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This study aimed to validate the accuracy of identifying Japanese 
hardwood species from microscopic cross-sectional images using 
convolutional neural networks (CNN). The overarching goal is to create a 
versatile model that can handle microscopic cross-sectional images of 
wood. To gauge the practical accuracy, a comprehensive database of 
microscopic images of Japanese hardwood species was provided by the 
Forest Research and Management Organization. These images, captured 
from various positions on wood blocks, different trees, and diverse 
production areas, resulted in substantial intra-species image variation. To 
assess the effect of data distribution on accuracy, two datasets, D1 and 
D2, representing a segregated and a non-segregated dataset, 
respectively—from 1,000 images (20 images from each of the 50 species) 
were compiled. For D1, distinct images were allocated to the training, 
validation, and testing sets. However, in D2, the same images were used 
for both training and testing. Furthermore, the influence of the evaluation 
methodology on the identification accuracy was investigated by comparing 
two approaches: patch evaluation and E2 image evaluation. The accuracy 
of the model for uniformly sized images was approximately 90%, whereas 
that for variably sized images it was approximately 70%.  
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INTRODUCTION 
 

The accurate identification of wood species is important for efficient resource 

utilization and archaeological research. However, discerning species using microscopic 

cross-sectional images requires prior knowledge or experience related to the sizes and 

positions of vessel or tracheid in wood cells. In the context of addressing illegal logging 

practices and conducting comprehensive wood property analyses, there is a pressing 

contemporary requirement for the advancement and implementation of a machine learning-

based systems dedicated to wood species identification. Deep learning has emerged as a 

dominant research trend worldwide and is applicable to classification, segmentation, and 

detection with high accuracy. It is characterized by a structure that mimics the neurons   

and synapses in the human brain. Each neuron receives information as an input and 

transmits the calculated data via a synapse (LeCun et al. 1998). Four dominant machine 

learning methods are employed in the deep learning domain: Convolutional neural 

networks (CNNs) for image recognition (Drakopoulos et al. 2021), recurrent neural 
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networks used for time-series data analysis (Sherstinsky 2020), autoencoders used for 

dimensionality reduction, and generative adversarial networks used for image generation 

(Goodfellow et al. 2014).  

Among the methodologies utilized, CNNs have been used for the recognition of 

wood defects and the identification of wood species. Oktaria et al. (2019) reported an 

accuracy of 97% in the identification of 30 wood species from macroscopic images using 

a CNN via ResNet transfer learning. Likewise, an accuracy of 97.31 ± 1.85% was obtained 

via ResNet transfer learning when classifying 11 wood species of macroscopic images by 

Geus et al. (2021). They subsequently identified 281 wood species using DenseNet with 

an accuracy of 98.75% (Geus et al. 2020). Transfer learning is an effective approach for 

handling limited datasets (Sun et al. 2021). In their study, 25 species (120 for each species) 

were successfully identified with 99.6% accuracy. He et al. (2021) trained and evaluated 

nine CNN architectures using two macroscopic wood image datasets. Their proposed 

network achieved a 100% test rate on a dataset comprising eight wood species and 918 

images after two rounds of training. In another dataset with 41 species and 11,984 images, 

it attained a 98.81% test recognition rate after three training cycles. Moulin et al. (2022) 

developed a custom deep CNN model to differentiate between images of Brazilian native 

and introduced wood species. The custom model achieved excellent accuracy (>0.90) and, 

in some cases, even surpassed human identification with an F1-score of 0.99. Lens et al. 

(2020) asserted that computers can differentiate between wood species by focusing on the 

corners and edges of tissues, such as vessel elements. Kwon et al. (2017) and Lopes et al. 

