
 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Li et al. (2024). “Alfalfa protein with Vis/NIR,” BioResources 19(2), 3808-3825.                   3808 

 

Detection of Protein Content in Alfalfa Using Visible/ 
Near-Infrared Spectroscopy Technology 
 

Jie Li,a Guifang Wu,a,* Fang Guo,a,* Lei Han,a Haowen Xiao,b Yang Cao,b Huihe Yang,a 

and Shubin Yan a 

 
In this study, a quantitative model was developed using near-infrared 
spectroscopy to analyze protein content in dried purple alfalfa, employing 
preprocessing methods (SG, SNV, MSC, FD) and variable selection 
algorithms (CARS, IRIV) to optimize spectra. Models using ELM, PLSR, 
SVM, and LSTM were tested; the MSC-CARS-PLSR-SVM model 
achieved the highest accuracy, with a calibration determination coefficient 
(R²) of 0.9982 and root mean square error (RMSE) of 0.1088, and a 
prediction R² of 0.9645 with RMSE of 0.5230, offering a precise and 
reliable method for protein content prediction. 

 
DOI: 10.15376/biores.19.2.3808-3825 

 

Keywords: Quantitative detection; Near-infrared spectroscopy; Machine learning; Protein content; Alfalfa 

hay 

 
Contact information: a: College of Mechanical & Electrical Engineering, Inner Mongolia Agricultural 

University, Hohhot, 010018, P.R. China; b: Inner Mongolia Autonomous Region Agricultural and Pastoral 

Technology Extension Center, Hohhot, 010010, P.R. China; 

*Corresponding authors: wgfsara@126.com and jennifer_guo@imau.edu.cn 

 

 
INTRODUCTION 
 

Purple alfalfa, a perennial herbaceous plant belonging to the legume family, is 

widely considered to have originated in the Near East region, including Iran, Anatolia, the 

Turkmen Plateau, and the Transcaucasus (Bedaf et al. 2008). It boasts high production 

potential and nutritional value, making it one of the most extensively cultivated forage 

crops worldwide and earning it the reputation of "the king of pastures." Beyond its 

nutritional benefits, purple alfalfa plays a crucial role in nitrogen fixation, enhancing soil 

fertility and aiding in the reduction of chemical fertilizers' use, which is significant for the 

sustainable development of agriculture (Ye et al. 2022). Purple alfalfa is vital in the 

development of grasslands and livestock industries, especially in arid and semi-arid regions 

(Cao et al. 2011). Alfalfa hay is a critical feed source for dairy cows and other livestock, 

significantly impacting animal health and productivity due to its protein content (Fustini 

et al. 2017). Improper drying methods can degrade the nutritional quality of alfalfa, 

diminishing its feed value and potentially leading to livestock poisoning, affecting the 

quality of dairy products. However, current methods for assessing the protein content in 

alfalfa hay have limitations, especially in terms of rapid and non-destructive testing. 

Therefore, developing a new technology for the quick and accurate assessment of protein 

content in purple alfalfa hay is particularly important. 

Near-infrared spectroscopy (NIR) is a non-destructive analytical method capable of 

detecting different absorbance frequencies of specific molecules within substances. Its 

rapid and non-destructive nature makes it particularly well-suited for analyzing functional 
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groups in proteins, such as amide groups, whose infrared absorbance band characteristics 

can accurately reflect the content and quality of proteins (Huck et al. 2020). By measuring 

the interaction between the sample and near-infrared light within a specific wavelength 

range, materials with different components exhibit unique spectral features regarding light 

absorption, scattering, and reflection. The varying concentrations of the same component 

are indicated by different intensities of characteristic absorbance peaks (Hell et al. 2016). 

Analyzing these features provides chemical and physical information about agricultural 

products. Recently, NIR spectroscopy has been applied in various fields, including food, 

pharmaceutical, and chemical engineering (Lopes et al. 2015), tea (Shen et al. 2022), wood 

(Acuna-Gutierrez et al. 2021), and feed. There are also reports of using infrared 

spectroscopy to detect molds in food (Ma et al. 2023). 

Near-infrared (NIR) spectroscopy has been employed in the grain and feed 

industries to determine the content of moisture, protein, fiber, and fat. By establishing a 

relationship model between the moisture content and the spectral characteristics of 

samples, the moisture content in grains and feeds can be determined, providing a method 

for the rapid and accurate assessment of their dryness (Phetpan 2019). Due to their 

chemical bond structures, proteins produce specific spectral features in light absorption and 

scattering, enabling the prediction of protein content in grains and feeds, which is crucial 

for feed production and grain quality control (Masithoh et al. 2020). NIR spectroscopy can 

determine fiber content through specific spectral responses generated by the fiber 

components in samples (Chen et al. 2020). Similarly, it can rapidly determine fat content 

by utilizing the optical properties of fats, offering key data support for feed formulation 

(Bilal et al. 2020). Discovering the links and patterns between NIR spectroscopy and 

agricultural products allows for the practical analysis and detection of agricultural product 

quality (Cortés et al. 2019). 

