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In recent years, thermosensitive polysaccharide-based injectable 
hydrogels have gained increasing attention in biomedical applications, 
including wound healing, drug delivery, and cartilage repair. These 
hydrogels have favorable biocompatibility, biodegradability, and tunable 
physical and chemical properties. Thermosensitive polysaccharide-based 
injectable hydrogels are a class of intelligent soft matter material. They 
can undergo a reversible liquid-solid transition when exposed to 
temperature stimuli. Therefore, their precursor solutions can be accurately 
inserted into target sites with irregular geometries in a minimally invasive 
way and then transformed into gels in situ by the organism's temperature 
stimulation to deliver biologically active molecules. This review 
summarizes the recent developments of thermosensitive injectable 
polysaccharide-based hydrogels. The focus is on the mechanism of sol-
gel phase transition, as well as the design and preparation of 
thermosensitive polysaccharides and their applications in biomedical 
fields. In addition, the outlook of the challenges in biomedical applications 
is provided at the end of the paper. 
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INTRODUCTION 
 

Hydrogels are hydrophilic polymers that form a 3D network structure. They are 

synthesized from hydrophilic polymers through physical or chemical crosslinking by 

functionally modifying polymers; hydrogels display remarkable biocompatibility, 

biodegradability, tissue adhesion, and tunable mechanical properties; in particular, 

reversible hydrogel networks present many exciting possibilities (Aldakheel et al. 2023; 

Alsareii et al. 2023). Therefore, hydrogel materials are extensively employed in various 

biomedical applications, including wound healing dressings, drug delivery, and cartilage 

repair (Chen et al. 2024). In recent decades, research has shifted from implantable to 

injectable hydrogels that enable gel formation at the desired injection site. Injectable 

hydrogels have the benefits of simple handling, minimally invasive administration, and 

affordable injection expenses (Li et al. 2019). Furthermore, injectable hydrogels can fill 

minor and irregular wounds caused by injuries and can also be implanted into treatment 

sites that are difficult to access. Equally significant, the injectable hydrogel benefits from 

gradually undergoing the “sol-gel” phase transition in physiological conditions, thereby 
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accomplishing precise treatment (Liao et al. 2020; Omidian and Chowdhury 2023). 

Stimulus-responsive injectable hydrogels are hydrophilic polymer-based materials 

that undergo sol-gel phase transition when exposed to environmental factors including pH, 

temperature, electric field, pressure, ionic strength, etc. Temperature is a readily available 

and controllable ecological stimulus that frequently coincides with damage to organisms, 

among various stimuli (Salehi et al. 2023). Developing thermosensitive injectable 

hydrogels with excellent performance is a hot research topic in biomedicine. The initial 

state of the substance is liquid (sol state). Upon injection into the organism, a reversible 

sol-gel state transition can be achieved through slight changes in ambient temperature 

(Bellotti et al. 2021). Polysaccharide-based polymers are the most prominent and 

extensively studied biomacromolecules in thermosensitive hydrogel formation. This is due 

to their advantages in biocompatibility, biodegradability, and other physicochemical 

properties (Tanga et al. 2023). Moreover, polysaccharides possess multiple functional 

groups, including hydroxy, carboxy, and amine groups, which make them suitable for 

chemical modification with other polymers and maintain the desired properties for a wide 

range of uses in biomedical (Graham et al. 2019). Therefore, natural polysaccharide-based 

polymers are ideal for creating hydrogel materials for in vivo implantation, and their study 

in biomedicine has garnered increasing interest (Shen et al. 2020). Although there have 

been numerous commendable reviews on biomedical hydrogels and their applications, only 

a few presentations have focused on polysaccharide-based thermosensitive injectable 

hydrogels (Cascone and Lamberti 2020; Daly et al. 2020; Sánchez-Cid et al. 2022; 

Tavakoli and Tang 2017). 

The current review is distinguished from previous reviews in that it focuses on the 

contributions from 2015 to 2023 on the progress of the thermosensitive injectable 

hydrogels based on polysaccharides (Table 1). Specifically, the phase transition 

mechanism, design, synthesis methods, and biomedical applications are considered in 

detail.  

 

Table 1.  A Summary of Thermoresponsive Polysaccharides, their Properties 
and Applications  
 

Polymers Modifications 
Sol-gel 

transition 
Applications 

Status of 

development 
References 

Chitosan 

β-glycerol phosphate 

cross-linked CS 

37 °C 
Wound 

dressing 
In vivo 

(Zhu et al. 

2022) 

37 °C 
Tissue 

engineering 
In vitro 

(Chenite et al. 

2000) 

37 °C 

Diabetic 

fracture 

healing 

Mouse 
(Moradi et al. 

2023) 

37 °C 
Cartilage 

repair 
In vitro 

(Zheng et al. 

2022a) 

37 °C 
Tissue 

engineering 
In vitro 

(Bhuiyan et 

al. 2023) 

Cross-linking of 

coordination bonds 
37 °C 

Wound 

dressing 
In vivo 

(Cao et al. 

2021) 

Grafting hydroxybutyl 

groups and catechol 
37 °C 

Hemostatic 

agents 
Mouse 

(Shou et al. 

2020) 
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groups to the CS 

backbones 

PNIPAM grafted to 

CS 
37 °C Drug delivery In vitro 

Ziminska et 

al. 2020) 

PEG grafted to CS 

backbone 
37 °C 

Wound 

healing 
In vivo 

(Aldakheel et 

al. 2023 

Alginate 
PNIPAM grafted to 

alginate 

37 °C Drug delivery In vitro 
(Liu et al. 

