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Rapid, reliable and non-destructive detection of the quality of maize silage 
is essential to high-efficiency animal husbandry and food safety. In this 
study, the colorimetric sensor array (CSA) integrated with chemometric 
methods is innovatively proposed for qualitative discrimination of maize 
silage. First, 12 color-sensitive dyes were selected to fabricate colorimetric 
sensor arrays to be used as artificial olfactory sensors for obtaining odor 
fingerprints of maize silage. Machine vision algorithms were utilized to 
extract the color features, and principal component analysis was applied 
to reduce the dimensionality of the obtained data. Finally, the PCA results 
were input variables to develop different qualitative discrimination models. 
These models involve support vector machines (SVM), extreme learning 
machine (ELM), and random forest (RF). The analysis results show the 
100% correct identification rate for independent samples. The general 
results sufficiently reveal that olfactory visualization technology integrated 
with chemometrics analysis has promising applications for high-precision 
discrimination of maize silage. 
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INTRODUCTION 
 

Maize silage has been one of the most widespread feeds in ruminant diets in most 

regions worldwide (Garcia-Chavez et al. 2022). Since it is productive, nutritious and 

storable, it is generally utilized as the primary roughage ingredient in total mixed rations 

(Tharangani et al. 2021). However, various factors, such as transportation and storage, can 

lead to the deterioration of maize silage during production. It not only degrades the 

nutritional value and production performance of ruminants but even jeopardizes the health 

of consumers (Khan et al. 2015; Borreani et al. 2018; Serva et al. 2023).  

Currently, the major quality evaluation methods for maize silage are the sensory 

evaluation method and laboratory detection analysis method. The sensory evaluation 

method is intuitive and convenient, but the evaluation results are highly subjective, which 

may have certain bias (Tuorila 2015). Laboratory detection analysis method generally 

relies on the accurate determination of pH, organic acid, and ammoniacal nitrogen, etc., in 

maize silage to evaluate its quality (Ávila and Carvalho 2020), such as gas 

chromatography-mass spectrometry (GC-MS), Kjeldahl nitrogen determination, and high-

performance liquid chromatography (HPLC) (Kayacelebi et al. 2014; Dou et al. 2022).  
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Although these methods can provide accurate and reliable results, they have the 

drawbacks of being destructive, requiring a long time, and high in cost. In addition, the 

electronic nose technique, although it can detect the odor components of the object to be 

measured and provide a new direction for silage corn feed quality assessment, the 

electronic nose instrument is expensive and the technique mainly relies on the weak van 

der Waals force to capture the odor, which is susceptible to environmental factors such as 

temperature and humidity, greatly affecting the detection accuracy(Wojnowski et al. 2017). 

Therefore, it is essential to develop a fast, reliable and non-destructive method for silage 

quality assessment to materialize efficient animal husbandry and food security. 

The olfactory visualization technology is a novel electronic nose technology 

established by mimicking the mammalian olfactory system. This technology is 

implemented through the cross-reaction between the gas-sensitive colorimetric dyes on the 

colorimetric sensor array (CSA) and the volatile organic compounds of the substance for 

measurement. The sensor array image after the reaction carries the information of the 

analyte, and qualitative and quantitative analyses of the analyte can be performed in 

accordance with the color change of the colorimetric dyes before and after the reaction 

(Janzen et al. 2006). Each colorimetric dye can react with different volatile gases. The color 

change caused by the same amount of different volatile gases and different amounts of the 

same volatile gases are not the same. Thus, it is possible to distinguish and detect a variety 

of chemical substances (Suslick et al. 2004). Metalloporphyrin and pH indicator are the 

commonest gas-sensitive colorimetric dyes, but they have different color-changing 

principles. Metalloporphyrin has an open axially connected ligand site, and when it is 

bound to the ligand, the spectrum is shifted, showing a strong coloring effect, whereas the 

color of the pH indicator varies only with the change of acidity and alkalinity. The 

performance of colorimetric sensor array (CSA) depends on the cross response of the 

sensor elements and the discriminative ability of the fingerprint model, which is 

independent of the traditional lock-and-key model of specific receptor-analyte interactions. 

Compared with the traditional electronic nose technology, the olfactory visualization 

technology has the advantages of high selectivity, high sensitivity, and low detection limit, 

which is more suitable for the production requirements of on-line and large-scale detection 

in modern animal husbandry industry. Nowadays, the technology has been utilized in 

numerous complicated scenarios, such as food quality assessment, plant disease diagnosis, 

and toxic gas detection (Jiang et al. 2019; Xu et al. 2019, 2022a,b; Liu et al. 2020; Wang 

et al. 2021; Ouyang et al. 2023). However, little research has been done on the application 

of this technology towards maize silage quality detection. 