With the rapid advancement of computer science and artificial intelligence, 

machine learning algorithms are increasingly applied to the processing of near-infrared 

(NIR) spectroscopy data. As a non-destructive analytical technique, NIR spectroscopy 

obtains chemical and physical information about samples by measuring their absorbance 

and scattering spectra (Mishra et al. 2019; Cortés et al. 2019; Zhang et al. 2020). The 

application of machine learning in the analysis and modeling of NIR spectroscopy data can 

achieve various objectives, such as prediction and classification (Ciza et al. 2019), feature 

extraction and dimensionality reduction, anomaly detection, and quality control (Gao et al. 

2018), significantly enhancing the efficiency and accuracy of material analysis and testing. 

In the construction of a quantitative detection model for purple alfalfa, the 

preprocessing of spectral data and the extraction of characteristic wavelengths are of 

paramount importance. Effective preprocessing of spectral data can eliminate or reduce the 

interference from non-target factors such as noise and baseline drift, thereby enhancing the 

accuracy and repeatability of the analysis (Saly et al. 2010). Feature extraction plays a 

crucial role in identifying the most representative and relevant information from complex 

spectral data, pinpointing the characteristic wavelengths closely related to protein content 

with greater precision (Zhang et al. 2023). These characteristic wavelengths are key to 

building a high-accuracy quantitative detection model. Compared to conventional models, 

models employing characteristic wavelengths significantly improve precision and 

efficiency by precisely identifying specific wavelengths closely associated with target 

attributes, such as protein content. This approach reduces the need to process redundant 

information, allowing the model to focus more on key data. Consequently, under similar 

conditions, it achieves higher predictive performance and stability with lower 
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computational costs (Li et al. 2023). 

This study employed a variety of machine learning algorithms, including Extreme 

Learning Machine (ELM), Partial Least Squares Regression (PLSR), Support Vector 

Machine (SVM), and Long Short-Term Memory (LSTM) networks. The ELM algorithm 

demonstrated advantages in providing fast learning speed and high generalization 

capability, while PLSR is suited for handling high-dimensional data. SVM showed strong 

performance in small sample sizes, non-linearity, and high-dimensional pattern 

recognition, and the LSTM network excelled in processing time-series data. The 

combination of these methods enabled the study to predict the protein content in purple 

alfalfa hay more accurately and efficiently. This approach offers new perspectives and 

methods for related research. Compared to the authors’ earlier article published in 

BioResources in 2023, Vol. 18, pages 5399-5416, the study displays several differences 

and innovations. Significantly, the spectrometer and detection range used in this study 

differ from previous research. Observations were made with the Quality Spec Pro 

visible/near-infrared spectrometer from ASD Inc., USA. It has a detection range of 350 to 

1830 nm, which is better suited for capturing spectral information related to protein 

content. Moreover, in terms of research focus, this study concentrated on the quantitative 

analysis of protein content in alfalfa using visible/near-infrared spectroscopy, rather than 

merely classifying alfalfa's moldy state or drying method. A significant correlation was 

found between visible/near-infrared spectroscopy and the protein content in alfalfa, 

enabling rapid and accurate detection of protein in dried alfalfa. Additionally, in the 

establishment of machine learning models, this work introduced different algorithms and 

modeling methods from the aforementioned study and employed optimization algorithms 

to enhance prediction accuracy. 

 In summary, this study successfully enhanced the accuracy and efficiency of protein 

content detection in purple alfalfa hay by utilizing advanced spectrometric equipment and 

innovative data processing and modeling techniques. The objectives of this research were 

as follows: (1) Conditioning and conventional protein content analysis of alfalfa hay; (2) 

Preprocessing and average spectral analysis of dried alfalfa; (3) Determining the optimal 

characteristic wavelengths using Competitive Adaptive Reweighted Sampling and 

Iteratively Retains Informative Variables algorithms; (4) Constructing quantitative 

detection models for alfalfa using Extreme Learning Machine and Partial Least Squares 

Regression; (5) Improving model predictive capability by using Principal Components 

derived from PLSR as independent variables, with Support Vector Machine (SVM) and 

Long Short-Term Memory (LSTM) networks for regression prediction. 