2017) 

27-42 °C 
Wound 

healing 
In vivo 

(Zakerikhoob 

et al. 2021) 

28.9 °C 
Wound 

healing 
In vitro 

(Safakas et 

al. 2023) 

Cellulose 

Host-guest 

interactions between 

the hydrophobic core 

37 °C Drug delivery Mouse 
(Okubo et al. 

2020) 

Substitution of OH 
with 

alkoxypropy groups 

27.3-

51.2 °C 
Drug delivery In vitro 

(Dai et al. 

2019) 

Substitution of OH 
with 

butoxypropyl groups 
17–43 °C Drug delivery In vitro 

(Tian et al. 

2016) 

Substitution of OH 
with 

isopropoxypropyl 
groups 

21.1-

56.1 °C 
Drug delivery In vitro 

(Tian et al. 

2016) 

Starch 

PNIPAM grafted to 

starch 
37 °C 

Cancer 

therapy 
Mouse 

(Fan et al. 

2022) 

Substitution of OH 
with 

butoxypropyl groups 

4.5-

32.5 °C 
Drug delivery In vitro 

(Ju et al. 

2012) 

Host-guest 
interactions between 
the hydrophobic core 

31.3-

36.5 °C 
Drug delivery In vitro 

(Pourbadiei et 

al. 2023) 

 
 

SOL-GEL PHASE TRANSITION MECHANISM OF THERMOSENSITIVE 
POLYSACCHARIDE-BASED POLYMERS 
 

The sol-gel phase transition mechanism of thermosensitive injectable hydrogels is 

primarily driven by the alteration in the hydrophilic and hydrophobic equilibrium of the 

polymer chains (Kotova et al. 2023). Amphiphilic thermosensitive polymers are composed 

of hydrophobic and hydrophilic chain segments, and such polymers self-assemble in water 

to form micelles due to the hydrophobic association of the hydrophobic chain (Hubbe et 

al. 2017). As temperature rises, the hydrogen bonding between polymer micelle surfaces 

and water molecules weakens. This reduces the thickness of the hydration layer around the 

micelles (Zarrintaj et al. 2019). Consequently, the micelles come together to form a 

physical hydrogel. This polymer sol-gel phase transition process is known as the lowest 

critical solution temperature (LCST) phase transition (Chen et al. 2022a). A minor fraction 

of polysaccharides with the utmost critical solution temperature (UCST) exhibits an inverse 

phase transition state; the gelation of polysaccharides is favored at lower temperatures 

(Phunpee et al. 2022).  
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The schematic diagrams of LCST-type and UCST-type phase transitions are shown 

in Fig. 1. Polysaccharides and their derivatives, including carrageenan, agarose, and 

cementum, typically experience UCST-type phase transitions. These polysaccharide 

chemicals are commonly used as thickeners and emulsifiers in food and cosmetics (Kim 

and Matsunaga 2017). The UCST-type polysaccharide hydrogels need elevated 

temperatures to stay in a solution state. However, excessively high temperatures can harm 

the viability of cells and tissues in organisms (Chen et al. 2021). In contrast, LCST-type 

polysaccharide hydrogels are better for injectable hydrogel systems, as they are free-

flowing solutions at ambient temperatures and transform into gels at body temperature 

(Thambi et al. 2016). Therefore, LCST-type hydrogels are of greater interest to scholars in 

biomedical applications. This review will discuss the sol-gel phase transition mechanism 

of LCST-type hydrogels. 

 

 
Fig. 1. Schematic diagram of volume phase transition of LCST-type and UCST-type 

 

The sol-gel phase transition mechanism of LCST-type injectable hydrogels can be 

discussed at the molecular level and thermodynamically: (a) When the ambient temperature 

is lower than the LCST of the polymer, the hydrophilic effect is the main force. The 

hydrophilic groups on the polymer molecular chains connect with water molecules through 

hydrogen bonding, resulting in a sol state (Ryl and Owczarz 2021). However, when 

injected into warm-blooded animals and the temperature rises above the LCST, 

hydrophobic interactions become dominant, which contributes to the formation of bulky 

aggregates by the association of hydrophobic polymer chains, resulting in a gelation phase 

transition (Li et al. 2021). In general, the morphology of hydrogels can be reversibly 

transformed between sol and gel states because of the dynamic interactions between 

polymer chains and water molecules (Okubo et al. 2020). The analyses mentioned above 

indicate that the interaction of hydrophobic chain segments of thermosensitive polymers is 

the primary driving force for the sol-gel phase transition at the molecular level. (b) From 

the thermodynamic standpoint, according to the Gibbs free energy formula, △G =△H-T

△S, the association free energy of the polymer chain is directly correlated with enthalpy, 

entropy, and temperature (Wang et al. 2018). In an amphiphilic thermosensitive polymer-

water system, when T < LCST, the polymer chain stretches and forms hydrogen bonds with 
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water molecules, resulting in the △H term being negative. Simultaneously, because the 

water molecules are arranged in a more orderly manner around the polymer chain, △S is 

negative; therefore, △G < 0, resulting in the solubility of the polymer in the sol state (Pan 

et al. 2020). When T > LCST, the entropy of the system increases and becomes dominant, 

i.e. (△H > T△S). This results in △G > 0, representing the gel state and favorable for the 

association of polymer chains (Zhang et al. 2018a). In summary, from the thermodynamic 

perspective, the sol-gel phase transition of thermosensitive polymers is driven by increased 

entropy. 