(2020) demonstrated through their respective studies that CNNs, utilizing transfer learning 

techniques, exhibit remarkable accuracy in the identification of wood species across 

datasets encompassing both hardwood and softwood specimens. Notably, one study 

achieved a classification accuracy of 97.32% when employing a CNN to classify the 

microscopic images of Brazilian wood specimens, encompassing 112 species (Hafemann 

et al. 2014). Kırbaş and Çifci (2022) delved into classifying wood species using the 

WOOD-AUTH dataset and assessing the effectiveness of different deep learning 

architectures including ResNet-50, Inception V3, Xception, and VGG19 with transfer 

learning. The dataset comprised macroscopic images of 12 wood species across the cross, 

radial, and tangential sections. The results indicated the superior performance of Xception, 

achieving a classification accuracy of 95.88%, surpassing that of the other models. Hwang 

and Sugiyama (2021) presented a thorough assessment of this subject and provided an 

essential foundation for the development of a framework for automatic wood identification. 

This study also highlighted the potential for expanding the use of computer vision in wood 

science, offering an insightful discourse on the future trajectory of the field. Similarly, 

noteworthy contributions have been made to the utilization of computer vision techniques 

for the identification of ring-porous hardwood species (Ravindran et al. 2022). That 

research highlights the significance of technological advancements in promoting 

sustainability within North American wood product value chains, while presenting a novel 

approach for the precise identification of specific types of wood. Fundamentally, these two 

studies made significant and essential contributions to the advancement of knowledge 

regarding wood species identification, with particular focus on the application of computer 

vision methodologies. These invaluable insights and directions guide the methodological 

and theoretical basis of this current research.  

While numerous previous studies have reported high accuracy in wood species 

identification, many have not thoroughly addressed the specific factors that influence 

accuracy and robustness, such as image dimensionality and the distribution of data between 
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the training and testing sets. To develop a model for the identification of wood species 

based on microscopic cross-sectional images, it is essential to discern pertinent features, 

such as the position and size of vessels and tracheids in wood cells. However, these 

approaches ideally require consistent factors, including image resolution and calibration, 

when using microscopes with different magnification ratios.  

The objective of this study was to assess the discriminatory capabilities of a CNN 

for classifying different wood species, irrespective of specific image characteristics. To 

achieve this objective, this study utilized images with various pixel sizes, enabling a 

comparison of model accuracy against scenarios in which only images of identical pixel 

sizes were analyzed. In addition, the impact of dataset partitioning (i.e., training and test 

sets) on model accuracy was examined. Furthermore, this study presented a novel model 

capable of generating reasonably accurate estimations, regardless of the type of 

microscopic photograph employed. To facilitate practical implementation and promote 

collaborative efforts, the secondary goal was to establish a publicly accessible website that 

facilitated hardwood identification using customized image data. 

 

 

EXPERIMENTAL 
 
Image Processing 

Microscopic cross-sectional images of 50 Japanese hardwood species (totaling 1,000 

images, with 20 images per species) were sourced from the Japanese Wood Identification 

Database of the Forest Research and Management Organization. All images were captured 

using a D100 camera (Nikon, Tokyo, Japan) or a DP72 camera (Olympus). The 50 species 

included in the dataset, spanning 39 genera and 29 families, are summarized in Table 1. 

This means that the dispersion of anatomical features was quite high. When the database 

contained more than 20 images of any species, surplus images were harnessed to evaluate 

the robustness of the model. The images varied in terms of resolution (spanning 3,840 × 

3,072; 3,200 × 2,560; 3,008 × 2,000; and 1,360 × 1,024). Although certain properties such 

as resolution are not preserved as digital values, one certainty is that if the TWTw No. 

differs, and it indicates a difference in individual specimens. The camera used varied across 

the images. This variation served as an appropriate test for the adaptability of the model to 

images of different sizes. In the process of data extraction from the images, the distance 

per pixel and field of view (FOV) on the X- and Y-axes varied according to the image 

resolution. The following parameters were observed for each resolution category: 

For images with a resolution of 3,840 × 3,072 pixels, the distance per pixel was 0.9 

μm, and the FOV was 3.5 mm and 2.8 mm on the X- and Y-axes, respectively. 

For images with a resolution of 3,200 × 2,560 pixels, the distance per pixel was 0.9 

μm, and the FOV was 2.9 mm and 2.3 mm on the X- and Y-axes, respectively. 

For images with a resolution of 3,008 × 2,000 pixels, the distance per pixel was 1.3 

μm, and the FOV was 3.9 mm and 2.6 mm on the X- and Y-axes, respectively. 

