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Eutrophication caused by excessive nitrogen and phosphorus is an 
important factor affecting water quality in drinking water sources. 
Convenient monitoring of eutrophication in water bodies can reduce the 
use of pesticides and reduce energy consumption, helping to promote 
ecological and economic development. This study examined the 
relationship between water eutrophication and the oxidation-reduction 
potential (ORP). The results showed that various parameters related to 
eutrophication, such as ammonia nitrogen, total nitrogen, total 
phosphorus, chlorophyll-a, and cyanobacteria, had correlations with ORP. 
There is a close relationship between eutrophication and the concentration 
of cyanobacteria. When cyanobacteria blooms occur in the drinking water 
source, it may contaminate the drinking water. Because the conventional 
eutrophication index does not include the concentration of cyanobacteria, 
principal component analysis (PCA) was utilized to comprehensively 
analyze these eutrophication-related parameters and obtain the 
eutrophication-related index, with the cumulative contribution of principal 
components reaching 81.8%. Different mathematical methods such as 
neural network model and mathematical fitting were used to study the 
relationship between ORP and the eutrophication-related index. A three-
segment relationship between the ORP and the index was established. 
This three-stage relationship was confirmed in different reservoirs.  
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INTRODUCTION 
 

With the development of the social economy, water pollution has become 

increasingly serious, posing a primary threat to the safety of drinking water sources. 

Contaminant of water sources directly affects people’s health and immediate interests. For 

instance, long-term consumption of water containing nitrate pollutants has been associated 

with a significant increase in gastric cancer incidence (Fijani et al. 2019). Drinking water 

with high levels of ammonia can cause symptoms such as oral mucosal erosion, edema, 

and dizziness (Wang et al. 2018). Moreover, eutrophication of water sources, characterized 

by excessive growth of algae, can lead to the production of algal toxins. Drinking water 

contaminated with algal toxins can cause gastrointestinal diseases and even have 

teratogenic and mutagenic effects (Arash et al. 2022; Hamza et al. 2023). The impact of 

water pollution in water sources on human health is immense, underscoring the crucial 

importance of monitoring and early warning research on water source environments. 
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Monitoring of water environments in water sources is achieved primarily by 

detecting various water quality parameters (Mehreen et al. 2022). By regularly monitoring 

water environments, authorities can track changes in water quality parameters, such as pH 

levels, turbidity, dissolved oxygen (DO), as well as the presence of biological or chemical 

contaminants. Different physical, chemical, and biological water quality parameters can be 

selected to assess the water environment. Given the numerous water quality parameters, 

researchers often use different models to predict water quality or study the relationships 

between different water quality parameters (Roy et al. 2018; Nimisha et al. 2020). For 

instance, Choden et al. (2022) selected parameters such as dissolved total solids, 

conductivity, pH, and DO as modeling data, using a neural network model to provide water 

quality analysis and future predictions, thus achieving water resource protection and 

sustainability. Fijani et al. (2019) used the complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) and variational mode decomposition 

(VMD) algorithms, coupled with extreme learning machines (ELM) and least-squares 

support vector machines (LSSVM), to achieve real-time evaluation of reservoir water 

quality. Wang et al. (2019) improved the water quality prediction model based on the time 

series ARIMA model by introducing the Holt-Winters seasonal model and established a 

universal water quality prediction model with eutrophication parameters, which could 

significantly reduce the cost of water quality prediction and analysis in drinking water 

resources. Due to the lack of biological factor evaluation in water quality assessment, 

Zhang and Liu (2020) studied the correlation between evaluation indicators and 

cyanobacteria concentration and established a new cyanobacterial pollution index for 

comprehensive water quality evaluation. In addition, mixed models can also be used to 

predict changes in water quality parameters. Song et al. (2022) proposed a hybrid model 

based on ensemble learning methods, combining the complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) and improving long short-term memory 

(LSTM) to perform water quality prediction. This model demonstrated better predictive 

accuracy compared to other data-driven models. The studies described above used 

algorithms to analyze the relationships between water quality parameters and attempted to 

simplify water quality assessment through various models, focusing on predicting or 

evaluating water quality based on key water quality parameters. The use of mathematical 

models to simplify water environmental monitoring processes has shown promise and 

potential for application. Continued research and development in this field will further 

improve the accuracy and reliability of these models, leading to better water management 

strategies and enhanced protection of drinking water sources. 