 
 
DESIGN AND PREPARATION OF THERMOSENSITIVE INJECTABLE 
HYDROGELS 
 
Small-molecule Functional Group-modified Polysaccharides 
 In nature, only a few polysaccharides, including agarose, carrageenan, and gellan 

gum possess thermosensitive properties. Most polysaccharides require chemical or 

physical modifications to acquire thermosensitive properties (Atanase et al. 2017; Kotova 

et al. 2023). Chemical modification strategies can be broadly categorized into two main 

categories: (a) Modifying polysaccharides through the small-molecule functional group, 

which is also called polysaccharide derivatization, aims to impart thermosensitive 

properties to polysaccharides. This is achieved by incorporating small-molecule functional 

groups, including carboxy and alkyl groups, into their molecular structure (Otto et al. 

2021); (b) Synthesizing thermosensitive polymer graft polysaccharides. Physical 

modification strategies primarily involve additive-modified polysaccharides, where 

additives are utilized to trigger thermosensitive sol-gel transitions in polysaccharide 

solution systems comprising multiple components without the formation of additional 

covalent bonds (Loukotová et al. 2018; Nishimura et al. 2020). 

 

Carboxylated Polysaccharides 
The carboxyl group is both a donor and acceptor of hydrogen bonds. Therefore, 

after the carboxyl groups are introduced to the polysaccharide, the hydrogen bonds between 

intramolecular and intermolecular chains of polysaccharide are altered, leading to a change 

in the spatial conformation of the polysaccharide (Fu et al. 2024; Li et al. 2023). This 

change is crucial for regulating the thermosensitive properties of carboxylated 

polysaccharides. Agarose is a natural thermosensitive polysaccharide that reverses a sol-

gel phase transition with temperature. It is of the UCST type (Rochas and Lahaye 1989). 

Furthermore, the temperature hysteresis between the agarose sol temperature (Tgel-sol) and 

gelation temperature (Tsol-gel) is significant, with Tsol-gel (15 to 30 °C) being considerably 

lower than Tgel-sol (60 to 80 °C). The Tsol-gel and Tgel-sol of unmodified agarose and the phase 

transition rate rely on sources, processing conditions, concentration, and cooling rate (Kim 

et al. 2019; Ooi et al. 2016). Introducing charged carboxy groups boosts the electrostatic 

repulsion among the carboxylated agarose chains. This leads to increased spacing between 

the chains and a weakening of hydrogen bonding (Chu et al. 2020). Consequently, the 

conformation of agarose shifts from α-helix to β-sheet structure, ultimately impacting its 

phase transition temperature (Su et al. 2013). 

As the degree of carboxylation is increased, Tsol-gel has been found to decrease 

significantly (Forget et al. 2013). When the degree of carboxylation was increased from 
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28% to 93%, Tsol-gel fell from 28 °C to 7 °C, and Tgel-sol decreased from 58 °C to 46 °C. The 

sol-gel phase transition temperature of agarose can be achieved by adjusting the 

carbonation level within a broad range of regulations (Arnott et al. 1974). 

 
Alkylated Polysaccharides 

The design of thermosensitive injectable hydrogels for alkylated polysaccharides 

relies on balancing the alkyl side chains’ hydrophobicity and the polysaccharide 

backbone’s hydrophilicity (Tian et al. 2015). Modifying hydrophilic and hydrophobic 

components in alkylated polysaccharide structures is crucial for designing these hydrogels. 

Some regulate the hydrophilic component by adjusting the polysaccharide’s molecular 

weight, construction, and hydrophilic modification (Iqbal et al. 2023). Similarly, methods 

to control the hydrophobic part involve managing the carbon chain length, structure, and 

degree of substitution (DS) of the alkylating reagent on the polysaccharide main chain 

(Bostanudin et al. 2023; Liang et al. 2015). Polysaccharides are hydrophilic because they 

have hydroxy and amino groups that can form hydrogen bonds with water molecules. 

Modifying polysaccharides through etherification or esterification reactions involves 

grafting short-chain alkanes onto their backbone. This hydrophobic modification results in 

polysaccharide derivatives with both hydrophilic and hydrophobic properties (Palacio et 

al. 2018; Rodrigues-Souza et al. 2022). When the balance between hydrophilicity and 

hydrophobicity is achieved, these derivatives exhibit thermosensitive behavior. Many 

studies showed that alkylated polysaccharides’ sol-gel phase transition temperature is 

primarily influenced by the length and DS of the alkyl carbon chain (Tian et al. 2019). The 

phase transition temperature decreases as the carbon chain length increases and the DS 

rises. Methylcellulose (MC) is a cellulose product modified using methylation reagents. 

The LCST of MC typically ranges from 60 to 80 °C and is influenced by the substitution 

degree of the methyl group (Wang et al. 2016; Zhong et al. 2020). Isopropoxy or butoxy-

modified hydroxyethyl cellulose derivatives can be modulated by adjusting the DS (Dai et 

al. 2019). This results in an LCST range of 21.1 to 56.1 °C for isopropyl-modified 

derivatives and 17.0 to 43.1 °C for butoxy-modified derivatives (Tian et al. 2016). 

Noteworthily, when the length of the hydrophobic carbon chain is C5 or longer, alkyl 

hydroxyethyl cellulose becomes insoluble in water, even with low DS. As a result, they do 

not exhibit thermosensitive properties. 

Besides cellulose, other polysaccharides including starch, chitosan, and guar gum 

can obtain thermosensitive properties through alkylation (Miller et al. 1994). Regarding 

polysaccharide structure, the LCST of branched-chain polysaccharides is lower than that 

of straight-chain polysaccharides with the same carbon chain length, similar DS, and equal 

molecular weight (Zheng et al. 2022b). For the butoxy-modified polysaccharide, the LCST 

values were 57.1 °C for butoxy cellulose of straight-chain structure with a DS of 1.43 and 

17.5 °C for butoxy starch of branched-chain structure with a DS of 1.31 (Ju et al. 2012). 