 
 
EXPERIMENTAL 
 

Preparation of Experimental Samples 
The samples utilized in this study were sourced from the experimental fields of 

Inner Mongolia Agricultural University. To ensure the accuracy and rigor of the 

experiment, while minimizing sampling errors, a strict sample selection and processing 

protocol was adopted. Specifically, prior to sampling, impurities such as weeds, nails, 

artificially damaged specimens, and decayed alfalfa were removed. Samples with similar 

plant heights and leaf areas were selected (average plant height ranged from 71.85 cm to 

82.31 cm, leaf length from 1.25 cm to 2.25 cm, and leaf width from 1 cm to 2.5 cm). The 

initial moisture content of the harvested alfalfa was 80±3%. Drying treatments included 
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both natural sun drying and ventilated shade drying after mold formation. During the drying 

process, a DSH-50-10 electronic moisture meter was used to measure the moisture content 

every two hours, to monitor the drying process, and to ensure that the final moisture content 

of alfalfa stabilized between 15% and 20%. Naturally sun-dried alfalfa was placed under 

direct sunlight, while moldy alfalfa was sealed in Ziplock bags and stored in the laboratory 

until ventilated shade drying was performed after mold formation. After drying, alfalfa 

samples were ground into a fine powder (100 mesh) using a pulverizer, and 15g was 

weighed and stored in Ziplock bags. A total of 120 alfalfa hay samples were prepared, and 

the protein content of these samples was determined using a Kjeltec 8420 automatic 

Kjeldahl apparatus and recorded. 

 

Infrared Spectral Acquisition 
The spectrometer used in this study was the Quality Spec Pro from Analytical 

Spectral Devices, Inc. (ASD), USA. The wavelength range of the spectrometer was 350 to 

1830 nm, with a spectral sampling interval of 1 nm. The visible-near infrared spectrometer 

was preheated for 30 minutes before collecting dark and reference spectra for calibration. 

Measurements were taken in a dark environment (dark box) to avoid stray light 

interference. The fiber optic probe was placed 12 cm above the sample's surface vertically. 

Each petri dish sample was measured three times, generating three sets of spectral data per 

sample. The average of these three sets was taken as the spectral reflectance test value for 

the alfalfa sample. After collection, the spectral data were imported into a computer for 

analysis using ViewSpecPro software, resulting in an average spectrum reflectance in the 

wavelength range of 350 to 1830 nm. 

 
Fig. 1. Reflectivity curve of alfalfa hay samples 

 

 

To improve the accuracy of visible/near-infrared spectroscopy measurements and 

enhance the signal-to-noise ratio of the spectra, noisy spectra in the 350 to 449 nm range 

were excluded. Thus, the effective wavelength range was 450 to 1830 nm, as shown in Fig. 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Li et al. (2024). “Alfalfa protein with Vis/NIR,” BioResources 19(2), 3808-3825.                   3812 

1. In the graph, each curve corresponds to the spectral reflectance test values of a sample 

from 450 to 1830 nm, with a total of 120 curves. During the measurement process, dark 

and reference spectra were collected every 10 minutes for recalibration to ensure 

measurement accuracy. 

 

Pretreatment of the Spectral Data 
Due to the susceptibility of spectral data to instrument noise and surrounding 

environmental factors, the original spectral curves of alfalfa hay often contain numerous 

spikes, which can impact subsequent model building. Therefore, it is necessary to 

preprocess the average spectrum to eliminate machine noise and baseline drift. This study 

selected Savitzky-Golay (SG) convolution smoothing, Standard Normal Variate (SNV), 

Multiplicative Scatter Correction (MSC), and First Derivative (FD) algorithms for 

preprocessing. SG smoothing enhances the smoothness of the spectrum, reducing noise 

interference (Jiao et al. 2020). SNV is primarily used to address surface scattering effects 

and variations in light intensity on the spectrum (Oliveri et al. 2019). MSC is employed to 

eliminate the impacts of particle size and scattering caused by particle inhomogeneity 

(Makino et al. 2016). The first derivative operation (FD) eliminates baseline shifts (Yang 

et al. 2019). This study preprocessed spectral data using The Unscrambler X10.4 and 

MATLAB software. The processed spectral curve is shown in Fig. 2. 

 

 
 

(a)                               (b) 

 
(c)                               (d) 

Fig. 2. Spectral curve after preprocessing：(a) SG, (b) SNV, (c) MSC, (d) FD. 
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The Savitzky-Golay filtering algorithm optimizes the moving average method and 

is extensively utilized for data denoising and smoothing. Its core advantage lies in its ability 

to maintain the original shape and width of the signal unaffected during filtering. This 

algorithm, through specific computational formulas, effectively balances the relationship 

between denoising and the preservation of signal characteristics in signal processing. 

