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The primary aim of this work was to determine the effects of production 
parameters, such as wood species and timber strength classes, on some 
mechanical properties of cross-laminated timber (CLT) panels using 
artificial neural network (ANN) prediction models. Subsequently, using the 
models obtained from the analyses, the goal was to identify the optimum 
layer combinations of timber strength classes used in the middle and outer 
layers that would provide the highest mechanical properties for CLT 
panels. CLT panels made from spruce and alder timbers, as well as hybrid 
panels created from combinations of these two wood species, were 
produced. The strength classes of the timbers were determined non-
destructively according to the TS EN 338 (2016) standard using an 
acoustic testing device. The bending strength and modulus of elasticity 
values of the CLT panels were determined destructively according to the 
TS EN 408 (2019) standard. According to ANN results, the optimum timber 
strength classes and layer combinations were determined for bending 
strength as C24-C27-C24 for spruce CLT, D18-D24-D18 for alder CLT, 
C30-D40-C30 and D18-C30-D18 for hybrid panels; and for modulus of 
elasticity, C22-C27-C22 for spruce, D35-D30-D35 for alder, C16-D24-
C16, and D24-C24-D24 for hybrid panels. 
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INTRODUCTION 
 

Wood is recognized for its carbon storing ability, renewability, reusability, 

recyclability, lower carbon impact, it is environmentally benign, and promotes good health 

(Di Bella and Mitrovic 2020). Wood construction technologies are widely employed 

throughout many regions globally. Out of all the options, cross-laminated timber (CLT) 

stands out as the most captivating and groundbreaking material for wooden construction. 

CLT is considered a desirable material for various types of buildings, including detached 

houses, multi-story buildings, schools, auditoriums, exhibition centers, sports halls, 

theaters, commercial establishments, and religious buildings. This is due to its 

advantageous characteristics, such as its lighter weight compared to concrete and steel, its 
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quick construction time, its low carbon footprint, and its ability to withstand earthquakes 

(Di Bella and Mitrovic 2020; Hindman and Golden 2020; Hematabadi et al. 2020). 

At present, the primary raw material for producing CLT panels on a commercial 

scale is derived from three main coniferous wood species: spruce, pine, and fir (Srivaro et 

al. 2020). Recent studies have explored the use of fast-growing tree species to broaden the 

raw material source and enhance the qualities of CLT or hybrid CLT (Dong et al. 2023). 

Studies have identified poplar, eucalyptus, magnolia, and bamboo as often utilized fast-

growing tree or non-wood species in the manufacture of CLT (Marko et al. 2016; Liao et 

al. 2017; Dong et al. 2023; Satir 2023; Shi et al. 2023). There is a lack of research in the 

existing literature regarding the utilization of alder timbers, a rapidly growing tree species 

indigenous to Turkey, in the manufacturing of CLT. This study successfully manufactured 

CLT panels utilizing alder and spruce timbers, as well as hybrid panels combining these 

two wood species. 

The selection of wood species for the manufacture of structural material is crucial, 

with the quality and strength class of the chosen species being key criteria that significantly 

impact the quality of CLT. The TS EN 338 (2016) European standard has established a 

strength classification for coniferous wood species, consisting of 12 groups (C14, C16, 

C18, C20, C22, C24, C27, C30, C35, C40, C45, and C50). Similarly, deciduous wood 

species have been categorized into 8 groups (D18, D24, D30, D35, D40, D50, D60, and 

D70). These classifications not only ascertain the caliber of the timber but also have a 

substantial impact on its selling price. According to literature research, European big 

enterprises that produce CLT typically utilize timbers classified as C24 strength classes 

based on the TS EN 338 (2016) standard (Wieruszewski and Mazela 2017). Furthermore, 

companies such as Binderholz, from Austria, utilize a minimum of C18 strength values. In 

addition, Stora Enso employs C16 and C30 values, Thoma Holz GmbH uses C16 values, 

Martinsons from Sweden uses at least C14 values, and Lignotrend AG from Switzerland 

can incorporate both C20 and C24 strength values (Wieruszewski and Mazela 2017). 