This study aimed to verify the feasibility of applying olfactory visualization sensor 

technology for qualitative discrimination of maize silage. The primary work arrangements 

of this study were as follows. (1) The colorimetric sensor array was fabricated by spot 

sampling 12 color-sensitive dyes selected from the pre-experiment on the substrate 

material. (2) The post-reaction odor fingerprints were acquired and computer vision 

algorithms were used to extract the 108 variables from the different images. (3) PCA was 

used to extract feature variables by compression and visualize the spatial distribution of 

different quality maize silage samples. (4) Three non-linear chemometric methods were 

utilized to develop the qualitative discrimination model of maize silage, and independent 

datasets were used to validate the optimized models. 
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EXPERIMENTAL  
 
Sample Preparation 

Maize silage (Yandan Silage 202) was purchased from a local farm (Hohhot, Inner 

Mongolia, China) in three batches of 126 kg. Each batch was subjected to testing 

immediately upon receipt to ensure the quality of samples. The maize silage samples were 

placed in polyethylene boxes of 3 kg ± 100 g each at ambient temperature (18 to 22°C). 

Every two boxes of maize silage were taken as a group, and three sampling points were 

taken from each group for the olfactory visualization experiment, which resulted in 48 

samples per batch, and a total of 144 samples were prepared. 

During storage and feeding of silage corn feeds, it is possible that there may be 

secondary fermentation caused by periodic opening of silo bins (intermittent invasion of 

oxygen) or permanent destruction of the storage environment (continuous invasion of 

oxygen), so that two different treatments of laboratory-prepared maize silage samples were 

carried out on the collected samples, as follows: 

(1) Continuous aerobic exposure treatment: To prevent water evaporation, the 

polyethylene boxes were covered with aluminum foil with small holes of 10 mm 

diameter distributed equally. During the seven days of storage, aerobic exposures of 

0D, 1D, 2D, 3D, 4D, 5D, 6D, and 7D were undertaken, which were performed at 

ambient temperature (18-22°C). 

(2) Intermittent aerobic exposure treatment: In comparison to the previous treatment, the 

only difference of this method is that the maize silage was placed in a polyethylene box 

covered with perforated aluminum foil for one hour of aerobic exposure and kept closed 

for the rest of the time. 

Given the exploration of the deterioration pattern of corn silage by the pre-

experiment, the first two batches of samples were subject to continuous aerobic exposure 

treatment, and the third batch of samples was subjected to intermittent aerobic exposure 

treatment, resulting in relatively balanced samples of each maize silage grade. 

 

Quality Grade Assessment 
The pH value is one of the key indicators for assessing maize silage quality, 

reflecting the acidic and alkaline nature of the maize silage. An appropriate pH range serves 

to maintain its stability and promote the fermentation activities of beneficial 

microorganisms, which influence the feeding rate and enzyme activities of animals (Kung 

et al. 2018). Compared to other indicators, pH has the advantages of the visibility and 

rapidity of the measurement, thus providing a simple and effective means of monitoring 

for stocking management. According to the Technical Specification for Grading Whole 

Plant Maize Silage (DB11/T 1759-2020), among the fresh maize silage with pH ≤ 3.9, the 

medium maize silage with pH ranges from 3.9 to 4.4, and the deteriorated maize silage 

with pH > 4.4. 
The pH of maize silage was measured using a high-precision pH meter (PHS-3CB, 

Shanghai Yueping Scientific Instrument Co., Ltd., Shanghai, China) with a resolution of 

0.01 and an accuracy of ±0.01. Maize silage in the polyethylene box was evenly divided 

into three parts, and the silage from each part was mixed well and reduced using the 

quadrature method until the sample was reduced to 10.0 g (accurate to 0.1). The weighed 

maize silage was placed in a 500 mL glass beaker, then 90 mL of distilled water was added 

(10 g of sample/90 mL of distilled water was the common ratio). Later, the glass beaker 
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was covered with cling film. After sufficient immersion in distilled water for 0.5 h, the 

maize silage extract was prepared by filtering through 4 layers of gauze. Finally, the pH 

value of the extracts was measured using the pH meter. Each measurement was repeated 

in three trials. The average of the three measurements was adopted as the final pH value. 

This experimental procedure was performed at ambient temperature (18 to 22 °C). 

 

Fabrication of Colorimetric Sensors Array 
For acquiring the volatile odor fingerprint information of the different qualified 

maize silage feeds, this study used an olfactory visualization sensor system developed 

based on colorimetric sensors to capture the volatile odor of the maize silage samples. 