Due to hydrophobic chains, Polysaccharides with branched-chain structures aggregate 

more easily, resulting in lower phase transition temperatures. Interestingly, the effects of 

the alkyl chain structure are different from that of the polysaccharide chain structure on 

LCST. In the authors’ recent work, it was discovered that the LCST of polysaccharide 

products with different structures, but the same length of hydrophobic carbon chains is 

notably higher than that of alkylation-modified polysaccharides with straight-chain form, 

even with the same DS (Ju et al. 2014). 
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Polymer Grafting Polysaccharide  
Synthetic polymer components are generally responsible for the thermosensitive 

injectable polysaccharide-based graft copolymers. The polysaccharide components, on the 

other hand, contribute biocompatibility, biodegradability, non-fouling, cell adhesion, and 

enhanced gel mechanical strength (Darge et al. 2021; Jiang et al. 2021). Grafting polymers 

onto the main chain of polysaccharides is the key to designing adjustable LCST 

thermosensitive polymers. Specifically, this is equivalent to grafting hydrophilic groups on 

the polysaccharide skeleton, thereby increasing the hydrophilicity of the polysaccharide, 

increasing the LCST of the polysaccharide-based graft copolymer (Hubbe et al. 2021). The 

thermosensitive copolymer will be compromised if the grafting ratio is inadequate (Mellati 

et al. 2017).  

The findings of this research warrant the attention of researchers involved in 

developing such graft copolymers. The above injectable hydrogel is identical to the 

conventional graft copolymerization method, which is further subdivided into two 

processes: ‘grafting-from’, in which the polymer chain is grown directly onto the 

polysaccharide backbone, and ‘grafting to’, in which a specific molecular weight polymer 

chain segment is synthesized before grafting onto the polysaccharide backbone (Azzam et 

al. 2016). Particularly important among the thermosensitive polymer family is poly(N-

alkyl acrylamide); it is also known as poly (N-isopropyl acrylamide) (PNIPAM). Preparing 

injectable hydrogels from polysaccharides based on PNIPAM has long been a research 

hotspot (Conzatti et al. 2019; Fillaudeau et al. 2024). 

Currently, the design methods for graft copolymers of polysaccharides with 

PNIPAM can be categorized into three groups: (a) Polysaccharides are solely graft 

copolymerized with PNIPAM, namely PS-g-PNIPAM. Hydrophilic polysaccharides 

increase the Tsol-gel of PS-g-PNIPAM compared to PNIPAM homopolymers (Kanidi et al. 

2020). (b) Graft copolymerization of polysaccharides with various synthetic-type polymers 

is a design method divided into two approaches. One approach is to graft copolymers of 

PNIPAM and other polymers onto the polysaccharide backbone, named [PS-g-(PNIPAM-

co-other Polymers)] (Hubbe et al. 2023).  

The second class is to graft PNIPAM and other polymers individually, specifically 

(PS-g-PNIPAM-g-other Polymers). The main purpose of introducing other hydrophobic or 

hydrophilic polymers is to adjust the Tsol-gel of the hydrogels. Introducing hydrophobic 

polymers decreases the Tsol-gel while adding hydrophilic polymers increases the Tsol-gel 

(Kurisawa and Yui 1998).  

Another way to construct hydrogel systems is by incorporating organic/inorganic 

molecules, metal ions, enzymes, oligosaccharides, or other polysaccharides through 

covalent or non-covalent bonds in the design methods of (a) or (b) (Hubbe et al. 2008). 

These functional components provide special functions to the hydrogel. Fan et al. (2022) 

introduced iodine into starch’s helical interior using non-covalent bonds (Fig. 2). This 

formed an iodine-starch complex. Next, they grafted PNIPAM onto the complex to create 

an injectable hydrogel loaded with iodine starch-g-poly (N-isopropyl acrylamide) (PNSI). 

This hydrogel combines photo-thermal and anti-infective effects. It is easy to prepare and 

safe for biological use. It can be applied in clinical settings for oncology therapy and anti-

infection purposes. 
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Fig. 2. In vivo photothermal antitumor and antibacterial effect of the PNSI hydrogel: (A) 
Schematic diagram of the preparation of the PNS and PNSI nanogels. (B) Photographs of the 
PNS and PNSI dispersion at 25 and 37 °C, respectively. (C) Infrared thermal images of the 
tumor-bearing mice under 808 nm laser (1.0 W cm−2) for 5 and 10 min after injection of PBS, the 
PNSD, and PNSI dispersion (50 mg mL−1), respectively. (D) Tumor-growth curves of mice after 
different treatments (n = 5). (E) Pictures of bacterial colony in the skin wound of different groups 
on the 5th day after S. aureus infection. Figure republished from Fan et al. (2022) with permission 

from Wiley, Macromolecular Rapid Communications. 

 

Polyether-type thermosensitive polymers are commonly used to prepare injectable 

hydrogels of polysaccharide graft copolymers. Polyether-based polymers that are 

thermosensitive exhibit similar sol-gel principles and copolymer design strategies as 

PNIPAM-polysaccharide graft copolymers (Schneider et al. 2021). In the family of 

polyether-based polymers, polyethylene glycol (PEG) stands out due to its superior water 

solubility, resistance to antigens, and low toxicity (Ahmadkhani et al. 2017). Polyethylene 

glycol is frequently utilized to create graft copolymers based on polysaccharides for 

biomedical uses. The design methods and thermosensitive mechanism of PEG-

polysaccharide graft copolymers differ from those of the above copolymers (Que et al. 