Previous studies in the literature have noted that coniferous wood species are commonly 

utilized in the production of CLT. However, these studies have primarily focused on a 

single group, typically C24, instead of comparing strength values. Among the notable 

studies on this subject are those by Hassanieh et al. (2017), Reynolds et al. (2017), Follesa 

and Fragiancomo (2018), Brandner (2018), Turesson et al. (2019), and Lie et al. (2020). 

In addition, strength classes, such as C16 (Kippel et al. 2014), C18 (Soriano et al. 2016; 

Luengo et al. 2017), C22 (Guo et al. 2017), and C30 (Hadigheh and Dias da Costa 2020), 

have also been favored. O'Dowd et al. (2016) reported the utilization of timbers from two 

distinct strength classes in the manufacturing of a single CLT panel. This study specifically 

chose three distinct strength classes of spruce and alder timbers and utilized various layer 

combinations to create CLT. It is worth noting that a full investigation into strength classes 

of this nature has not been documented in the existing literature. 

Cost and time-effective testing can be conducted to determine the technological 

qualities of CLT materials. Nevertheless, altering the production parameters of CLT could 

result in a procedure that may incur expenses and delays when establishing the potential 

strength values, considering various elements. Currently, it is feasible to forecast the 

strength characteristics of wood material under various manufacturing settings by utilizing 

an Artificial Neural Network (ANN) approach to model the data acquired from existing 

testing. According to literature research, ANNs have been effective in optimizing structural 

timber materials. Demir et al. (2023) investigated the impact of certain production 

parameters on the structural behavior of plywood-sheathed walls when subjected to lateral 
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load. They successfully obtained optimal outcomes by utilizing the ANN to model the nail 

spacing during production. Öztürk et al. (2022) investigated how press parameters 

impacted the mechanical properties of composite plywood. They utilized ANN models to 

determine the optimal press settings that yield the maximum strength values. In addition, 

Demirkir et al. (2013) utilized ANN models to identify the optimal values for certain 

production factors that yielded the greatest adhesive strength in plywood. The objective of 

this study was to assess the impact of production characteristics, specifically wood species, 

and wood strength class, on the mechanical properties of CLT panels using ANN. In 

addition, the objective was to identify the optimal combinations of timber strength classes 

in the intermediate and outer layers of CLT panels that would yield the maximum 

mechanical properties. This was achieved through optimization studies utilizing ANN 

models. 

 
 
EXPERIMENTAL 
 

Wood Material 
In this study, spruce (Picea orientalis L.), a coniferous wood species, was selected 

as one of the most preferred types for CLT production. Additionally, alder (Alnus glutinosa 

subsp. barbata (C.A. Mey.) Yalt.), a type of deciduous tree known for its rapid growth, 

was chosen. Timber from both species was sourced from different regions, in three 

different quality classes for spruce and two different quality classes for alder, according to 

the appearance characteristics specified in the TS 1265 (2012) and TS EN 14081-1 (2019) 

standards, respectively. The timber was planed on all four sides and supplied dry. Care was 

taken to ensure that the timber had a moisture content within the most suitable range for 

CLT production, which is 12 ± 3%. Before CLT production, the timbers were dimensioned 

to sizes of 120 × 10 × 1.8 cm3 and 240 × 10 × 1.8 cm3. 

 

Determination of Timber Strength Classes 
The parameters used in this study made it possible to find out the strength classes 

of the woods before they were used to make CLT. This was done by using non-destructive 

testing methods that followed the TS EN 338 (2016) Standard. The timbers were obtained 

based on their visual qualities. The Sylvatest 4 acoustic testing instrument, developed by 

CBS-CBT, was utilized to ascertain the strength classes of the timber (Fig. 1).  