Various water quality parameters have complex relationships with each other 

(Nimisha et al. 2020). For example, Shroff et al. (2015) conducted a regression analysis on 

the water quality of Gagan River from different sites, revealing a significant relationship 

between parameters such as pH and conductivity. The results showed that the high 

conductivity suggested the presence of dissolved ions in water, which would influence the 

pH value. In a study conducted by Han et al. (2022), an increase in NO3
- concertation led 

to an increase in the quantity of cyanobacteria, subsequently resulting in the occurrence of 

water blooms in that area. Furthermore, Zeinalzadeh and Rezaei (2017) found that the 

concentration of pollutants (such as nitrogen pollutants) in rivers always varied seasonally 

and was related to the flow rate of the river. While there are certain relationships between 

various water quality parameters, some parameters, such as algae, might intuitively reflect 

water quality. For example, the temporal variation in the composition and abundance of 

algal communities can provide valuable information about the trophic level and overall 
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health of the water body. Compared to nutrient concentrations or chlorophyll a (Chla-a) 

values, algal communities can more comprehensively reflect changes in water quality 

(Gökçe 2016). Touchette et al. (2007) conducted water quality testing on 11 drinking water 

supply reservoirs in the Piedmont region of North Carolina. They found that accelerated 

eutrophication resulting from further watershed development is expected to promote an 

increase in cyanobacterial abundance. At the same time, some water quality parameters are 

difficult to detect in real-time, and if mathematical models can be used to establish 

relationships between easily monitored water quality parameters and other water quality 

parameters, it can greatly simplify the water quality assessment process and enable timely 

water quality forecasting. For example, Wang et al. (2018) established the air temperature-

water quality model of a reservoir using an improved BP neural network method based on 

the changing of water quality indicators. This model can provide early warning of 

excessive total nitrogen in reservoir through air temperature, which can significantly 

simplify the water quality monitoring and prediction process.  

The oxidation-reduction potential (ORP) is a parameter that describes the redox 

properties of all elements in an aqueous solution. During wastewater treatment, ORP is 

often positively correlated with water quality. Generally, higher ORP values indicate better 

water quality, whereas lower ORP values are always associated with poorer water quality. 

As a result, ORP detection is widely used in wastewater treatment plants. Monitoring of 

ORP can help the rapid analysis of wastewater purification reactions and water pollution 

status, thereby achieving efficient management of water environmental quality (Prambudy 

et al. 2019). Wang et al. (2022) utilized variance analysis to study the relationship between 

ORP and major active substances in wastewater under anaerobic conditions and they 

further employed multiple regression analysis to establish a mathematical model, revealing 

that under anaerobic conditions, ORP was positively correlated with nitrate, dissolved 

oxygen (DO), and chemical oxygen demand (COD), while it was negatively correlated 

with ammonia nitrogen, phosphate, and pH. There was also certain correlation between 

ORP and parameters related to water eutrophication. Liu et al. (2019) found that ORP 

(within 65 to 170 mV) was significantly and negatively correlated with total phosphorus in 

water body. Shao et al. (2023) studied the microbial community structure during the 

outbreak of algal bloom in different kinds of eutrophic micro water bodies and found that 

ORP was related to eutrophication parameters such as total phosphorus, nitrogen, and 

microbial communities related to algal blooms. ORP detection is easy and can be achieved 

through dedicated ORP meters for online monitoring (Yu et al. 2008; Saratale et al. 2018). 

The total phosphorus and total nitrogen include partially oxidized substances, which may 

increase the ORP (Wang et al. 2020). When the relationship between ORP and water 

eutrophication can be established in drinking water sources, it would enable rapid 

assessment and analysis of water quality, enhancing the ability of early warning systems. 

Based on literature analysis and the authors’ previous research, a hypothesis is proposed 

that the relationship between ORP and eutrophication is not simply a positive or negative 

correlation, and there may be a phased change relationship. This hypothesis opens up new 

possibilities for understanding the complex interactions between ORP and eutrophication 

in water body. It would be important to conduct further research and data analysis to test 

this hypothesis and gain insights into the relationship of ORP and eutrophication in 

different environmental contexts. 

This study aimed to establish a relationship between water eutrophication and the 

oxidation-reduction potential (ORP) to achieve a rapid analysis of eutrophication 

parameters in water bodies, allowing better monitoring of ecosystem health. Firstly, 
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correlation analysis was used to determine the correlation between ORP and various water 

quality parameters. Subsequently, Principal Component Analysis (PCA) was used to 

reduce dimensionality and form water quality evaluation index based on water quality 

parameters that were highly correlated with ORP. The neural network analysis was then 

applied to predict the corresponding relationship between the eutrophication-related index 

and ORP. Finally, a mathematical formula model for the relationship between ORP and 

the eutrophication-related index was established using mathematical fitting methods, 

elucidating the underlying patterns and achieving rapid water quality warning, thereby 

providing a theoretical basis for reservoir management. In addition, this research method 

has been applied in different reservoirs to further confirm the results. Therefore, the 

methodology proposed in this study can be applied to other analogous water environmental 

systems. This study proposes different methods to establish the relationship between 

eutrophication and ORP and further enhances the mathematical model depicting their 

correlation, showcasing significant innovation. 