Color-sensitive materials used to fabricate colorimetric sensor arrays are essential to the 

components of the olfactory visualization sensor system. Thus, the selected color-sensitive 

materials must meet the following requirements: (1) The color-sensitive material must have 

a functional group that reacts chemically and strongly with the measured substance, 

allowing for strong mutual interactions; (2) A significant color variation must occur when 

the color-sensitive material responds to the measured substance; (3) Cross-sensitivity 

among color-sensitive materials, with overall responsiveness to the measured substance, 

which can form odor characteristic fingerprint and facilitate qualitative and quantitative 

detection.  

In accordance with the above requirements, after initial experiments, the volatile 

gas components of maize silage were detected by solid-phase microextraction (SPME) and 

gas chromatography-mass spectrometry (GC-MS) during the secondary fermentation of 

maize silage, including acids, esters, phenols, terpenes, alkanes, heterocyclic, aldehydes, 

alcohols, etc., with phenols and acids showing the most significant changes in the 

fermentation process. To precisely capture these key odor molecules, metalloporphyrin 

complexes containing different active metal ions (e.g., zinc, copper, iron, and cobalt) were 

selected for the design of this assay, and eight kinds of porphyrin (Sigma-Aldrich, USA) 

were screened and identified for the constructed colorimetric sensor arrays. Moreover, four 

pH indicators (Sino-pharm, Shanghai, China) with different chromogenic ranges were 

introduced to complement the sensor array to improve the sensitivity and broad-spectrum 

of detection as weakly acidic and weakly basic volatiles may be present in the forage. Table 

1 lists 12 color-sensitive dyes employed to fabricate olfactory sensor arrays. For preserving 

color information accuracy, the color-sensitive material needs to be placed on a pure white 

substrate. Moreover, the substrate material is hydrophobic for protection against ambient 

humidity. Therefore, a C2 reverse-phase silica gel plate was selected as the substrate 

material. 

The detailed steps for making sensors were as follows: (1) cut the 4 × 4 cm 

rectangular substrates out of C2 reversed-phase silica gel plates; (2) dissolve 10 mg of 

porphyrin fully in 5 mL of dichloromethane and dissolve 10 mg of pH reagent fully in 5 

mL of anhydrous ethanol; (3) close the prepared solutions hermetically and sonicated for 

15 min to achieve the 2 mg/mL solution, and then preserved in the dark; (4) use 100 × 0.3 

mm microcapillary to extract approximate 1 μL dissolved solution, then immobilize it on 

a C2 reverse-phase silica gel plate, fabricating the 4 × 3 colorimetric sensor array. The 

sensors were comprised of well-arranged 4 × 3 sensor elements, each of which was sized 

at ф3 mm, and (4) the constructed sensor arrays were stabilized in a fume hood for 30 min 

and then stored individually in plastic packing bags for further experiments. 
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Table 1. Twelve Color-sensitive Dyes on the Colorimetric Sensor Array 

Number Name 

1 2,3,7,8,12,13,17,18-Octaethyl-21h,23h-porphine 

2 5,10,15,20-Tetrakis (4-(methoxycarbonyl)phenyl)porphirinato]iron (III) chloride 

3 5,10,15,20-Tetrakis (4-methoxyphenyl)-21,22-dihydroporphyrin 

4 5,10,15,20-Tetrakis (4-methoxyphenyl)-21h,23h-porphyrine cobalt(ii) 

5 5,10,15,20-Tetraphenyl-21h,23h-porphyrin 

6 5,10,15,20-Tetraphenyl-21,22-dihydroporphyrin zinc 

7 5,10,15,20-Tetraphenyl-21h,23h-porphine copper 

8 5,10,15,20-Tetraphenyl-21h,23h-porphine iron (iii) chloride 

9 Bromocresol Green 

10 Bromothymol Blue 

11 Neutral Red 

12 Cresol Red 

 

Acquisition of Sensor Array Images and Pre-Processing 
Figure 1 shows the data acquisition and processing of the olfactory visualization 

sensor system. The pre-reaction image of the sensor array was scanned using an HP Scanjet 

2600f1 flatbed scanner at a resolution of 1200 dpi. In this study, 50 ± 0.1 g of maize silage 

feed samples were placed in a beaker with a diameter of 60 mm. The colorimetric sensor 

array was secured to the back side of the plastic wrap while the front side was facing the 

maize silage samples. The beaker was hermetically closed with plastic wrap, and the 

reaction was carried out at ambient temperature for 25 min. Then, the sensor array was 

scanned again after the response to acquire the post-reaction image data. 