 

 
 

Fig. 1. Determining the strength classes of timber with an acoustic testing device 
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The instrument uses software to determine the bending strength and modulus of 

elasticity directly from the measurement of the ultrasonic wave flight duration in the wood 

material between two transducers (the transmitter and receiver). It then displays the 

strength class in accordance with the applicable standard. It also creates a graph from the 

acquired data (Fig. 2). Because the alder wood species is not included among the tree 

species in the device’s software, the MOE values for this wood species were calculated 

using the Eq. 1 given below,   

𝑀𝑂𝐸 = 𝑉2𝑥 𝑑               (1) 

where V is the velocity obtained from the device and d is the density of the alder lumber 

pieces. 

 

 
 

Fig. 2. Acoustic testing device software data 

 
A non-destructive test was performed on 1876 spruce and 1063 alder lumber pieces 

obtained according to visual quality class. The non-destructive tests yielded strength 

classes C and D, respectively, for spruce and alder timbers, in accordance with the TS EN 

338 (2016) standard. Within the parameters of this investigation, timbers of spruce (C16, 

C22, and C30) and alder (D18, D30, and D40) were chosen for use in CLT manufacturing 

based on the obtained strength class groups. The distribution graphs of the MOR and MOE 

for spruce and alder lumbers are shown in Fig. 3. 

 

Production of CLT Panels 
A 160 g/cm2 polyurethane adhesive solution was put on the wood's surfaces in the 

layer combination groups. These groups were made using the types of wood and strength 

classes listed in the TS EN 338 (2016) standard. The design process for the manufactured 

CLT panels involved arranging the layers perpendicularly. In the process of drafting, the 

orientation of the annual rings in the cross-sections of the timbers was considered to reduce 

the material shrinkage and swelling. This resulted in the creation of drafts using alder, 

spruce, and hybrid (alder and spruce combination) timbers. The draft boards were prepared 

to have three layers and then underwent a pressing procedure. The hydraulic press used for 

the draft pressing was capable of exerting both vertical and lateral pressures, meeting the 

requirements of industrial settings. 
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Fig. 3. The distribution of the MOR and MOE for spruce and alder lumbers 
 

The pressing method involved the use of a cold press. The applied pressure was 0.8 

N/mm2 for spruce and hybrid, and 1.2 N/mm2 for alder. To reduce the space between the 

wood pieces, a lateral pressing technique was employed, applying pressure ranging from 

0.276 to 0.550 N/mm2 in conjunction with vertical pressing (Karacabeyli and Gagnon 

2019). Table 1 presents the 30 test groups that were generated by combining different wood 

species with the TS EN 338 (2016) standard. 

 

Destructive Testing of CLT Panels 
The bending strength and modulus of elasticity tests for the CLT panels were 

conducted according to the TS EN 408 (2014) standard, which is used to determine the 

mechanical and physical properties of structural timber and glued laminated timber. For 

the bending strength and modulus of elasticity tests, six samples (replicates) from each 

group were taken. 

 

ANN Modeling 
Three distinct strength categories were established for spruce and alder timbers utilized in 

the manufacturing of CLT panels. During the evaluation, consideration was made based on 

the TS EN 338 (2016) standard that coniferous timber with strength classes C45 and C50 

may not be accessible.  
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Table 1. Test Groups Formed According to Wood Species and TS EN 338 
(2016) Standard 

 

 Additionally, no research studies were found regarding the utilization of timber 

with strength classes higher than C30 in the production of CLT. Thus, the groups were 

chosen based on the strength class selection, which included C16, C22, and C30 for 

coniferous and D18, D30, and D40 for deciduous wood species. 

The selection was made to ensure equal spacing between the classification rankings 

specified in the applicable standard, up to the C30 standard. The objective of the ANN 

modeling in this study was to determine the strength values for different strength classes 

according to the TS EN 338 (2016) standard using experimental data gathered from three 

strength classes. Therefore, the study was able to accurately predict the structural strength 

of CLT panels that would be made from timbers with different strength classes. This meant 

that expensive and time-consuming tests were not needed, and the results were very 

reliable. ANN studies were also used to make prediction models that helped find the best 

combinations of wood strength classes for spruce, alder, and hybrid CLT panels for both 

the outer and middle layers. 