Standard Normal Variate (SNV) transformation is a preprocessing technique aimed 

at minimizing the impact of sample granularity, surface reflection properties, and path 

length differences on the reflectance of near-infrared spectroscopy data. This method 

adjusts the data to ensure the accuracy and consistency of the analysis, making it suitable 

for improving the quality of near-infrared spectroscopy data. 

Multiplicative Scatter Correction (MSC) is a technique for enhancing spectroscopic 

data, primarily by reducing spectral variability caused by sample scattering, thus enhancing 

the correlation between spectroscopic data and analytical results. This method standardizes 

the data through necessary scaling and shifting corrections by comparing all sample spectra 

with a selected reference spectrum, ideally chosen based on the mean of all sample spectra. 

In data acquisition, it is challenging to completely eliminate errors caused by 

background color or other factors. The application of the First-Order Derivative (FD) 

algorithm can effectively remove the influence of baseline drift or background noise, while 

enhancing the resolution and sensitivity by increasing the distinguishability of overlapping 

peaks. First-order derivative processing alters the shape of the spectrum, providing 

information through emphasizing the rate of change rather than the absolute intensity. This 

aids in the identification and quantitative analysis of specific components, although it may 

complicate data interpretation. 

 

Characteristic Wavelength Selection 
Feature extraction plays a pivotal role in near-infrared spectroscopy analysis (Jo et 

al. 2020), enabling the extraction of crucial information from complex spectral data related 

to the properties of the substances under investigation. This process reduces data 

dimensionality, simplifies the model-building process, and enhances the accuracy of 

predictions (Mei et al. 2019). In this study, aimed at facilitating rapid and non-destructive 

detection of nutritional substances in purple alfalfa, the collected spectral data in the 450 

to 1830 nm range underwent preprocessing using the four different methods that were 

described earlier. This was followed by integrating Competitive Adaptive Reweighted 

Sampling (CARS) and Iteratively Retains Informative Variables (IRIV) algorithms to 

extract characteristic wavelengths. 

 

Competitive adaptive reweighted sampling (CARS) 

The Competitive Adaptive Reweighted Sampling (CARS) algorithm is a feature 

selection method based on competitive neural networks. It selects feature wavelengths 

highly relevant to the target variable through a competitive, adaptive approach. The 

algorithm iteratively adjusts weights based on the interaction and importance of feature 

wavelengths, thereby selecting the most representative wavelengths (Xie et al. 2022). The 

analysis process of the CARS algorithm is as follows: 

(1). Monte Carlo model sampling: The dataset is randomly divided for model 

construction, with a split ratio of 80% to 90%, to establish a PLS (Partial Least Squares) 

model. This process yields the regression coefficient for the ith wavelength . 

(2). Exponential Decay Wavelength Selection: The method uses an exponentially 

decreasing function (EDF) to forcibly eliminate wavelengths having relatively small 
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absolute weight in regression coefficients. The retention rate of variables is . where ‘j’ 

denotes the jth Monte Carlo sampling, ‘N’ represents the total number of Monte Carlo 

samplings, and the parameters ‘a’ and ‘b’ are constants. 

(3). Adaptive Reweighting Sampling: Selection is conducted using the evaluation 

weights as in  . 

(4). Cyclic Iteration: The process involves iterative calculations based on a set 

number of cycle iterations. The optimal set of variables is based on the minimum cross-

validation root mean square error, representing the desired characteristic variables. 

 
(a)                                                               (b) 

 
(c)                                                              (d) 

 

Fig. 3. Selection of Characteristic Wavelengths after CARS：(a) SG-CARS, (b) SNV-CARS, (c) 

MSC-CARS, (d) FD-CARS 
 

When applying the CARS method for extracting feature wavelengths from 

preprocessed spectral data using four different methods, the Monte Carlo sampling was set 

to 50 times, employing a 10-fold cross-validation. The process of variable reduction 

exhibited an exponential decay, with a rapid decrease in the number of variables in the 

initial phase and a much slower decrease in the second phase, indicating "rough" and "fine" 

selection stages (Chen et al. 2020; Li et al. 2022). The change in the 10-fold cross-

validation root mean square error initially decreases and then gradually increases, 

suggesting that less relevant wavelengths to protein content in alfalfa spectral data are 

discarded initially, and later, due to high selectivity, some critical parameters are excluded, 

leading to a gradual increase in error. The best iteration numbers for different preprocessing 

methods were as follows: SG convolution smoothing (18 iterations, 96 feature 

wavelengths, 6.95% of the full spectrum); Standard Normal Variate transformation (22 
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iterations, 143 feature wavelengths, 10.35% of the full spectrum); Multiplicative Scatter 

Correction (21 iterations, 96 feature wavelengths, 6.95% of the full spectrum); First 

Derivative operation (19 iterations, 163 feature wavelengths, 11.8% of the full spectrum). 