For images with a resolution of 1,360 × 1,024 pixels, the distance per pixel was 3.2 

μm, and the FOV was 4.4 mm and 3.3 mm on the X and Y axes, respectively. 
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Table 1. The 50 Species Included in the Dataset 

SN*1 
Sorted into 29 

families 
Scientific Name 

of Wood Species 
NSI*2 

Sorted into 29 
families 

SN*1 
Scientific Name 

of Wood Species 
NSI*2 

1 
Sapindaceae Acer 

sieboldianum 
2 

Fagaceae 
26 

Quercus 
stenophylla 

3 

2 Actinidiaceae Actinidia arguta 5 27 Quercus serrata 8 

3 Anacardiaceae Rhus chinensis 7 28 Quercus crispula 12 

4 Rhus trichocarpa 3 Salicaceae 29 Idesia polycarpa 6 

5 
Aquifoliaceae 

Ilex macropoda 0 
Lauraceae 

30 
Cinnamomum 

japonicum 
8 

6 
Araliaceae 

Aralia elata 1 31 
Lindera 

erythrocarpa 
3 

7 Betulaceae Betula grossa 4 32 Lindera umbellata 2 

8 Carpinus laxiflora 7 Moraceae 33 Ficus erecta 4 

9 
Carpinus 
japonica 

4 34 Morus australis 12 

10 
Adoxaceae Viburnum 

furcatum 
0 

Oleaceae 
35 

Ligustrum 
japonicum 

3 

11 
Viburnum 
dilatatum 

5 
Rosaceae 

36 Pourthiaea villosa 3 

12 
Celastraceae Euonymus 

oxyphyllus 
7 37 Prunus grayana 11 

13 
Clethraceae Clethra 

barbinervis 
10 38 

Prunus 
jamasakura 

19 

14 
Garryaceae 

Aucuba japonica 0 
Rutaceae 

39 
Zanthoxylum 

piperitum 
0 

15 Cornaceae Cornus kousa 6 Hydrangeaceae 40 Deutzia crenata 13 

16 
Cornus 

macrophylla 
6 41 

Hydrangea 
paniculata 

8 

17 
Cornus 

controversa 
15 42 

Schizophragma 
hydrangeoides 

4 

18 
Daphniphyllaceae Daphniphyllum 

teijsmannii 
1 

Stachyuraceae  
43 

Stachyurus 
praecox 

19 

19 Ericaceae Lyonia ovalifolia 10 Styracaceae 45 Styrax japonicus 13 

20 Pieris japonica 7 
Staphyleaceae 

44 
Euscaphis 
japonica 

10 

21 
Rhododendron 

kaempferi 
9 

Theaceae 
46 Camellia japonica 11 

22 
Euphorbiaceae Mallotus 

japonicus 
10 

Pentaphylacaceae 
47 Eurya japonica 17 

23 
Eupteleaceae Euptelea 

polyandra 
5 

Lamiaceae 
48 

Callicarpa 
japonica 

11 

24 Fagaceae Castanea crenata 8 49 Callicarpa mollis 3 

25 Quercus acuta 4 50 
Clerodendrum 
trichotomum 

0 

*1 Species number, *2 Number of surplus images 

 

Because these images were captured under a variety of microscope settings, they 

presented different resolutions and dimensionalities. Although challenging, these variable 

conditions helped test the robustness of this model in handling diverse and realistically 

inconsistent data. Because each image featured a scale bar in the bottom-right corner, the 

corresponding pixels were cropped out. The images were then processed, as shown in Fig. 

1, and the previously mentioned image dimensions were reduced to 3,840 × 2,591, 3,200 

× 2,153, 3,008 × 2,000, and 1,360 × 972, respectively. Subsequently, square areas 

corresponding to 2,501 × 2,501, 2,153 × 2,153, 2,000 × 2,000, and 972 × 972 pixels were 

randomly extracted from each image category and resized to 640 × 640 pixels. It is 

important to note that the exact scale lengths between pixels vary across images. Next, 64 

× 64 nonoverlapping grid patches were extracted from these images, accumulating a total 

of 100 patches per image. These patches were divided into training, validation, and testing 

datasets. The RGB color of each patch was converted to grayscale to minimize the impact 

of differences in microscope devices.  