The main process variables (inputs) used in this ANN modeling were the wood 

species and the strength class values of the timbers used in the outer and inner layers, 

according to TS EN 338 (2016). The output variables consisted of the bending strength and 

Group Number Wood Species Layer Combinations 

1 

Spruce 

C16 - C16 - C16 

2 C22 - C22 - C22 

3 C30 - C30 - C30 

4 C16 - C22 - C16 

5 C22 - C16 - C22 

6 C16 - C30 - C16 

7 C30 - C16 - C30 

8 C22 - C30 - C22 

9 C30 - C22 - C30 

10 

Alder 

D18 - D18 - D18 

11 D30 - D30 - D30 

12 D40 - D40 - D40 

13 D18 - D30 - D18 

14 D30 - D18 - D30 

15 D18 - D40 - D18 

16 D40 - D18 - D40 

17 D30 - D40 - D30 

18 D40 - D30 - D40 

19 

Hybrid 

C16 - D18 - C16 

20 C22 - D30 - C22 

21 C30 - D40 - C30 

22 D18 - C16 - D18 

23 D30 - C22 - D30 

24 D40 - C30 - D40 

25 C16 - D30 - C16 

26 C16 - D40 - C16 

27 C22 - D40 - C22 

28 D18 - C22 - D18 

29 D18 - C30 - D18 

30 D30 - C30 - D30 
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modulus of elasticity values, which represented the mechanical strength properties of the 

CLT panels. The MATLAB software package was utilized for the creation, training, and 

testing of artificial neural networks, ultimately leading to the identification of optimal 

values. The results were acquired via experimental research conducted in a manner that 

caused damage or destruction. To find out how the strength properties changed when 

different wood species and strength classes of wood were used in the outer and middle 

layers, as described in TS EN 338 (2016), the experimental data was split into training and 

test sets. Out of the available data, 20 examples were chosen for the training phase of the 

ANN, while the remaining 10 samples were utilized to assess the ANN’s ability to validate 

prediction capability. The estimated values obtained from the test process were compared 

to the actual values. The prediction models that yielded the most accurate predictions were 

selected based on the root mean square error (RMSE) calculated using Eq. 2 and the mean 

absolute percentage error (MAPE) calculated using Eq. 2. These diagnostic measures are 

widely recognized as the best and most commonly used indicators of performance. These 

equations are as follows, 

 

RMSE = √
1

𝑁
∑ (𝑡𝑖 − 𝑡𝑑𝑖)2𝑁

𝑖=1  (2) 

MAPE =
1

𝑁
(∑ [|

𝑡𝑖−𝑡𝑑𝑖

𝑡𝑖
|]𝑁

𝑖=1 ) × 100 (3) 

where ti represents the actual value, tdi represents the model prediction value, and N refers 

to the number of terms. The network architectures identified as the top-performing 

prediction models in ANN analyses are shown in Figs. 4 and 5, based on the output 

variables. The network topologies of the models that yield the most accurate and precise 

results are shown in the pictures. These structures comprise of 1 input layer, 2 hidden 

layers, and 1 output layer. Each hidden layer consisted of 4 to 2 neurons for measuring 

bending strength and 3 to 5 neurons for measuring modulus of elasticity, respectively. 

 

 
 

Fig. 4. The ANN architecture selected as the bending strength prediction model 
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Fig. 5. The ANN architecture selected as the elasticity modulus prediction model 

 

A multilayer feedforward and backpropagation ANN has been chosen as the 

preferred method for handling the challenges. The activation functions chosen for this 

investigation are the hyperbolic tangent sigmoid function (tansig) and the linear transfer 

function (purelin). The learning rule chosen for the neural network was the gradient descent 

with momentum backpropagation algorithm (traingdm), while the training technique 

picked was the Levenberg-Marquardt algorithm (trainlm). The performance function 

utilized for evaluation was the mean square error (MSE), which was computed using Eq. 