The sensor image pre-processing procedures were as follows. (1) The colorimetric 

sensor array image was sequentially preprocessed with median filtering, binarization, and 

morphological processing by OpenCV to acquire the center of each sensor element, and 

the region of interest of each sensor element was segmented by combining the flood-fill 

algorithm. (2) The next step was to calculate the average gray scale value for the 

components of the sensor element at three color spaces (RGB, HSV, Lab). (3) The mean 

values of the grey scale of the reacted and original preprocessed images were subtracted to 

gain their color differences values. Each color-sensitive point contains 9 variables: three 

components in RGB color space (△R, △G, and △B), three components in HSV color 

space (△H, △S, and△V), and three components in CIELab color space (△L, △a, and△

b), for a total of 108 variables from 12 dyes in an array (12 dyes × 9 color components). 

 
Fig. 1. Data acquisition and processing process of the olfactory visualization sensor system for 
the determination of maize silage quality 
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Multivariate Data Analysis 
Principal component analysis (PCA) is an unsupervised algorithm that is widely 

used for dimensionality elimination and initial classification of multivariate data (Jolliffe 

and Cadima 2016). The fundamental principle is to apply fewer eigenvectors as a means to 

explain most of the variation of the original data. By analyzing and calculating the internal 

structural relationships of the correlation matrix of the original data, a series of new 

eigenvectors that are not related to each other is generated. These principal components are 

ordered by the magnitude of the variance of the original data. Thus, the preceding principal 

components contain the most information about the variance in the original data, while the 

latter principal components contain less information about the variance. In this study, PCA 

was utilized to further data compression and mining of original features (108 variables) 

and to visualize the distribution of silage maize samples with different quality grades (Gallo 

et al. 2016). 

Extreme Learning Machine (ELM) is a feed-forward neural network algorithm for 

real-time tasks with excellent learning efficiency and superior generalization performance 

(Guo et al. 2019) Its fundamental principle is to improve the efficiency of model training 

by randomly generating the connection weights ω and threshold β1 between the input layer 

and the hidden layer in order to improve the efficiency of the model training. Since it 

eliminates adjusting the weights during the training process, it can significantly reduce the 

training time. Compared to the traditional optimality theory, ELM has the unique 

characteristic that it avoids the process of iteratively adjusting the weights to seek the 

optimal solution during the training process. Instead, it only requires setting the output 

matrix of the hidden layer K to acquire the unique optimal solution. The simplified training 

approach allows the ELM to concentrate only on calculating the output weights during the 

learning process, which enables more efficient acquisition and adaptation to the data. In 

this study, the optimum parameter combination of K and PCs in the ELM model was 

determined by the classification accuracy of the training set by applying a five-fold cross-

validation strategy and grid search method. Their value ranged from 10 to 100 (the interval 

is 10) and 1 to 22 (the interval is 1), respectively. 

Support vector machine (SVM) is a supervised learning algorithm for classification 

and regression with excellent generalization performance and robustness (Bouboulis et al. 

2015). Its fundamental principle is to train the model by finding the optimal hyperplane of 

the data and obtaining the maximum interval at the support vectors on the hyperplane for 

efficient classification and regression of data. The optimization objective of SVM is to find 

a hyperplane with a maximum interval, which means that it is more cautious in choosing 

the decision boundary. Therefore, it is less susceptible to the influence of local minima and 

more adaptable to higher dimensional spaces and nonlinear relationships. In this study, the 

combination of support vector machine and radial basis kernel function (RBF) was utilized 

to assess different qualities of maize silage (Virmani and Pandey 2023). For selecting the 

optimum penalty factor c and kernel function parameter g, it was optimized by using five-

fold cross-validation and grid search methods while varying the number of input principal 

components, and the best PCs and parameters c, g were selected depending on the 

maximum discrimination rate in the training set. The number of PCs ranging from 1 to 22 

(the interval is 1), accompanied by c and g, take values from 2-10, 2-9.5, …, 2-10, 2-9.5. 

Random Forest (RF) is an integrated learning method consisting of multiple 

decision trees, which is particularly appropriate for dealing with high-dimensional data and 

problems with complex relationships (More and Rana 2022). Its fundamental principle is 

to randomly select a part of the samples to construct a decision tree by bootstrap sampling. 
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Each decision tree characterizes and predicts the data, and the classification result is finally 

achieved by voting on each decision tree. Therefore, the number of decision trees M is 

crucial to the RF model performance. The voting mechanism of random forests reduces the 

influence of individual trees and contributes to reducing the risk of overfitting. In addition, 

the voting mechanism of random forests reduces the influence of individual trees and 

contributes to reducing the risk of overfitting. Accordingly, RF usually has the advantages 

of high precision, excellent stability, and superior overfitting resistance. In this study, the 

optimum parameter combination of M and PCs in the RF model was determined by the 

classification accuracy of the training set by applying a five-fold cross-validation strategy 

and grid search method. Their value ranging from 50 to 1000 (the interval is 50) and 1 to 

22(the interval is 1), respectively. 