The feature wavelengths extracted by different preprocessing methods are illustrated in 

Fig. 3. The blue line represents the average spectral data after preprocessing, and the red 

circles denote the characteristic wavelengths extracted by the CARS algorithm. 

 

Iterative Retention of Information Variables Method (IRIV) 
The Iteratively Retains Informative Variables (IRIV) algorithm is a method used 

for feature selection to identify the most relevant subset of variables from a large pool about 

a target variable (Yu et al. 2018). It is particularly suitable for wavelength selection in 

spectral analysis. The basic process of the IRIV algorithm can be outlined as follows: 

Iterative Retention of Informative Variables: A subset of variables is selected from 

the current variable set in each iteration. These variables are chosen because they 

maximally retain relevant information about the target variable. 

Assessment of Variable Importance: The importance of each selected variable is 

evaluated. This is typically done by examining each variable's contribution to the model's 

predictive performance. The assessment is often based on statistical indicators such as the 

magnitude of regression coefficients, the impact of variables on model prediction error, 

and the consistency of model performance across different datasets. The assessment is 

often based on statistical indicators such as the magnitude of regression coefficients, the 

impact of variables on model prediction error, and the consistency of model performance 

across different datasets. 

Cyclic Iteration and Optimization: The above process is repeated for a 

predetermined number of iterations or until specific stopping criteria are met (such as 

minimization of cross-validation error). After each iteration, the variable set is updated, 

removing those deemed unimportant or contributing less to the prediction of the target 

variable. 

Determination of the Final Feature Set: The variable set obtained at the end of the 

iterative process represents the selected feature variables. These variables are considered 

the most important for predicting the target variable and can be used in subsequent data 

analysis or modeling processes. 

The Iteratively Retains Informative Variables (IRIV) algorithm effectively selects 

the most crucial subset of variables from a large set through an iterative process, enhancing 

the model's explanatory power and predictive accuracy. This is particularly applicable to 

spectral data and other high-dimensional data analyses. The core of the IRIV method in 

feature wavelength selection involves iterative feature selection. In each iteration, it 

assesses the impact of remaining features on the model's performance and selects those that 

minimize the prediction error (mean square error). This process is repeated until the 

maximum number of iterations is reached, or no remaining features are left (Xu et al. 2019). 

In this study, the feature wavelengths obtained from SG convolution smoothing were 59 

(4.27% of the full spectrum), from Standard Normal Variate transformation were 69 

(5.00% of the full spectrum), from Multiplicative Scatter Correction were 57 (4.13% of the 

full spectrum), and from the First Derivative operation were 51 (3.69% of the full 

spectrum). The results of feature wavelength selection using the IRIV method after various 

preprocessing methods are shown in Fig. 4. The blue line represents the average spectral 

data after preprocessing, and the red circles denote the characteristic wavelengths extracted 

by the IRIV algorithm. 
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(a)                                   (b) 

 
(c)                                   (d) 

Fig. 4. Selection of characteristic wavelengths after iriv：(a) SG-IRIV, (b) SNV-IRIV, (c) MSC-IRIV, 

(d) FD-IRIV. 
 

Based on the analysis results, the identified feature wavelengths predominantly 

correspond to functional groups such as C-H, O-H, N-H, C=O, and -CHO. The wavebands 

near 1100 to 1160 nm and 1428 to 1491 nm are associated with O-H groups (Rego et al. 

2020), related to the moisture content in the feed; absorption peaks near 1470, 1500 to 

1530, and 1640 to 1680 nm correspond to the stretching vibrations of N-H groups, which 

are related to crude protein in the feed (Rego et al. 2020). The selected feature wavelengths 

reflect the characteristic absorption bands of moisture, protein, and other substances in 

dried alfalfa. In subsequent modeling, these wavelengths can effectively reduce 

computational load, decrease the redundancy of spectral data, and improve model accuracy. 

The number of feature wavelengths extracted using different preprocessing methods and 

feature wavelength extraction techniques is summarized in Table 1. 
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Table 1. Wavelength Selection after CARS and IVIR 

Pre-Processing 
Technique 

Method Feature Variables 
Number 

SG 
CARS 96 
IVIR 59 

SNV 
CARS 143 
IVIR 69 

MSC 
CARS 96 
IVIR 57 

FD 
CARS 163 
IVIR 51 

 
Establishment and Evaluation of the Dried Alfalfa Protein Prediction Model 

This study aimed to achieve rapid and non-destructive detection of nutritional 

substances in purple alfalfa using near-infrared spectroscopy technology. For this purpose, 

various machine learning algorithms, including Partial Least Squares Regression (PLSR), 

Extreme Learning Machine (ELM), Support Vector Machine (SVM), and Long Short-

Term Memory networks (LSTM), were employed to establish and evaluate a prediction 

model for the protein content in purple alfalfa. 