4: 

MSE =
1

𝑁
∑ (𝑡𝑖 − 𝑡𝑑𝑖)2𝑁

𝑖=1  (4) 

The training and test data were standardized to the range of (-1,1) in the models 

constructed using the hyperbolic tangent sigmoid function. This normalization ensured that 

each variable had an equal impact on the prediction models. Afterwards, to guarantee an 

accurate understanding of the outcomes, the data underwent a reverse normalizing 

procedure to revert them to their initial values. The normalization (scaling) procedures 

were computed using Eq. 4. The equation defines the variables as follows: Xnorm represents 

the data that has been normalized, X represents the actual value of the variable, Xmin 

represents the minimum value in the data set, and Xmax represents the highest value in the 

data set. 

 

 
RESULTS AND DISCUSSION 
 

ANN Modeling 
The study successfully obtained extremely dependable and accurate prediction 

models using destructive structural strength values. During the analysis, a multitude of 

models were trained and tested. The models that yielded the most accurate predictions were 
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determined based on the MSE values. Figure 6 depicts the variations in these values over 

the course of the iterations. 

 

 
Fig. 6. MSE changes of the determined prediction models depending on the iteration 

 

Figure 6 clearly shows that the prediction models achieved their highest results for 

bending strength and modulus of elasticity values at the 500th iteration, with values of 

0.0047779 and 0.0066944, respectively. Table 2 displays the experimental results of the 

training and test datasets utilized in the prediction models, which exhibited high-

performance values. The table also presents the prediction results and corresponding error 

rates. Additionally, the MAPE and RMSE values computed for the models are shown in 

Table 2. 

Table 2 shows that the experimental and prediction data for CLT panels achieved a 

strong correlation with low error rates. The maximum error rates for bending strength data 

were determined as 7.47% for spruce, 8.48% for alder and 8.51% for hybrid CLT panels. 

The results showed that the highest error rates for modulus of elasticity data were 4.93% 

for hybrid. 8.60% for spruce and 8.52% for alder CLT panels. 

The MAPE and RMSE values associated with the prediction models presented in 

the table further demonstrate the extent of this agreement. Specifically, MAPE is a crucial 

evaluation criterion and numerous studies have evaluated model performance using MAPE 

(Antanasijević et al. 2013; Yadav and Nath 2017). According to Yadav and Nath (2017), 

a model’s performance is regarded as high if the MAPE value is less than 10%. The study 

established the MAPE values for bending strength as 1.04% for the training data and 3.90% 

for the test data. Similarly, for the modulus of elasticity, the MAPE values were computed 

as 1.95% for the training data and 4.26% for the test data. The error levels indicated that 

the ANN prediction models yielded satisfactory and effective outcomes, demonstrating 

sufficient accuracy and reliability. 

When selecting the optimal ANN model, both RMSE values and MAPE values 

should be considered (Küçükönder et al. 2016). A low RMSE value is a parameter that 

indicates the strong performance of a model (Taşpınar and Bozkurt 2014). The RMSE 

values for bending strength training and test data were estimated as 0.37 and 0.74. 

respectively, for modulus of elasticity, these values were determined as 334 and 585, 

respectively. These error levels demonstrated their adequacy for the prediction models of 

Bending Strength Modulus of Elasticity 
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bending strength and modulus of elasticity values. Tables 3 and 4 provide the connection 

weights and bias values for the prediction models. 

 

Table 2. Training and Test Data on Bending Strength and Modulus of Elasticity 
Values 

Training Data 

Wood Species Layer Combinations 
Bending Strength (N/mm2) Modulus of Elasticity (N/mm2) 

Actual Predicted Error (%) Actual Predicted Error (%) 