 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Ma et al. (2024). “Wood ID via deep learning,” BioResources 19(3), 4838-4851.  4842 

 
Fig. 1. Diagram of the image preprocessing 

 
To ascertain the effect of image size on wood identification accuracy, an 

additional dataset was composed of images from 10 species (denoted in orange in Table 

1) in their original dimensions (3,840 × 3,720 pixels), processed in line with the main 

dataset. The present study utilized this diverse dataset to assess the practical 

identification performance of various CNN models. A fundamental principle of machine 

learning is the exclusion of identical images from the training, validation, and testing 

sets. To elucidate the impact of the data distribution, data allocation was evaluated using 

two prepared datasets, as shown in Fig. 2. Two datasets, D1 and D2—from 1,000 images 

(20 images per each of the 50 species) were assembled. For D1, entirely distinct images 

were used for training, validation, and testing. Conversely, D2 used the same images for 

both training and testing. In addition, two evaluation methodologies were compared: 

patch evaluation (E1) and image evaluation (E2). For the former, species predictions 

were made for each patch, and accuracy was calculated accordingly. In the latter 

scenario, following the species prediction for each patch, the cumulative accuracy was 

computed by considering the summation of all patches within the image.  
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Fig. 2. Data allocation of D1 and D2 
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The potential for fine-tuning was also considered in the exploration of accuracy 

enhancement. For D1, 20 images from each species were apportioned from the training (12 

images = 1,200 patches), validation (three images = 300 patches), and testing (five images 

= 500 patches) datasets without overlap. The impact of variations in location and camera 

settings across images on identification accuracy was assessed. For D2, 20 images from 

each species were allocated to the training (16 images = 1,600 patches) and validation (four 

images = 400 patches) datasets. After the development of the CNN models, these 20 images 

were reused for testing. The findings from this study suggest superior accuracy in wood 

identification from D2 compared to D1. However, model robustness should be higher in 

D1 than in D2. To evaluate model robustness, surplus data corresponding to species with 

more than 20 images in the original database were prepared. The quantity of surplus data 

for each species is shown in Table 1. To evaluate the accuracy of the model, it is crucial to 

use a test set in which the number of samples across each category is equal. However, 

achieving such a balanced representation is challenging in the context of real-world 

scientific data. Considering these practical limitations, this study was not restricted to a 

perfectly balanced test set. Instead, all remaining samples were used as surplus data to 

evaluate the robustness of the model. This approach enabled assessment of how well the 

model performed on a broader scale and reflected its true capacity for generalization and 

adaptability. It is crucial to emphasize that different TWTw No. signifies distinct 

individuals from which samples were extracted. A comprehensive summary of TWTw No. 

for the database used in this study is available at https://inatetsu2nd-woodspecrecog-01-

home-f1zh5g.streamlit.app/. 

 
Network Architecture 

In this study, a CNN structure was employed (Hafemann et al. 2014). The rationale 

for this choice stems from its remarkable accuracy in the specific task of wood species 

identification. Such a high level of precision in this context is astonishing, making their 

approach particularly compelling. This structure incorporates a 64 × 64 input layer, two 

convolutional layer sets with 5 × 5 sliding kernels and a stride of one pixel, a pooling layer 

with 3 × 3 kernels and a stride of two pixels, two locally connected layers featuring 3 × 3 

sliding kernels and a stride of one pixel, and a flattened layer that shares weights across all 

the nodes. The output layer encompasses 50 classes, each representing a different wood 

species. The Adam algorithm was used to automatically optimize the learning rate. All 

convolutional layers employed a Rectified Linear Unit (ReLU) activation function with a 

batch size of 512. After ReLU activation, any input values that were not positive were 

translated to an output of zero. The final dense layer uses SoftMax activation, thereby 

producing output values within the zero to 1.0 range. All the models were trained over 22 

epochs until the validation loss stabilized. The authors scrutinized the loss progression 

when assessing the model results. Each dataset was trained for approximately 5 min using 

a GeForce GTX 1080 GPU (NVIDIA, USA). To evaluate the model accuracy, fine-tuning 

was applied by building on VGG16 with weights derived from ImageNet (ResNet50). This 

fine-tuning merges 15 layers of a preexisting fixed model with new additions, facilitating 

the learning of new weights and enhancing the generalization capacity of the model. 