Initially, prediction models were developed using the PLSR method for purple 

alfalfa's full-spectrum and feature wavelength spectral data. PLSR is a classic regression 

method that establishes a linear regression model by maximizing the correlation between 

input and output variables (Niu et al. 2021). This study used full-spectrum or feature 

wavelength spectral data as input variables. Protein content was used as the output variable 

to build a predictive model for the nutritional substances in purple alfalfa. 

Establishing the PLSR model involved two steps: model training and model 

validation. The collected purple alfalfa samples were divided into a calibration set and a 

prediction set, with the calibration set comprising 70% of the total samples and the 

prediction set comprising the remaining 30%. The calibration set was used for training and 

optimizing the model, while the prediction set was used to assess the model's 

generalizability and predictive accuracy. During training, the model's coefficients and 

intercept were determined by minimizing the sum of squared residuals. In the optimization 

process, the best number of principal components and regularization parameters were 

selected through cross-validation to enhance the model's stability and generalizability 

(Belini et al. 2011). After the training, the model was evaluated using the prediction set. 

The predictive accuracy and generalizability of the model were assessed by calculating the 

determination coefficient (R2) and root mean square error (RMSE) for both the calibration 

and prediction sets. A determination coefficient closer to 1 indicates a better model fit to 

the data, and a smaller RMSE indicates a lower prediction error. 

The study also employed the Extreme Learning Machine (ELM) method for model 

establishment. ELM is a nonlinear regression method based on artificial neural networks, 

which quickly trains the network to obtain good predictive results by randomly generating 

initial weights and biases. 

In the ELM method, the model's performance is optimized by adjusting the number 

of neurons in the hidden layer and selecting the activation function. During training, the 

outputs of the hidden layer neurons are computed using randomly generated weights and 

biases. Then, the weights and biases of the output layer are calculated using the least 

squares method. The best-performing ELM model is obtained by continuously adjusting 

the number of neurons in the hidden layer and the activation function (Leuenberger and 
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Kanevski 2015; Pradhan et al. 2019; Jiang et al. 2020). 

Like the PLSR method, establishing the ELM model also includes training and 

validation steps, with the same distribution of samples in the calibration and prediction 

sets. The optimal number of hidden layer neurons and activation function are selected 

through cross-validation to improve the model's stability and predictive accuracy. 

After the model training, the model is evaluated using the prediction set. The 

predictive accuracy and generalizability of the model are assessed by calculating the 

determination coefficient (R2) and root mean square error (RMSE) for both the calibration 

and prediction sets. 

Through model establishment in this study, ELM and PLSR models based on full 

spectrum and feature wavelengths were developed to predict the protein content in purple 

alfalfa. 

Experimental results are presented in Tables 2 and 3. Analyzing Table 1 from the 

perspective of spectral data preprocessing, it is observed that the various preprocessing 

methods improved the accuracy of both calibration and prediction sets of the models. From 

the perspective of feature wavelengths in Table 3, it was noted that the number of feature 

wavelengths extracted by the IVIR algorithm was significantly less than those extracted by 

the CARS method. Moreover, the models using the IVIR algorithm showed lower 

calibration and prediction set accuracies compared to other models, possibly due to the 

exclusion of wavelengths highly relevant to the protein content in dried alfalfa during the 

IVIR selection process, leading to poorer predictive accuracy in the calibration and test 

sets. From the perspective of model establishment, Table 3 indicates that the MSC-CARS-

PLSR model had strong predictive capability, with a calibration set root mean square error 

(RMSE) of 0.1922, a determination coefficient (R2) of 0.9972, a prediction set RMSE of 

0.6581, and a determination coefficient of 0.9446. In establishing a prediction model for 

the protein value of dried alfalfa, it is evident that the PLSR model performed better than 

the ELM model. The prediction results show that the accuracy of the full-spectrum 

prediction model was lower than that of the feature wavelength prediction model, and the 

MSC-CARS-PLSR model improved the prediction accuracy by 15.8% and reduced the 

prediction set RMSE by 33.4% compared to the MSC-PLSR model. This demonstrates that 

extracting feature wavelengths significantly simplified the computational model and 

enhanced prediction accuracy. 