2015). On the one hand, the aldehyde group modifies the end of the molecular chain of 

PEG molecules. It reacts with the reactive groups on the polysaccharide skeleton to obtain 

the graft copolymers (Ghanavi et al. 2023). On the other hand, unlike PNIPAM and 

thermosensitive polyether polymers, PEG lacks thermosensitive properties (Filippov et al. 

2016). The thermosensitive sol-gel phase transition of PEG graft copolymers with 

polysaccharides is caused by the alteration of hydrogen bonding force between the 

copolymer and water molecules. For instance, in the case of chitosan and PEG graft 

copolymer (CS-g-PEG), the poly (ethylene glycol) molecular chain’s end was altered with 

the aldehyde group to create an imine bond with the amino group on the chitosan molecular 

chain (Rivas-Barbosa et al. 2022). This process resulted in the formation of the graft 

copolymer. Water molecules surrounded the CS-g-PEG chains through hydrogen bonding 

at low temperatures. The temperature rise disrupted the hydrogen bonds between water 

molecules and copolymers. This caused water molecules to detach from the surface of CS-

g-PEG and increased hydrophobic and hydrogen-bonding interactions between CS-g-PEG 

chains. As a result, gels were formed (Hao et al. 2021). 
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Additive-modified Polysaccharide 
Besides the method mentioned earlier about creating thermosensitive injectable 

hydrogels through modification of small-molecule functional group and graft 

copolymerization, another approach involves using small-molecule organic compounds as 

additives to induce the sol-gel phase transition of polysaccharides at various temperatures, 

resulting in thermosensitive properties for polysaccharide-additive systems (Bhuiyan et al. 

2023). The main driving force behind the phase transition of injectable hydrogels is the 

alteration in coulombic, hydrogen, and hydrophobic bonding forces among water 

molecules, polysaccharides, and additives (Dhivya et al. 2015). The mechanism of action 

involves small-molecule additives (polyol phosphates, triglyceride derivatives) that 

weaken hydrogen bonding between polysaccharide and water molecules and enhance 

hydrophobic bonding interactions between polysaccharide molecules. At this stage, 

hydrophobic bonding dominates in a certain temperature range, leading to the final phase 

transition from sol to gel. It should be noted that for additives to induce the sol-gel phase 

transition, a crucial requirement is a substantial alteration in the solubility of 

polysaccharides in water due to variations in external factors such as temperature, pH, and 

ionic strength (Geng et al. 2023). This change is the primary driving force behind the phase 

transition in polysaccharide solution systems. The main function of the additive is to 

maintain the polysaccharide in a pre-gelatinized state by surrounding it with enough water 

molecules. This prevents the polysaccharide from directly precipitating out of the solution 

system (Liu et al. 2016). Chitosan is soluble in acidic environments. At a pH above 6.2, 

chitosan starts to deprotonate and gradually forms flocculent deposits. Chitosan solubility 

varies over the physiological pH range, making it an ideal raw material for preparing 

thermosensitive hydrogels with additives in the biomedical field. Chenite’s team suggested 

using a chitosan/β-glycerophosphate (β-GP) aqueous solution to create a thermosensitive 

injectable hydrogel (Chenite et al. 2000). This hydrogel can be formed in vivo through the 

combined effect of various forces that promote the formation of gel states, such as 

hydrogen bonding, and electrostatic and hydrophobic interactions. The β-glycerophosphate 

additive plays three roles in the hydrogel system: (a) β-Glycerophosphate is alkaline. Thus, 

it can raise the pH level of the system to the physiological range. (b) It can ensure that the 

chitosan solution remains in a sol state at room temperature and within the physiological 

pH range. (c) The sol-gel phase transition is facilitated with increased temperature. 

Functional compounds, whether metal or non-metal (ions or elements), are 

commonly added to polysaccharide-additive systems (Zhang et al. 2018b; Zhou et al. 

2015). This is done to regulate the gelation rate and phase transition temperature, improve 

mechanical properties, antibacterial properties, and biocompatibility, or introduce new 

biomedical functions. Moradi’s team incorporated hydroxyethyl cellulose (HEC) and 

graphene (GO) into the CS/β-GP hydrogel system, resulting in a hydrogel with accelerated 

sol-gel phase transition rate and a more robust three-dimensional network structure 

(Moradi et al. 2023). Hydroxyethyl cellulose and GO have three critical contributions to 

this hydrogel system: (a) Enhance structural stability. The electrostatic interaction among 

HEC, GO, and CS molecular chains enhances the strength of the hydrogel structure. (b) 

Increase the phase transition rate. GO enhances the hydrophobic effect of the hydrogel 

system, boosts the mutual aggregation between polymer chains, and speeds up the sol-gel 

phase transition rate. (c) Improve treatment effectiveness. The hydrogel is utilized for 

diabetic fracture healing, and the HEC component aids in cell adhesion, growth, and 

calcium deposition. 
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BIOMEDICAL APPLICATIONS OF POLYSACCHARIDE-BASED 
THERMOSENSITIVE INJECTABLE HYDROGELS 
 

Wound Healing 
  Skin injuries are a common type of body injury. They often result in complex 

clinical problems due to difficulties in wound healing, mainly when bacterial infections 

occur repeatedly (Abbas et al. 2019; Barbu et al. 2021). Therefore, it is crucial to design 

and synthesize novel wound dressings with antibacterial, hemostatic, and wound-healing 

capabilities (Dhand et al. 2016). At present, enhancing the speed of adhesion of a medical 

formulation to wounds for better healing efficiency is a significant scientific concern in the 

field of new materials for wound healing (Hu et al. 2020; Jafari et al. 2022). 