Because fine-tuning relies on three-dimensional input models, grayscale conversion was 

not applied to the images. 
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Accuracy Evaluation  
As delineated in section “Image Processing”, each species was assigned 500 testing 

patches for D1 and 2,000 testing patches for D2. Two evaluation methods were used in this 

study. For Evaluation Method 1 (E1), the species from all patches were predicted and used 

to calculate accuracy, meaning that the predicted outcomes from all patches were 

considered when determining accuracy. Thus, 100 predictions corresponding to each patch 

were derived from each image. The accuracy of all predictions was calculated, thereby 

providing a comprehensive view of the model's performance across the entirety of each 

image. In Evaluation Method 2 (E2), a sum rule was implemented, as shown in Table 2, 

wherein the sum of all probabilities associated with patches for each image was maximized. 

Consequently, the probabilities generated by the CNN, which corresponded to all the 

species, were summed over the patches to categorize the wood species. In other words, a 

single prediction value was generated for each image. This single prediction represents the 

model's assessment of the entire given image. To assess the impact of the pixel size on the 

accuracy of the CNN model, the extracted files were tested at pixel sizes of 16, 32, 64, 128, 

and 256. The results revealed no dramatic improvements in the accuracy for pixel sizes 

greater than 64. Consequently, 64 pixels were selected for the study. 

 
Table 2. Sum Rule for Accuracy Calculation 

 Class1 Class1 Class1 … Class50 

Patch1 0.5* 0.03 0.01 … 0.001 

Patch2 0.7* 0.01 0 … 0.001 

… … … … … … 

Patch99 0.1 0.5* 0.1 … 0.01 
Patch100 0.8* 0.1 0.1 … 0.2 

Sum of predict value ↓ ↓ ↓ ↓ ↓ 

Image1 57* 3 2 … 0.9 
* Predicted class by patch or image 

 

 

RESULTS AND DISCUSSION 
 
Effect of Evaluation Method on Accuracy 

Table 3 presents the accuracy of the predictions derived from both D1 and D2 

datasets. Notably, E2 consistently outperformed E1. Consequently, the prediction accuracy 

was enhanced by aggregating the outcomes of 100 patches extracted from each image. The 

E2 evaluation used in this study closely mirrors the method utilized by Hafemann et al. 

(2014), who stated that "For the recognition, patch results are combined for the entire 

image. The straightforward solution is to solely use the central patch of the image for 

testing, but this yields suboptimal results, as patches are smaller than the images. In this 

work, we consider the sum rule: the prediction for a given test image is the class that 

maximizes the sum of the probabilities on all patches of the image." Nevertheless, the 

prediction accuracy achieved in this study was relatively low (44% for 50 species with 20 

images per class) compared to that (97% for 112 species with 20 images per class) reported 

by Hafemann et al. (2014). This discrepancy can be attributed to the authors’ distinct patch 

extraction method, which extracts 100 patches from each image, whereas Hafemann et al. 

(2014) extracted a single patch per training epoch from each image. However, it is not 

anticipated that a significant improvement in the accuracy will be gained if an exact 

approach is adopted. Additionally, considerable fluctuation in accuracy was observed, 
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depending on how the data were split between the training and test sets. This is a common 

phenomenon in the field of data science, and it underlines the importance of partitioning 

data for model training and evaluation. Notably, this model must be evaluated using a 

dataset divided in a manner similar to that of the D1-divided dataset. This partitioning 

strategy ensures a more reliable assessment of the model's real-world applicability and 

robustness. 