Spruce C22 - C22 - C22 20.35 20.35 0.01 12405.00 12614.38 -1.69 

Spruce C30 - C30 - C30 19.60 19.60 -0.02 13291.38 13254.22 0.28 

Spruce C22 - C16 - C22 13.55 13.56 -0.05 10667.49 10737.61 -0.66 

Spruce C16 - C30 - C16 16.69 16.69 -0.01 8904.05 8946.12 -0.47 

Spruce C30 - C16 - C30 18.73 18.70 0.14 12805.93 12935.29 -1.01 

Spruce C30 - C22 - C30 19.24 19.26 -0.10 13087.41 12738.68 2.66 

Alder D18 - D18 - D18 10.18 10.18 0.00 9846.02 9845.94 0.00 

Alder D40 - D40 - D40 16.45 16.45 0.00 13340.39 12859.24 3.61 

Alder D18 - D30 - D18 14.89 14.89 0.01 10651.16 9735.28 8.60 

Alder D30 - D18 - D30 9.79 9.76 0.31 6712.05 6744.93 -0.49 

Alder D30 - D40 - D30 12.00 12.00 0.00 9091.04 9867.87 -8.55 

Alder D40 - D30 - D40 9.77 9.76 0.11 10138.68 10000.39 1.36 

Hybrid C16 - D18 - C16 11.77 11.91 -1.17 11312.98 11309.58 0.03 

Hybrid C22 - D30 - C22 15.47 14.29 7.61 12998.63 13144.50 -1.12 

Hybrid D18 - C16 - D18 11.44 11.27 1.53 9461.30 9403.35 0.61 

Hybrid D40 - C30 - D40 10.88 10.88 0.00 10221.66 10345.54 -1.21 

Hybrid C16 - D30 - C16 10.77 10.77 0.00 11539.11 11539.38 0.00 

Hybrid C22 - D40 - C22 10.03 10.11 -0.77 11351.45 11880.85 -4.66 

Hybrid D18 - C22 - D18 13.24 14.35 -8.37 9097.35 9158.31 -0.67 

Hybrid D30 - C30 - D30 12.51 12.58 -0.52 10307.80 10174.38 1.29 

MAPE 1.04 1.95 

RMSE 0.37 333.62 

Testing Data 

Wood Species Layer Combinations 
Bending Strength (N/mm2) Modulus of Elasticity (N/mm2) 

Actual Predicted Error (%) Actual Predicted Error (%) 

Spruce C16 - C16 - C16 16.96 16.19 4.57 10109.14 10187.12 -0.77 

Spruce C16 - C22 - C16 13.77 14.21 -3.16 11094.82 10946.03 1.34 

Spruce C22 - C30 - C22 17.19 18.47 -7.47 11757.49 10755.48 8.52 

Alder D30 - D30 - D30 11.56 11.76 -1.73 12252.38 13186.77 -7.63 

Alder D18 - D40 - D18 14.92 16.19 -8.48 10236.47 9405.92 8.11 

Alder D40 - D18 - D40 11.90 11.76 1.18 10531.10 10570.54 -0.37 

Hybrid C30 - D40 - C30 16.65 16.42 1.38 14867.10 15463.17 -4.01 

Hybrid C16 - D40 - C16 12.98 11.87 8.51 10661.48 10136.07 4.93 

Hybrid D30 - C22 - D30 9.83 9.76 0.72 8983.15 8611.02 4.14 

Hybrid D18 - C30 - D18 14.25 14.51 -1.83 8606.04 8843.59 -2.76 

MAPE 3.90 4.26 

RMSE 0.74 585.06 
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Table 3. Connection Weights and Biases of the Prediction Model of Bending 
Strength Values 

H
id

d
e

n
 

L
a

y
e

r 
1
 Neuron 1 Neuron 2 Neuron 3 Neuron 4 Bias 1 

1.26 1.41 -12.43 -4.60 -9.16 

10.13 -3.39 -0.96 -4.26 1.25 

-0.75 3.19 0.08 2.82 -5.90 

- - - - -5.38 

H
id

d
e

n
 

L
a

y
e

r 
2
 Neuron 1 Neuron 2 Bias k2   

24.10 -1.10 -17.22   

40.59 1.65 -1.03   

41.17 3.60 -   

-41.88 9.28 -   

O
u

tp
u

t 

L
a

y
e

r Neuron 1 Bias 3 -   

0.93 0.54 -   

0.61 - -   

 

Table 4. Connection Weights and Biases of the Prediction Model of Modulus of 
Elasticity Values 