Thermosensitive polysaccharide-based injectable hydrogel materials have caught the 

interest of researchers among various topical wound dressings (Luo et al. 2022). Their 

precursor solutions’ fluidic nature allows them to fill wounds with irregular geometries and 

adhere to surrounding tissues during gelation (Ramasami et al. 2019; Raina et al. 2022). 

This helps retain wound moisture, provide gas replenishment, and absorb wound secretions 

for efficient wound healing (Safakas et al. 2023). 

The integration and adhesion of biomaterials or implants, such as hydrogels, to the 

surrounding native tissue is crucial for wound healing (Lee et al. 2023). Injectable 

hydrogels face challenges in adhering to the bleeding site for hemostasis and wound 

healing due to the moist environment of the human body. Shou et al. (2020) designed and 

synthesized catechol-hydroxy butyl chitosan (HBCS-C) with tissue adhesion properties 

inspired by the adhesion properties of marine mussels in water (Fig. 3).  

 

 
 

Fig. 3. The wound hemostatic behaviors of HBCS-C hydrogels: (A) Schematic illustration of 
HBCS-C thermoresponsive adhesive hydrogels. (B) Schematic illustration of hemorrhagic liver 
model of black rat. (C) Contrast images of the bleeding rat liver treated with HBCS-C and 
untreated every 30 s for 2 min. Figure republished from Shou et al. (2020) with permission from 
ACS, ACS Biomaterials Science & Engineering. 
 

 They achieved this by grafting hydroxy butyl and catechol groups onto the chitosan 

backbone. Catechol-hydroxy butyl chitosan achieved a fast thermosensitive sol-gel 

transition via hydrogen bond changes within and between molecular chains and 

hydrophobic interaction between hydroxy butyl groups. The interactions between the 

catechol amino functional group in the HBCS-C structure and the tissue allow the hydrogel 

to adhere firmly to the surface. The team also achieved hemostasis experiments on hepatic 



 

PEER-REVIEWED REVIEW ARTICLE               bioresources.cnr.ncsu.edu 

 

 

Sun et al. (2024). “Thermosensitive hydrogels,” BioResources 19(2), 4015-4039.  4025 

hemorrhage in rats with this hydrogel. By injecting the hydrogel precursor solution into 

rats, the hydrogel could form in situ within 30 s and firmly bind to the bleeding tissue, 

resulting in a noticeable hemostatic effect. The work mentioned above not only illustrates 

a design method for polysaccharide-based hydrogels that can conform to irregular wound 

shapes and possess strong tissue adhesion properties but also demonstrates the importance 

of hydrogel material’s tissue adhesion properties in wound hemostasis, offering new 

insights into the study of the agents. 

Wound healing, specifically extensive full-thickness wounds, typically require a 

lengthy repair process (Zheng et al. 2020). Both acute and chronic wounds pose significant 

health challenges for patients and healthcare professionals. Therefore, creating wound 

dressings with fast healing properties is also difficult (Huang et al. 2023). Cao et al. (2021) 

developed a chitosan-based hydrogel wound dressing that is thermosensitive and has self-

healing properties. The team added metal ions Fe3+ and Al3+ to the carboxymethyl chitosan 

solution system. These ions can enhance wound healing. They can bind with the carboxy 

groups in the chitosan structure, forming a dynamic cross-linked network. The hydrogel 

exhibited remarkable properties of self-healing, adaptability, and thermosensitivity. The 

researchers conducted in vivo wound healing experiments using a mouse skin wound 

model. They treated the wounds with gauze, commercial wound dressing, and self-

repairing hydrogel. They compared the wound recovery time and found that the self-

repairing hydrogel significantly accelerated healing compared to the other two materials. 

Moreover, given that conventional tissue adhesives cannot prevent wound infection and 

necessitate the use of additional antibiotics, it is imperative for the wound dressing to have 

efficient antimicrobial properties in clinical applications (Sánchez-Cid et al. 2022; Zhang 

et al. 2020). 

Zhu et al. (2022) designed a novel supramolecular hydrogel using hydroxypropyl 

chitosan (HPCS) and PNIPAM. To begin, HPCS-CD was obtained by grafting β-

cyclodextrin onto the HPCS backbone. Next, self-assembly occurred through 

supramolecular forces between HPCS-CD and adamantyl acrylate (ADA). Finally, a 

hydrogel was formed using ADA to undergo a free radical polymerization reaction with 

N-isopropyl acrylamide (NIPAM). Hydrogels have various functions, such as injectability, 

thermosensitivity, and self-healing. Injecting dipotassium glycyrrhizinate (DG) into the 

precursor solution resulted in the hydrogel acquiring antibacterial activity against 

Staphylococcus aureus. The team evaluated wound healing in vivo with a mouse whole-

skin defect model. The study found that injecting DG-loaded hydrogels into mice resulted 

in effective tissue remodeling, collagen deposition, and reduced inflammation. These 

outcomes were better than those observed with commercial TegadermTM and 3M dressings. 

The study proposes a novel approach for treating wounds in emergencies. Zakerikhoob et 

al. (2021) used the mentioned method of hydrogel wound dressings and created a 

curcumin-containing PNIPAM-alginate Sodium (Algate-g-PNIPAM) hydrogel system. 

The hydrogel system has a commendable wound contraction effect and can reduce 

inflammation, promote collagen formation, and increase fibroblast count. 