 
Table 3. The Accuracy of Predictions Derived from Both D1 and D2 Datasets 

Number of 
Classes 

Model Dataset Evaluation 
Accuracy (%) 

Test Set Surplus Set 

50 
(Species) 

Hafemann 
et al. (2014) 

D1-divided 
E1-Patch 28 30 

E2-Image 44 45 

D2-non-divided 
E1-Patch 44 33 

E2-Image 70 52 

 

Effect of Data Allocation Scheme on Accuracy 

A comparison of the accuracy between datasets D1 and D2 revealed two 

noteworthy insights (Fig. 3), in which D2 consistently outperformed D1 across both 

evaluation methods; however, the accuracy associated with D2 experienced a substantial 

decrease when tested on surplus data, whereas D1's accuracy remained nearly unchanged. 

This underlines the fundamental rule of machine learning: the robustness of a model cannot 

be ensured if the same data are used for training and testing. Therefore, the authors used 

D1 in all subsequent evaluations and analyses. When the accuracy for each species was 

observed, the species with the highest classification accuracy include Pourthiaea villosa 

(73%) for D1 under method E1, Castanea crenata and Quercus stenophylla (100%) for D1 

under method E2, Daphniphyllum teijsmannii (83%) for D2 under E1, and Daphniphyllum 

teijsmannii (100%) for D2 under E2. 

 

 
 

Fig. 3. Comparison of the accuracy between datasets D1 and D2 
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Accuracy Comparison Among CNN Structures 
In line with the suggestion of Hafemann et al. (2014), the model was fine-tuned 

based on VGG16 to compare the accuracy achieved with and without fine-tuning. The 

results are summarized in Table 4. In all the instances, the highest accuracy was obtained 

using the fine-tuned model. Using the second evaluation method (E2), the fine-tuned model 

achieved a testing accuracy of 72% and surplus accuracy of 71%. In machine learning 

analysis, especially when the internal mechanisms are largely unknown—often referred to 

as a "black box"—the number of samples or corpus size plays a pivotal role. This principle 

holds true across fields, but in the realm of scientific data, acquiring a large-scale, or "big 

data" set is a hard task. Considering these challenges, an achievable sample size of one 

thousand specimens was used for model construction. This may seem modest compared to 

models trained on larger databases, but is sufficient for the level of complexity inherent in 

wood science and for making reliable predictions. Transparency is of paramount 

importance in this approach.  

 

Accuracy for Genes and Family Prediction                                  
An additional CNN model was developed to predict the genera and families of the 

wood samples. As shown in Table 1, the 50 wood species investigated in this study spanned 

39 genera and 29 families, and the corresponding accurate results are outlined in Table 4. 

Interestingly, the accuracy of the fine-tuned model using the E2 evaluation method did not 

improve significantly. When the species were grouped by genus and family, the rate of 

correct identification increased in some instances, decreased in others, and showed no 

change on average. Notably, the rate of correct identification increased significantly for the 

ring-porous species. This likely arises from the fact that ring-porous species within a given 

genus or family share similar characteristics, thus exhibiting clear distinctions between 

different classes. 

 

Effect of Original Image Dimensionality on Accuracy 
To assess the impact of the original image size on the accuracy of wood species 

identification, the authors assembled a dataset of images from 10 species, each of which 

had the same size (3,840 × 3,720 pixels). The dataset was processed according to the 

methodology depicted in Figs. 1 to 3. An additional dataset corresponding to the same 

species was curated, albeit with diverse image sizes. It should be noted that standardizing 

the microscopic magnification across all images is challenging because many images are 

collected at undisclosed magnifications. As anticipated, the fine-tuned model under the E2 

evaluation strategy yielded a higher accuracy (94% for the test set and 83% for the surplus 

set) when working with standardized image settings compared with those with varied 

dimensions (86% for the test set and 75% for the surplus set). The attained accuracy of 

94% in this study mirrors the findings reported by Hafemann et al. (2014), where 97% 

accuracy was used for classification across 112 species, each represented by 20 images. 

Consequently, these accuracy results demonstrated a reasonably high level of performance, 

even when there was considerable size variability among the original images. 

 
Estimation of Practical Accuracy 

To gauge the practical accuracy of wood species identification from microscopic 

images via a CNN, the impact of various factors, including the evaluation method, data 

allocation, parameter tuning, classification target, and image dimensions, was assessed. 