H
id

d
e

n
 

L
a

y
e

r 
1
 Neuron 1 Neuron 2 Neuron 3 Bias 1   

-9.50 -2.56 4.53 -10.80   

-0.15 -1.27 -4.90 0.18   

1.49 1.34 -3.96 -6.66   

H
id

d
e

n
 

L
a

y
e

r 
2
 

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Bias 2 

-1.22 -1.12 -3.28 -6.67 -0.94 3.09 

-1.04 -1.02 0.74 1.57 0.34 1.72 

-1.58 -2.31 0.36 0.40 3.08 -3.16 

- - - - - -6.42 

- - - - - -1.62 

O
u

tp
u

t 
L

a
y
e
r Neuron 1 Bias 3     

-0.64 0.89     

0.06 -     

-13.03 -     

8.56 -     

2.20 -     

 

Regression analyses are crucial for evaluating the validity and accuracy of 

prediction models. They involve calculating the relationship between data from 

experimental studies and prediction data obtained from analyses. The predictive accuracy 

of the models improves as the correlation coefficients (R) approach 1.0 (Özşahin 2012). 

Figure 7 presents the R and regression graphs for the prediction models based on the output 

variable as a result of the analysis. 

When Fig. 6 is examined, the R-values for the training and testing phases of the 

bending strength prediction model were determined as 0.99446 and 0.96191, respectively. 

The modulus of the elasticity prediction model yielded an R-value of 0.98135 during the 

training phase and 0.96213 during the testing phase. Based on the R values, the high 

correlation coefficients near 1.0 provide statistical evidence that there is a strong agreement 

between the experimental data and the prediction data for these models. The dependability 

of the statistically validated prediction models and their confidence in their predictive 

powers were improved. 
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Fig. 7. Regression graphs of bending strength and modulus of elasticity prediction models 

 

Comparisons between the data obtained from experimental studies and the 

prediction data obtained from ANN models according to the output variables. are presented 

in Fig. 8. 

 

  
 

Fig. 8. Comparison of actual data and predicted data 
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In Fig. 8 it was concluded that the data collected from experimental research closely 

corresponded to the predicted data generated by the models. 

 

Optimization 
Using a high-performance prediction model produced from ANN analysis, it is 

possible to achieve high accuracy rates in predicting the output data corresponding to the 

intermediate values of input variables not used in experimental research (Varol et al. 2018). 

The bending strength and modulus of elasticity corresponding to intermediate values of 

timber strength classes (C14, C18, C20, C27, and D24, D35) not used in experiments were 

determined as input variables according to TS EN 338 (2016) (C16, C22, C30, and D18, 

D30, D40). These values were predicted based on the type of wood and the variations of 

these values according to the timber strength class used in the outer and middle layers of 

CLT panels. The results are presented in Figs. 9 and 10. 

 

 
 

Fig. 9. Change in bending strength values for CLT panels according to timber strength class 

 

When analyzing the fluctuations in the bending strength of CLT panels, it was 

anticipated that panels constructed from spruce would achieve the highest values of 

bending strength when the timber strength classes employed in the outer layers are C24 
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and C27, and for the timbers utilized in the middle layer, the strength classes are C27 and 

C30. The panels manufactured from alder had the maximum bending strength when the 

outer layers had a wood strength class of D18 and the center layer had a timber strength 

class of D24. Additionally, the panels also had high bending strength when the outer layers 

had a timber strength class of D24 and the inner layers had a timber strength class of D30. 

The hybrid CLT panels exhibited the greatest bending strength when the spruce was used 

in the outer layer and alder was used in the intermediate layer, particularly when the panels 

had a C30-D40 strength class combination. The most optimal results were achieved while 

using D18 for the outer layers and C24, C27 and C30 for the intermediate layers of hybrid 

panels which consist of alder in the outer layer and spruce in the center layer. 

