear work vs E when a and ß
are constants, the curve can be divided into three regions, increasing, decreasing and
plateau, depending on the value of E, which depends on sheet density and bond strength
for a given pulp furnish. The relationship between tear and fibre and paper characteristics
for each region is shown in the following table . For example, in the second region, which
is the decreasing region, the tear index is proportional to fibre strength to a power of
around 2 . That means 10% increase in fibre strength will give about 20% increase in tear .
However, if you are in the first increasing region, fibre strength has no effect on tear.
That is what is derived from our model .

Ning Yan, PhD thesis, University ofToronto, 1997

Derek Page

Yes, that's useful because that does agree with experimental data.

Region s Fibre
length

Fibre
width

Fibre
coarseness

Fibre
strength

Fibre
modulus

Sheet
densi

Bond
strength

I < 0.32 L2 d3 1/(,) 2 0 0 P 0
11 > 0.32 & 3.3 0 d 0 o f 0 I /P 1 /i bz
I II >_ 3.3 L d2 1/0 6F E 0 0



Ning Yan

The results shown in the above table are found to be rather consistent with observations
reported in the literature .

Dr R SSeth, Paprican, Canada

Dr Page has already asked several ofthe questions I wanted to . Are you aware that the
results in the literature are all four ply tear and there is a tremendous difference between
four-ply tear and single ply tear for the Elmendorf mode?

Ning Yan

Yes .

	

I applied the model only to the results of4-ply tear tests.

	

The reason behind this
was, as I explained in the previous questions, that the degree of delamination is not as
severe as in one ply tear test . Therefore, we think it is more suitable for using the model .

Raj Seth

I am not that sure.

Ning Yan

Perhaps it could be . But at this stage, the data used in the work are all obtained from 4-
ply tear tests.
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