 

Drug Delivery 
When drugs are delivered conventionally, only a tiny fraction of the drug can reach 

the intended treatment site in a biological target. On the other hand, the majority of the 

drug is distributed throughout the body (Chabria et al. 2021). Simultaneously, drug 

interactions and non-delivered target interactions can cause unmanageable side effects. 

Therefore, optimizing drug delivery, enhancing treatment effectiveness, and minimizing 
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side effects are pressing issues that require immediate attention (Chatterjee and Chi-leung 

Hui 2019). The gel-forming properties of thermosensitive injectable hydrogels with in situ 

gelation are crucial for drug delivery at the lesion (Chen et al. 2018; Chen et al. 2020; 

Duong et al. 2020). The hydrogel precursor solution, containing drugs, can be injected 

minimally invasively at the biological target site. The hydrogel can then rapidly form and 

immobilize with a temperature change (Myrick et al. 2019). The hydrogel, as described, 

can function as a concentrated drug depot, extending drug retention at the lesion site. This 

enhances drug utilization efficiency and reduces the need for frequent drug administration 

and toxic side effects (Yu et al. 2020; Ziminska et al. 2020). 

Certain thermosensitive polysaccharide-based graft copolymers can undergo self-

assembly in water to create micelles (Wang et al. 2020). These micelles have a 

hydrophobic core where hydrophobic drugs can be dissolved. The drug copolymers 

solubilize the aqueous solution and inject it into the body. Due to body temperature, the 

solution transforms into a gel through a phase transition. The mentioned delivery method 

can enhance both the hydrophobic drug loading and the hydrogel’s network structure and 

can inhibit the passive diffusion release of the drug, ultimately decreasing the likelihood of 

burst release (Sun et al. 2019). Liu et al. (2017) synthesized Algate-g-PNIPAM, a graft 

copolymer of alginate and PNIPAM, using atom transfer radical polymerization (ATRP). 

The objective was to enhance the bioavailability and therapeutic efficacy of the 

doxorubicin (DOX) anticancer drug. The copolymer forms micelles at temperatures above 

the critical micelle temperature. These micelles can encapsulate DOX in their hydrophobic 

core. In vitro studies have confirmed that Algate-g-PNIPAM hydrogel can maintain DOX 

release, aiding in enhanced drug uptake by cells and decreased drug resistance, resulting in 

more efficient eradication of cancer cells. 

Masanori’s team suggested a fresh approach for subject-object recognition in 

thermosensitive injectable hydrogels (Okubo et al. 2020). The sol-gel transition was 

achieved by subject-object interactions between hydrophobically modified hydroxypropyl 

methylcellulose (HM-HPMC) and β-cyclodextrin (β-CD) at different temperatures. At low 

temperatures, β-CD and HM-HPMC formed inclusion complexes, resulting in the system 

being in the sol state. When the temperature reaches a level close to that of the human body, 

β-CD separates from the inclusion system, forming a gel state. Owing to these 

characteristics, they can be easily injected into the organism’s lesion site at room 

temperature. A high-viscosity gel forms quickly at the injection site, enabling slow release 

of the drug and sustaining its effectiveness. The study demonstrated that the slow-released 

insulin from the HM-HPMC/β-CD hydrogel had a long-lasting hypoglycemic effect. The 

mean retention time (MRT) of insulin in the body increased by 1.6-fold compared to the 

direct drug delivery method. Furthermore, cyclodextrins played a role not only in the 

creation of hydrogels but also in the hydrophobic cavity, which is a good carrier for 

hydrophobic drugs. 

Pourjavadi’s team designed and synthesized an injectable hydrogel with a dual 

response to temperature and UV light through the host-guest interaction mechanism (Fig. 

4) (Pourbadiei et al. 2023). The preparation process is complex. The copolymer P(NIPAM-

AZO) was obtained by randomly copolymerizing the NIPAM and the photosensitive 

monomer azobenzene derivative (AZO) using free radical polymerization. Simultaneously, 

β-CD was used to alter double allyl starch (DAS) to accommodate the resulting 

DAS@SCD product, and ultimately, P(NIPAM-AZO) was combined with DAS@SCD to 

form the hydrogel precursor. The hydrogel underwent sol-gel phase transition under UV 

light and temperature stimulation using azobenzene derivatives with cyclodextrin host-
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guest recognition and PNIPAM chain segments. Paclitaxel was loaded into the hydrogel 

through the β-CD hydrophobic cavity. The substance was released over 96 h under UV 

light at body temperature and a wavelength of 230 nm.  

 

 
 

Fig. 4. The preparation process of DAS@SCD/NIPAZO hydrogel: (A) Synthesis of NIPAM-co-
AZO monomer. (B) Synthesis of DAS@SCD. (C) A schematic view of PTX releases upon light 
irradiation. Figure republished from Pourbadiei et al. (2023) with permission from Elsevier, 
Carbohydrate Polymers. 

 
Cartilage Repair 

Bones are vital for human activities, as they are an essential body part. Osteoblasts 

and osteoclasts in healthy bone tissue typically maintain balance, but this equilibrium is 

disrupted by trauma, disease, and aging, resulting in irreversible bone damage (Chatterjee 

and Hui 2021; Chen et al. 2022b). Injectable polysaccharide-based thermosensitive 

hydrogels mimic the extracellular matrix structure and regenerate cartilage by filling 

hydrogel into bone tissue defects (Devi et al. 2021). This minimally invasive method forms 

a 3D scaffold that adapts to tissue defects. Injectable polysaccharide-based thermosensitive 

hydrogels are increasingly crucial for fast bone defect repair (Lin et al. 2021). 