 
Table 2. Prediction Results of Full-spectrum ELM and PLSR Models using 
Different Preprocessing Methods 

Model 
 

Pretreatment 
 

Calibration Set Prediction Set 

    

 
ELM 

No Without 1.5110 0.8577 1.5303 0.6443 

SG 0.9731 0.9145 1.5084 0.6527 

SNV 1.0325 0.8963 1.9715 0.5823 

MSC 1.1485 0.9004 1.1923 0.7474 

FD 1.0041 0.8997 2.1570 0.5336 

 
PLSR 

No Without 1.4201 0.8443 1.3363 0.6850 

SG 0.4354 0.9744 1.1533 0.6997 

SNV 0.4451 0.9431 1.1126 0.7322 

MSC 0.4126 0.9752 0.9875 0.8155 

FD 0.5127 0.9321 1.3321 0.6954 
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Based on these results, to further improve model accuracy, two machine learning 

algorithms, Support Vector Machine (SVM) and Long Short-Term Memory network 

(LSTM), were introduced, forming two new model combinations: MSC-CARS-PLSR-

SVM and MSC-CARS-PLSR-LSTM. These were aimed at utilizing the strengths of each 

algorithm to enhance further the accuracy and reliability of predicting the protein content 

in dried alfalfa. 

 

Table 3. Prediction Results of ELM and PLSR Models after Feature Variable 
Selection 

Model 
 

Algorithm 
Combinations 

Feature 
Variables 
Number 

Calibration Set Prediction Set 

    

 
ELM 

SG-CARS-ELM 96 0.2600 0.9351 1.3271 0.7359 

SG-IRIV-ELM 59 1.1354 0.8021 1.7059 0.6059 

SNV-CARS-ELM 143 0.1464 0.9763 1.0822 0.7997 

SNV-IRIV-ELM 69 0.8813 0.9015 1.2114 0.7908 

MSC-CARS-ELM 96 0.1903 0.9655 1.2099 0.7204 

MSC-IRIV-ELM 57 1.3442 0.7501 2.1128 0.7454 

FD-CARS-ELM 163 0.2832 0.9456 1.5775 0.6446 

FD-IRIV-ELM 51 1.3402 0.7318 2.1308 0.7442 

 
PLSR 

SG-CARS-PLSR 96 0.2044 0.9930 0.7581 0.9362 

SG-IRIV-PLSR 59 1.4871 0.6725 2.0921 0.7237 

SNV-CARS-PLSR 143 0.0983 0.9953 0.7651 0.9212 

SNV-IRIV-PLSR 69 1.3304 0.7655 2.193 0.7315 

MSC-CARS-PLSR 96 0.1922 0.9972 0.6581 0.9446 

MSC-IRIV-PLSR 57 1.2184 0.7808 2.8432 0.6124 

FD-CARS-PLSR 163 0.1940 0.9939 1.3465 0.7723 

FD-IRIV-PLSR 51 1.5201 0.7133 2.6244 0.5982 

 

The MSC-CARS-PLSR-SVM model combines the feature extraction and data 

preprocessing capabilities of the MSC-CARS-PLSR model with the robust regression 

function of SVM (Lee et al. 2023). SVM excels at complex, high-dimensional datasets and 

is especially adept at handling small-sample datasets and nonlinear problems (Vabalas et 

al. 2019). In this model, SVM served as a secondary prediction model, using the outputs 

of the PLSR model as its inputs to refine and optimize the prediction results further. The 

Radial Basis Function (RBF) was used as the kernel function in the model establishment 

process, with the penalty factor (c) and RBF parameter (g) set. The model was built with a 

10-fold cross-validation method with the svmtrain function. 

The MSC-CARS-PLSR-LSTM model combines the feature extraction ability of 

MSC-CARS-PLSR with the time series data processing advantage of LSTM. LSTM 

networks are suitable for processing data with strong time dependencies and can effectively 

capture long-term dependencies in time series (Fagerström et al. 2019). In this model, 

LSTM was used to analyze and predict time-varying alfalfa sample data further to enhance 

prediction accuracy. The model structure included a sequence input layer, an LSTM layer, 

a ReLU activation layer, a fully connected layer, and a regression layer. The Adam 

optimizer was used, with parameters set for mini-batch size, maximum number of 

iterations, initial learning rate, and learning rate drop strategy. Parameters were adjusted to 

enhance prediction accuracy. 

These two new model combinations were used to process the same dataset, with 

the calibration and prediction sets comprising 70% and 30% of the total samples, 
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respectively, and were compared with the original MSC-CARS-PLSR model. Comparing 

the prediction results of the three models, the predictive capability of the MSC-CARS-

PLSR-LSTM model was similar to that of the MSC-CARS-PLSR model. In contrast, the 

MSC-CARS-PLSR-SVM model provided more accurate and stable prediction results than 

the MSC-CARS-PLSR model, with a calibration set RMSE of 0.1088, a determination 

coefficient of 0.9982, a prediction set RMSE of 0.5230, and a determination coefficient of 

0.9645. Specific experimental results are presented in Table 4. The scatter plot of predicted 

values versus actual values for the MSC-CARS-PLSR-SVM model is shown in Fig. 5. 