 

Model Evolution Criteria 
The confusion matrix can intuitively assess the qualitative discrimination 

performance of the target model (Ouyang et al. 2023). Accuracy, precision, and sensitivity 

are three critical indicators in the assessment matrix. Accuracy is an overall indicator that 

reflects the proportion of samples correctly categorized by the model. High accuracy 

denotes that the model has excellent classification ability. The accuracy is determined by 

Eq. 1.  

TP TN
Accuracy

TP TN FP FN

+
=

+ + +                                                                     (1) 

where TP refers to the number of positive category samples that the model correctly 

predicts as positive categories; TN refers to the number of negative category samples that 

the model correctly predicts as negative categories; FP refers to the number of negative 

category samples that the model incorrectly predicts as positive categories; and FN refers 

to the number of positive category samples that the model correctly predicts as negative 

categories. This study used the test set to construct confusion matrices for each model to 

determine the classification effect. 

 

Software 

The data analysis and visualization were implemented using OriginPro 2018 

(OriginLab Corporation, Northampton, USA). Extraction of color feature differences were 

implemented in Python 3.10 (JetBrains, Prague, Czech Republic), and the chemometric 

methods, including PCA, ELM, SVM, and RF, were implemented in MatlabR2021a 

(Mathworks, Natick, USA). All above data processing were run on Windows 11. 

 

 

RESULTS AND DISCUSSION 
 
Maize Silage Grades and Samples Division 

Figure 2 demonstrates the changes in pH over time of maize silage under aerobic 

exposure conditions at ambient temperature. As the duration of aerobic exposure increased, 

the pH value of the continuous aerobic exposure treatment group and the intermittent 

aerobic exposure treatment group both exhibited an increasing tendency. The continuous 

aerobic exposure treatment group experienced a significant increase in pH value compared 

to the moderate rise of the intermittent aerobic exposure treatment group. During 

continuous aerobic exposure, the pH value remained stable during the initial phase and 
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increased slightly on the second day. This indicates that the feed begins to oxidize and 

ferment on the second day as it begins to deteriorate. Starting with the third day, the 

temperature of the maize silage samples increased slightly, accompanied by a significant 

increase in pH, from 4.40 to 6.60. With time, the temperature rose significantly, up to a 

maximum of 48 °C. Simultaneously, the odor of the maize silage sample changed from a 

slightly sweet or fruity odor in the initial period of aerobic exposure to a putrid, fishy, or 

decaying odor, and the texture turned stickier (Karnatam et al. 2023). This is considered as 

a consequence of Clostridium contamination. Clostridium is a genus of gas-producing 

anaerobic bacteria that can survive in an anoxic environment and produce gas by 

decomposing organic matter in the feed, resulting in a change in the odor of the feed (Zhang 

et al. 2018). From the fifth to the seventh day, the molds started to grow and the pH steadily 

increased, fluctuating between 6.70 and 7.60. At this time, maize silage had deteriorated 

entirely and could not be utilized for ruminant feeding. By contrast, the pH of the 

intermittent aerobic exposure treatment group gradually rose from 3.66 to 4.28 during the 

seven days. The quality of maize silage was still within acceptable grade. The results 

indicated that maize silage subjected to continuous aerobic exposure conditions was more 

susceptible to deterioration. Changes in pH values mainly originated from changes in lactic 

acid content. During the initial fermentation stages of maize silage, lactic acid was the 

primary fermentation product, keeping the feed in an acidic environment and helping to 

inhibit the reproduction of harmful microorganisms. However, the oxidation reaction 

converts lactic acid to acetic acid, increasing the pH of maize silage. The changes lead to 

the loss of a favorable acidic environment for the forage, which further fosters the growth 

of unfavorable microorganisms and leads to the ultimate deterioration of the maize silage 

(Wilkinson and Davies 2013). 

The pH of samples ranged from 3.62 to 7.60. The quality of maize silage forage 

can be divided into three stages under continuous aerobic exposure treatment: fresh phase 

for 0 to 1 days, medium phase for the second day, and deteriorated phase for 3 to 7 days. 