Hydrogels for bone tissue regeneration should have fast gelation and controlled 

degradation properties (Padmanabhan et al. 2023). Chenite et al. (2000) introduced a 

thermosensitive injectable hydrogel made of chitosan/polyol salt complexes. This hydrogel 

was used as a system for delivering growth factors in vivo and as matrices for chondrocytes. 

The degradation time can be controlled by adjusting the deacetylation degree of chitosan, 

ranging from days to weeks. In general, as the deacetylation degree decreases, the 
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degradation rate increases. However, the report failed to investigate the regulation of the 

gelation rate and the impact of high concentrations of polyol salts on hydrogel 

biocompatibility. Dang et al. (2011) manipulated the hydrogel formation and degradation 

time by adjusting the concentration of β-GP, and a higher dosage of β-GP notably reduced 

the hydrogel formation time. However, the researchers discovered that elevated β-GP 

concentrations were toxic to human HS68 cells and mouse embryonic fibroblasts. Hence, 

when preparing hydrogels, regulating the quantity of β-GP carefully is crucial. Polylysine 

(PL) is a lysine homopolymer with excellent solubility, thermal stability, and 

biocompatibility. Polylysine is also an antimicrobial agent with bactericidal activity against 

gram-positive and gram-negative bacteria. The PL chain has numerous hydrogen bond 

donors and acceptors, making it a suitable starting point for creating thermosensitive sol-

gel phase change materials. Zheng et al. (2022a) developed a ternary thermosensitive 

injectable hydrogel composed of chitosan, PL, and glycerophosphate (GP) (SF/PCS/GP). 

The research team first modified chitosan with PL. Then, they blended it with GP to create 

the hydrogel’s backbone material. In addition, the therapeutic effect can be optimized by 

loading bone marrow mesenchymal stem cells (BMSCs) and transforming growth factors 

(TGF-β1). The addition of PL enhanced the hydrogels’ biocompatibility and antimicrobial 

properties. It also improved the gelation rate and mechanical properties by forming β-

folded structures between PL and chitosan molecular chains through hydrogen bonding. 

Hydrogel, as a bone tissue filler, should possess rapid gel performance, controllable 

degradation performance, and excellent mechanical properties (Wang et al. 2023). 

Additionally, its mechanical strength should align with that of the tissue organism. The 

neatness of the crosslinked network closely affects the mechanical properties of hydrogels 

(Saravanan et al. 2019). Verma’s team introduced hydrothermally treated polyelectrolyte 

complexes (PEC) and gelatin into the chitosan-polygalacturonic acid (PgA)-β-

glycerophosphate (β-GP) thermosensitive hydrogel system, based on previous work. The 

introduction of polyelectrolyte complexes creates a hydrogel with a nearly ideal 

crosslinked network structure (Wasupalli and Verma 2022). The mechanical properties are 

enhanced by this relatively homogeneous network structure, which effectively disperses 

the externally applied stresses. Moreover, the gelatin component infused within the 

hydrogel can enhance bioactivity and cell adhesion, promoting cell proliferation. The 

research team studied the mechanism of the mentioned improvement in the hydrogels’ 

mechanical properties. The hydrogel’s functions relative to cell adhesion and proliferation, 

and bone tissue growth, repair, and regeneration were systematically evaluated. The results 

showed that the hydrothermal treatment of polyelectrolyte complexes and polygalacturonic 

acid enhanced the connectivity of hydrogel pores and the neatness of PEC in the hydrogel, 

thereby enhancing the mechanical strength. 

 

CURRENT CHALLENGES AND PROSPECTS 
 

 In recent decades, polysaccharide-based thermosensitive injectable hydrogel 

materials have combined biosafety and temperature-controlled in situ gel formation. This 

showcases the potential of hydrogels in biomedical field applications. Researchers have 

applied certain polysaccharide-based hydrogel products from in vitro to in vivo, from the 

lab to real clinical applications. The related research results and outcomes have gradually 

demonstrated a broad application prospect. 

 However, to broaden the application range of polysaccharide-based hydrogel 

products and speed up the promotion of their clinical applications, the development of 
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injectable polysaccharide-based hydrogels still faces the following constraints: (a) While 

polysaccharides possess non-toxicity and excellent biodegradability, the typical approach 

for designing injectable hydrogels based on polysaccharides often involves modifying the 

structure of the polysaccharide through physical or chemical means. Newly introduced 

moieties, compounds, and functional polymers may have tissue toxicity concerns. 

Therefore, it is essential to initially contemplate polysaccharide-based hydrogels’ 

composition and design methods. Furthermore, the regulation methods for controlling the 

phase transition temperature of thermosensitive injectable hydrogels are relatively 

complex, and the range within which the phase transition temperature can be adjusted is 

limited. Hence, the upcoming research should prioritize the efficient and rapid control of 

phase transition temperature to meet the needs of practical applications. (b) The 

microenvironment of the lesion site of the organism is complex, and there are often subtle 

changes in pH, oxygen content, temperature, ionic strength, and microorganisms. In future 

research, developing injectable hydrogels with multiple stimulus sensitivity is significant. 

This will help them adapt to changes in the microenvironment of the organism’s lesion 

tissue. (c) Currently, thermosensitive hydrogels have fulfilled the criteria for clinical 

applications by adjusting their mechanical properties through physical and chemical 

modifications. However, compared to other popular elastomers such as polyurethane, 

polydimethylsiloxane, and vulcanized elastomers, there remains a significant disparity in 

mechanical strength and stability. Therefore, the next development focus is on enhancing 

the mechanical strength of polysaccharide-based materials while maintaining their 

injectable properties and biosafety. 
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