 

 
 

Fig. 10. Change of modulus of elasticity values for CLT panels according to timber strength class 

 

Looking at the differences in the modulus of elasticity of CLT panels, it was 

predicted that panels made from spruce would have the highest modulus of elasticity 

values. This would happen when the strength classes of the wood used in the outer layers 

were between C18 and C30. and between C27 and C30 for the wood used in the middle 

layer. The panels manufactured from alder exhibited the highest modulus of elasticity 

values when the outer layers had a timber strength class of D40 and the middle layer had a 
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timber strength class of D35. Similarly, when the outer layers had a timber strength class 

of D35 and the middle layer had a timber strength class of D40 the panels likewise showed 

high modulus of elasticity values. The hybrid CLT panels had the highest modulus of 

elasticity when they were mixed with a C16-D24 strength class. This was especially true 

for groups that used spruce in the top layer and alder in the middle layer. The most optimal 

results were achieved while using D24 and D30 for the outer layers and C16 and C24 for 

the middle layers of hybrid panels composed of alder and spruce. 

The analyses were used to analyze the prediction values of the models developed 

and based on this, the best timber strength classes and layer combinations were determined 

according to the type of wood. Table 5 presents the optimal combinations of layers and 

their related highest values of structural strength. 

 

Table 5. Optimum Timber Strength Class and Layer Combinations for CLT 
Panels 

Structural Strength 
Properties 

Wood 
Species 

Layer Combinations 
(Outer-Middle-Outer) 

Highest Predicted 
Strength Value (N/mm2) 

Bending Strength  

Spruce C24-C27-C24 26.03 

Alder D18-D24-D18 19.58 

Hybrid C30-D40-C30 16.42 

Hybrid D18-C30-D18 14.51 

Modulus of Elasticity  

Spruce C22-C27-C22 16286.57 

Alder D35-D30-D35 15545.86 

Hybrid C16-D24-C16 18820.98 

Hybrid D24-C24-D24 11196.35 

 

Upon analyzing the structural strength data in Table 5, it was noted that CLT panels 

made from spruce timber had greater bending strength values in comparison to alder and 

hybrid CLT panels. Nevertheless, it was concluded that hybrid panels provided superior 

values in relation to the modulus of elasticity. Hybrid panels, consisting of spruce timber 

in the outer layers and alder timber in the middle layers had a greater modulus of elasticity 

in comparison to other groups. 

Modeling and optimization research is scarce on CLT panels utilizing ANN in the 

existing literature. Bobadilha et al. (2021) employed ANN modeling to analyze color 

changes in CLT panels exposed to outdoor conditions. Similarly Dong et al. (2017) utilized 

ANN to model the costs and energy consumption associated with CLT. No research has 

been discovered that particularly examines the mechanical characteristics of CLT panels 

except for the aforementioned studies. Hence this study offers an innovative perspective 

and a practical data repository to the existing body of literature. 

 
 
CONCLUSIONS 
 

1. The best performances of the prediction models for bending strength and modulus of 

elasticity mean square error (MSE) values were identified at the 500th iteration as 

0.0047779 and 0.0066944, respectively. 

2. The R-value for the bending strength prediction model was calculated as 0.99446 

during the training phase and 0.96191 during the testing phase. For the modulus of 
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the elasticity prediction model, the R-value was 0.98135 during the training phase 

and 0.96213 during the testing phase. 

3. The MAPE values for bending strength were determined as 1.04% for training data 

and 3.90% for test data; for modulus of elasticity, the MAPE values were calculated 

as 1.95% for training data and 4.26% for test data. 

4. The RMSE values for bending strength training and test data were calculated as 0.37 

and 0.74, respectively; for modulus of elasticity, these values were determined as 

333.62 and 585.06, respectively. 

5. The optimum timber strength classes and layer combinations were determined for 

bending strength as C24-C27-C24 for spruce CLT panels. D18-D24-D18 for alder 

CLT panels, C30-D40-C30 and D18-C30-D18 for hybrid panels. 

6. The optimum timber strength classes and layer combinations for modulus of elasticity 

were determined as C22-C27-C22 for spruce, D35-D30-D35 for alder, C16-D24-C16 

and D24-C24-D24 for hybrid CLT panels. 
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