As for the intermittent aerobic exposure treatments, it is divided into two stages: fresh 

phase for 0 to 3 days and medium phase for 4 to 7 days. Therefore, 48 samples of fresh, 36 

samples of medium, and 60 samples of deterioration were collected. Subsequently, the 

Kennard-Stone (KS) method was utilized to classify the 144 samples. Three quarters (108) 

of the samples were used as the training set to develop the qualitative discrimination model, 

and the remaining quarter (36) formed the prediction set for validating the performance of 

the developed model (Wu et al. 2015). 

 

 
Fig. 2. Changes in pH of maize silage under different aerobic exposure treatments during 7 days. 
Error bars represent ± standard deviation. 
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Response Results of Colorimetric Sensor Array 
Figure 3 shows the images of the characteristic differences among the maize silage 

samples of different qualities in different color spaces. The study captured color variations 

by integrating these three color spaces to deeply analyze and differentiate the quality levels 

of maize silage samples. RGB space focuses on the spectral components of colors, HSV 

emphasizes on hue, saturation, and luminance, and Lab space, based on human vision's 

perception of color differences, which is more sensitive to color contrasts and luminance 

variations. Each of these color spaces contributes a deep understanding of color variation 

from a unique perspective, jointly depicting images that accurately map the characteristics 

of different qualities of maize silage. Twelve color-sensitive points present color variations, 

and different quality grades of maize silage have their unique images, which can be 

distinguished by the naked eye. This is primarily attributed to the different composition 

and content of volatile components in different quality maize silage samples. The 

colorimetric sensors array is sensitive to the volatile organic compounds in deteriorated 

maize silage, which results in the volatile components reacting differently with the 

individual color-sensitive points on the sensor array, thus showing different color changes. 

Therefore, the combination of 108 color feature variables from different images with 

appropriate chemometric methods has the potential to differentiate maize silage quality. 

 

 

(a) 

   

 

Fresh Medium Deterioration 

(b) 

   

 

Fresh Medium Deterioration 

(c) 

   

 

Fresh Medium Deterioration 
 

Fig. 3. The color differences image of sensor array with different grades of maize silage samples 
during 7 days. (a) RGB, (b) HSV, (c) Lab 
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Results of PCA 
Figure 3 demonstrates that the responses of the sensor elements between adjacent 

aerobic exposures were relatively similar, which could be attributed to the cross-response 

of some of the sensor elements to the same VOCs or the same response results for different 

VOCs. In addition, this study selected three color space color feature differences as odor 

fingerprint information, and the feature difference images varied in different color spaces. 

All the situations mentioned above may lead to the redundancy of information between the 

variables extracted from the olfactory sensors. Thus, PCA was used to extract the dominant 

feature variables from the 108 variables. Figure 4 depicts the cumulative variance 

contribution of the top 22 PCs obtained after PCA processing of sensor data. The figure 

demonstrates that the first three principal components contributed to the original feature 

data of 20.5%, 10.8% and 9.5%, respectively. Moreover, the first 22 principal components 

contributed to a cumulative variance contribution sum of 90.01%, far exceeding the 

standard of 85%, which explains most of the valid information in the original feature data.  

PCA produced satisfactory results in data reconstruction and extraction of valuable 

information. However, from Fig. 5, given the insufficient variance contribution and overlap 

of the principal components, the top three principal components were not appropriate for 

recognizing the different qualities of maize silage. Therefore, the top 22 PCs were selected 

as input feature variables. On that basis, three nonlinear ELM, SVM, and RF qualitative 

discriminant models were developed for qualitative discrimination of maize silage. 
 

 
 

Fig. 4. The cumulative variance contribution of the top 
22 PCs obtained by PCA processing of sensor data 

 
 

Fig. 5. Three-dimensional principal component 
scores of maize silage samples with different 
grades 

 

Results of ELM Model 
Because the connection weights ω and thresholds β1 from the input layer to the 

hidden layer are generated randomly, the output matrix of the hidden layer, K, is required 

to be set in advance. Thus, K dictates the complexity of the ELM model. Reasonable K can 

not only maintain the model learning ability but also avoid overfitting and improving the 

generalization performance. Figure 6 depicts the discrimination rating of the different ELM 

classification models with different principal component PCs and K values. With the 

increase of the K and PCs, the discrimination rating of the ELM dramatically improved, 

then stabilized range from 88% to 100%. However, the model discriminant gradually 

decreased as the K-value and principal component PCs increased. This is attributed to the 

overfitting of the training data as a result of increasing the number of K values and PCs, 
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which makes the model more complicated. The model was over-adapted to the noise and 

details in the training set, all of which cannot be generalized to novel data, which leads to 

performance degradation on the test set.  