 

Table 4. Model Prediction Results after Model Optimization 

Algorithm Combinations 
Calibration Set Prediction Set 

    

MSC-CARS-PLSR 0.1922 0.9972 0.6581 0.9446 

MSC-CARS-PLSR-SVM 0.1088 0.9982 0.5230 0.9645 

MSC-CARS-PLSR-LSTM 0.2071 0.9943 0.6361 0.9449 

 
 

 
Fig. 5. Scatter Plot of Predicted vs. Actual Values for the MSC-CARS-PLSR-SVM Model 
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RESULTS AND DISCUSSION 
 

This study successfully established predictive models for the nutritional substances 

in purple alfalfa using near-infrared spectroscopy combined with various preprocessing 

and feature extraction methods, and these models underwent detailed performance 

evaluations. Initially, in the preprocessing phase, four methods were applied to the average 

spectra of purple alfalfa samples in the 450 to 1830 nm range: Standard Normal Variate 

(SNV), Multiplicative Scatter Correction (MSC), Savitzky-Golay (SG) smoothing, and 

First Derivative (FD). The SNV method effectively reduced the impact of surface 

scattering and intensity changes, MSC addressed issues caused by particle inhomogeneity, 

and SG smoothing significantly enhanced spectral smoothness, effectively reducing noise 

interference. 

In terms of feature extraction, both the Competitive Adaptive Reweighted Sampling 

(CARS) and Iteratively Retains Informative Variables (IRIV) algorithms were used, 

enabling more effective extraction of crucial information related to the protein content in 

purple alfalfa from complex spectral data. Additionally, the Partial Least Squares 

Regression (PLSR) and Extreme Learning Machine (ELM) methods were used to establish 

protein content prediction models for both the full spectrum and feature wavelengths of 

purple alfalfa. After evaluating the models on calibration and prediction sets, it was found 

that the feature wavelength models demonstrated superior predictive performance 

compared to full-spectrum models, as indicated by higher determination coefficients and 

lower root mean square errors (RMSE). Notably, the MSC-CARS-PLSR model showed a 

determination coefficient of 0.9972 and an RMSE of 0.1922 on the calibration set and a 

determination coefficient of 0.9446 and an RMSE of 0.6581 on the prediction set, 

indicating that this model can accurately and reliably predict the nutritional content of 

purple alfalfa. 

Furthermore, model accuracy was enhanced by introducing a Support Vector 

Machine (SVM) and Long Short-Term Memory Network (LSTM) for regression 

prediction of the principal factors derived from PLSR. The MSC-CARS-PLSR-SVM 

model, in particular, exhibited a determination coefficient of 0.9982 and an RMSE of 

0.1088 on the calibration set, and a determination coefficient of 0.9645 and an RMSE of 

0.5230 on the prediction set, further improving the predictive accuracy of the model. 

Overall, this study not only successfully established predictive models for the 

nutritional substances in purple alfalfa using near-infrared spectroscopy and advanced 

algorithms but also confirmed the effectiveness and reliability of these models in accurately 

predicting the nutritional content of purple alfalfa through comprehensive performance 

evaluations. These achievements provide new methods and technical support for purple 

alfalfa's quality assessment and nutritional substance monitoring. 

However, there are some limitations to this study. First, the relatively small sample 

size may affect the generalizability of the models. Increasing the sample size and 

conducting more validation experiments could enhance model performance further. 

Second, this study focused solely on predicting the protein content of purple alfalfa and did 

not consider other essential nutrients. Future research could expand the scope of the models 

to predict more nutritional substances in purple alfalfa. Additionally, the reliability and 

stability of the models need further verification in practical applications to ensure their 

effective use in different scenarios. 
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CONCLUSIONS 
 

1. This study successfully developed an accurate and non-destructive method to predict 

the protein content in purple alfalfa by integrating near-infrared spectroscopy with 

machine learning algorithms. The application of various preprocessing and feature 

extraction techniques led to the MSC-CARS-PLSR model exhibiting the best 

performance among all tested models, offering high precision and reliability. 

2. The results demonstrate that the predictive accuracy of the model can be further 

enhanced by employing regression predictions with Support Vector Machines (SVM) 

and Long Short-Term Memory networks (LSTM). Specifically, the MSC-CARS-

PLSR-SVM model showed superior predictive performance, reflected in higher 

determination coefficients and lower root mean square errors in both the calibration 

and prediction sets. 

3. The methodologies and findings of this study provide new perspectives and technical 

support for quality assessment and nutritional substance monitoring of purple alfalfa, 

laying a foundation for future research and practical applications in related fields. 

Additionally, the study emphasizes the importance of increasing the sample size and 

further verifying the stability of the models to enhance the performance of the models. 
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