Surplus data were compiled to examine the robustness of the model. 
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Table 4. Accuracy Comparison among CNN Structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*1 Original images of 3,840 × 3,072 pixels, 3,200 × 2,560 pixels, 3,008 × 2,000 pixels, 1,360 × 1,024 pixels were used. 
*2 Only original images of 3,840 × 3,072 pixels were used. 

 

Dataset 
The Number 
of Classes 

Pixel of 
Original Image 

Evaluation Model 
Accuracy (%) 

Test Set Surplus Set 

D1-Divided 

50 
(species) 

4 kinds*1 

E1-patch 
VGG16 (Fine-tuning) 51 51 

Hafemann et al. (2014) 28 30 

E2-image 
VGG16 (Fine-tuning) 72 71 

Hafemann et al. (2014) 44 45 

39 
(genus) 

4 kinds*1 

E1-patch 
VGG16 (Fine-tuning) 56 45 

Hafemann et al. (2014) 35 28 

E2-image 
VGG16 (Fine-tuning) 76 64 

Hafemann et al.(2014) 54 44 

29 
(family) 

4 kinds*1 
E1-patch 

VGG16 (Fine-tuning) 55 45 
Hafemann et al. (2014) 29 21 

E2-image 
VGG16 (Fine-tuning) 78 64 

Hafemann et al. (2014) 43 31 

10 
(species) 

4 kinds*1 

E1-patch 
VGG16 (Fine-tuning) 70 64 

Hafemann et al. (2014) 47 43 

E2-image 
VGG16 (Fine-tuning) 86 75 

Hafemann et al. (2014) 70 56 

1 kind*2 

E1-patch 
VGG16 (Fine-tuning) 79 71 

Hafemann et al. (2014) 55 47 

E2-image 
VGG16 (Fine-tuning) 94 83 

Hafemann et al. (2014) 74 63 
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Despite D2 having a higher testing accuracy than D1, further tests on surplus data 

revealed a lack of robustness. Fine-tuning based on VGG16 consistently led to higher 

accuracy than the original parameter setup. 

No significant improvement in accuracy was observed when predicting genera or 

families, as opposed to species. Consistent with the findings of Hafemann et al. (2014), 

increased accuracy was observed when using a single image size. However, the current 

study found prediction accuracies reaching 86% (for the testing set) and 75% (for the 

surplus set), despite variations in the dimensions of the original images. To validate if the 

constructed CNN model is universally applicable, further samples are required. 

Consequently, the authors launched a website that enables anyone to identify wood species 

using their own photos. The website employs two configurations of the fine-tuned VGG16 

model using D1 and E2: one designed for predicting 50 species, and the other for predicting 

10 species from images of equal dimensions. Their accuracies for the test dataset were 72% 

and 94 %, respectively. The second goal is to facilitate opportunities for many people to 

attempt tree species identification through this website, and the incorporation of 

accumulated data into the model will lead to further performance enhancements. By 

opening the authors’ process and providing these resources, it not only adds to the global 

repository of scientific knowledge, but also facilitates advancements in wood science at the 

grassroots level.  

 
 
CONCLUSIONS 
 

This study aimed to estimate the practical accuracy of identifying Japanese wood 

species from microscopic images using a CNN.  

1. Assessments were made based on various factors, including the evaluation 

methodology, data allocation strategy, CNN structure, classification objective, and 

original image size. The overall practical accuracy for the identification of the 50 

Japanese wood species stands at approximately 70%. Moreover, it was demonstrated 

that the constructed model could be used to classify images procured at varying 

magnification levels. 

  

2. To promote the broader use of tree species identification, the authors created a model 

using VGG16 on their website. Users can view the outputs from two distinct models: 

one developed with 50 species, and the other with 10 species of uniform dimensions. 

The accuracy of the test datasets for these models are 72% and 94%, respectively. It is 

believed that for tree species identification to become universally applicable, it is 

imperative that the model be adapted to any type of microscope used. 

 

 Therefore, this study is considered a continuing process, and the authors aim to 

further validate its practical accuracy through the collection and analysis of predicted 

results from the website. It is anticipated that the data accumulated from this interactive 

platform will contribute significantly to the ongoing refinement and improvement of the 

authors’ identification model. 
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