According to the results of the five-fold cross-validation and grid search, there were 

12 parameter combinations with a 100% discrimination rating, in which the K are all in the 

range of 10 to 50. Among them, four groups had a K value of 20, at which point the model 

discrimination performance was much better than the others. When K = 20 and PCs = 10, 

the ELM model gave the best results for prediction sets. The optimized model achieved an 

identification percentage of 94.44% in the prediction set, with 2 of the 36 samples 

misclassified. The detailed classification information of the prediction set is further 

exhibited in Fig. 8(a). The model correctly classified 91.67%, 100%, and 93.33% samples 

into corresponding categories, respectively. Herein, there were fresh and deteriorated 

samples, each misidentified as medium and misclassified samples were placed in the 

neighboring grades. Thus, ELM exhibited a good ability to discriminate the quality of 

maize silage. 
 
 

Table 2. Discrimination Rates of SVM Models with Different PCs and Best 
Parameter c, g 

PCs 
Parameter Optimization Discrimination Rate (%) 

c g Training set  Prediction set 
(%) 1 67.5926 181.0293 64.81  66.6667 

2 8.7220 0.3536 77.78  77.78 

3 0.7171 0.5000 97.22  83.33 

4 2.8384 2.8284 98.15  88.89 

5 1.0000 0.7071  97.22  88.89 

6 8.7220 0.7071  97.22  94.44 

7 1.4142 1.0000  97.22  91.67 

8 0.3536 0.5000  99.07  97.22 

9 0.5000 0.2500  99.07  94.44 

10 0.7071 0.2500  100.00  100.00 

11 1.4142 0.0884  99.07  97.22 

12 2.8384 0.2500  100.00  100.00 

13 0.5000 0.2500  99.07  97.22 

14 1.0000 0.2500  98.15  94.44 

15 1.0000 0.1250  99.07  94.44 

16 1.4142 0.1250  100.00  97.22 

17 2.0000 0.0625  97.22  97.22 

18 1.0000 0.0442  99.07  97.22 

19 0.5000 0.1768  99.07  100.00 

20 4.0000 0.1250  100.00  97.22 

21 2.8384 0.0884  100.00  97.22 

22 2.8384 0.1250  99.07  94.44 

PCs: number of principal components; c: the penalty coefficient of SVM; g: kernel parameter of 
radial basis function (RBF) 
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Fig. 6. Discrimination rate of ELM models with different K values and PCs in the training set 
 
Results of SVM Model 

The parameters c, g, and PCs are considered to be the most critical parameters in 

SVM, which significantly influence the performance. Table 2 demonstrates the results of 

simultaneously optimizing the SVM with three parameters, utilizing the five-fold cross-

validation and grid search strategy. The performance of SVM increased gradually with 

increasing PCs from 1 to 10. When c= 0.7071, g = 0.2500, and PCs = 10, the SVM obtained 

the best discrimination percentage of 100.00%. However, with the increasing of PCs, the 

performance of the SVM showed a certain fluctuation, at discrimination percentages of 98 

to 100. This phenomenon is caused by the introduction of too many PCs into the model, 

leading to interference and invalid information for the model. The 36 independent samples 

in the prediction set were imported into the optimized model, and a superior result was 

acquired with a discrimination of 100%. The confusion matrix for the prediction set is 

illustrated in Fig. 8(b), which achieved clear discrimination among the three quality grades. 

Therefore, the olfactory visualization technique integrated with the SVM model 

demonstrated an excellent application for the qualitative identification of maize silage. 
 

Results of RF Model 
Generally, the higher number of decision trees in RF, the better the performance of 

the model, but it can lead to an increase in computational cost as well. This study set the 

initial M as 50 and increased it at intervals from 50 to 1000. Figure 7 depicts the 

discriminant rate of different RF classification model for different PCs and M values. The 

superb result of the RF in the training model was 99.50%. The discrimination fluctuated 

with the increase of M and PCs but was remarkably stable compared to ELM, with 

fluctuations ranging from 98% to 100%. The parameter-optimized model was applied to 

the independent 36 samples in the prediction set, and a satisfactory recognition percentage 

of 97.22% was obtained. Figure 8(c) presents the confusion matrix of the RF about the 

identification samples in the prediction set. There were superior sensitivity scores of 

91.67%, 100%, and 100% for fresh, medium, and deteriorated grades, merely one fresh 

sample was misidentified as the medium. Therefore, there is also trustworthiness for 

applying RF to the qualitative identification of maize silage. 
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Fig. 7. Discrimination rate of RF models with different M values and PCs in the training set 
 

Comparison of Different Classification Models Performance 
Olfactory visualization sensors and chemometric methods were used to 

characterize different quality grades of maize silage. The olfactory sensor platform was 

constructed using a 4 × 3 multichannel with 108 variables. Moreover, the three qualitative 

models and optimization strategies were employed to establish the classification models. 

The discrimination results of ELM, SVM, and RF modes in recognizing maize silage 

quality are demonstrated in Table 3. Among the three models, SVM achieved the 100% 

correct identification rate for independent samples, which is considered to be the most 

desirable model. The reason that the olfactory visualization system combined with the 

SVM classification model can achieve such perfect recognition results can be summarized 

as follows. 
 

 
Fig. 8. The confusion matrixes of discrimination rates for three qualitative models in the predicting 
set. (a) ELM; (b) SVM; (c) RF. 

 

First, concerning aspects of olfactory sensor systems, during aerobic exposure to 

maize silage, organic substances in the maize silage are oxidized, accompanied by 

abnormal activity of microbial metabolism, and these variations contribute to different 

levels of volatile organic compounds in different qualities of maize silage. Although these 

small changes are difficult to recognize by humans, the differences can be captured by 

olfactory sensors fabricated from this study. Appropriate porphyrins and pH indicators 

have strong interactions with various VOCs and have a broad range of responses to 

different concentrations of VOCs. These allowed the olfactory visualization sensors to 
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recognize differences in odor among different maize silage qualities. In addition, the 4 × 3 

sensor array was able to acquire VOCs information from 12 channels, which made it 

possible to identify and differentiate different odors and reduce the impact of cross-

response. Therefore, the colorimetric sensors array demonstrated a unique advantage for 

detecting maize silage. 

 

Table 3. Results and Comparison of the Best Extreme Learning Machine (ELM) 
Model, Support Vector Machine (SVM) and Random Forest (RF) Model 

Model PCs Other parameters 
Discrimination rate (%) 

Training set (%) Prediction set (%) 

ELM 10 K = 20 100.00 94.44 

SVM 10 c = 0.7071, g = 0.2500 100.00 100.00 

RF 7 M = 600 99.50 97.22 

PCs: number of principal components; K: number of neurons of the hidden layer in the ELM; c: 
the penalty coefficient of SVM; g: kernel parameter of radial basis function (RBF); M: number of 
decision trees in the RF 

 

From the perspective of chemometric methods, the olfactory sensor array contained 

108 variables, which varied significantly from each other. Hence, PCA played an 

influential function in dimensionality reduction and principal component extraction. 

Notably, the top three PCs were relatively minor, accounting for a mere 40.8% of the total. 

It implies that each sample has a unique position in the coordinate system of the principal 

components, emphasizing that each variable is essential. Consequently, the top 22 principal 

components were selected to explain the variability of the data better. Among the three 

qualitative discrimination models, the discrimination abilities of each model after the 

parameter optimization were credible. However, compared to the training set, the 

discrimination rates of ELM and RF in predicting independent samples were reduced by 

5.56% and 2.28%, respectively. This difference can be attributed to several key reasons. 

First, SVM has inherent advantages for handling linearly differentiable data or high-

dimensional data after kernel transformations, while RF and ELM may not be efficient 

enough in handling such data structures. Second, SVM can effectively avoid overfitting by 

precisely tuning the regularization parameters and kernel function, ensuring that the model 

performs well on sightless data. In contrast, the other two models, while also capable of 

handling complex datasets, might not be as flexible as SVM in adapting to data simplified 

by PCA. Furthermore, the dimensionality-decreased data from PCA simplifies the amount 

of information and cuts down the noise, providing clearer inputs for SVM. Although all of 

the models were able to deal with the same downscaled data, SVM showed itself to be 

more effective in capturing feature dimensions critical to classification decisions through 

careful parameter tuning. This does not mean that SVM will perform best on all reduced 

dimensionality datasets, but rather that SVM happens to have an advantage relative to the 

particular data and task of the moment. Consequently, SVM was shown to be more 

appropriate for the qualitative discrimination of maize silage quality. 
 
 

CONCLUSIONS 
 

1. This study verified that integrating colorimetric visualization sensor technology with 

appropriate chemometrics can enable high-precision quality discrimination of maize 

silage.  
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2. The study fabricated a novel olfactory visualization sensor system using 12 color-

sensitive materials, which were used to form different odor fingerprints by sensitively 

cross-reacting the sensors with indicative volatile compounds released from maize 

silage feed during aerobic exposure.  

3. Rapid, reliable, and non-destructive discrimination of maize silage based on these 

fingerprints was integrated with chemometric methods (PCA, ELM, SVM, RF). The 

SVM approach was shown to be superior to the other models, indicating a preferable 

generalization ability.  

4. The results can provide high-precision technical support for quality identification of 

maize silage, having promising prospects for practical applications. 
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