 
 
EXPERIMENTAL 
 

Study Area 
The main research area of this study was the Shihe Reservoir. The Shihe Reservoir 

is located on the mainstream of the Shihe River, north of Xiaochen Village Shan Kou, in 

Shanhaiguan District, Qinhuangdao City, Hebei Province, China. The location of the 

reservoir in the north temperate monsoon climate zone has implications for its water 

availability and overall ecology. During the wet season, there may be higher precipitation 

levels, leading to increased water inflow into the reservoir. During the dry season, there 

may be lower precipitation levels, leading to reduced water inflow and potentially lower 

water levels in the reservoir. With a total storage capacity of 70 million m3, the Shihe 

Reservoir serves as an important drinking water resource for Shanhaiguan region of 

Qinhuangdao City. The normal water level of the Shihe Reservoir is 56.70 m, and the 

design flood level is 56.99 m. This level ensures that the reservoir can safely manage and 

mitigate flood risks in the surrounding area. Shihe Reservoir has a catchment area of 28.2 

km2. The catchment area plays a crucial role in determining the amount of water that can 

be stored in the reservoir, as well as the overall water quality. Referring to the authors’ 

previous research (Zhang and Liu 2020), the water sampling site under dam (119°71′28″ 

E, 40°03′34″N) was still chosen in this study to monitor the water quality of the reservoir 

outlet. The selection of this specific sampling site was based on the understanding that the 

water quality measured here would provide the most accurate representation of the water 

supply quality. By selecting this sampling site, the aim was to ensure that the collected data 

accurately reflect the quality of water that will be distributed to consumers. 

At the same time, to confirm that the results obtained from the study can be applied 

in other reservoirs, Yanghe Reservoir was selected as the water sample sampling point. 

The Yanghe Reservoir is located in the north of Dawanzi Village, Funing District, 

Qinhuangdao City, Hebei Province. It covers an area of 755 square kilometers, with a total 

storage capacity of 386 million cubic meters and an irrigation area of 126,000 mu. The 

annual average rainfall is 750 mm and the annual average runoff is 169 million cubic 

meters, accounting for about 70% of the flood season runoff. Samples were taken at 119°2 

'1 "E, 39°9' 9" N. 
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Sampling and Measurement Methods 
The sampling method was the same as the authors’ previous study. Since the 

surface layer water from the reservoir is used for water supply purposes, it makes sense to 

specifically analyze the quality and characteristics of this water. Surface water samples 

were collected at a depth of 0.5 meters underwater, from the sampling site, throughout the 

period from January 2022 to December 2023. The sampling frequency was twice a week 

(always Monday and Thursday). The sampling was carried out during relatively warmer 

periods (12:00 noon). The collected water samples were still analyzed following the China 

Standard for Surface Water Environmental Quality (GB3838-2002) and Water and 

Wastewater Monitoring and Analysis Method (fourth edition) published by the State 

Environmental Protection Agency. Measured parameters included chemical oxygen 

demand, ammonia nitrogen, nitrate nitrogen, total phosphorus, total nitrogen, chromium 

ion, biological oxygen demand, fluoride, cyanobacteria, and Chla. Other routine 

parameters including temperature, pH, DO, turbidity, conductivity, and ORP were carried 

out by instruments (HACH, USA). All testing was carried out in accordance with the 

requirements of the specifications. To ensure accuracy, the average values for each 

parameter were calculated based on three repeated test results. This methodology can 

provide a more reliable representation of the overall water quality at the sampling site. 

 

Parametric Correlation Analysis 
Correlation analysis was used to measure the linear relationship between two 

variables X and Y, and the correlation coefficient values range from -1 to 1. The calculation 

was as follows, 

r(X，Y) =
𝐶𝑜𝑣(𝑋,𝑌)

√𝑉𝑎𝑟[𝑋]𝑉𝑎𝑟[𝑌]
         (1) 

where Cov(X, Y) represents the covariance between X and Y, Var[X] represents the 

variance of X, and Var[Y] represents the variance of Y. 

The Pearson correlation coefficient, denoted as r(X, Y), ranging from -1 to 1, 

indicates the degree of linear relationship between two variables X and Y. When the 

correlation coefficient r(X, Y) is close to zero, it suggests that there is no linear correlation 

between the variables. If the coefficient r(X, Y) is close to 1, it indicates a strong linear 

correlation between the variables. A positive correlation coefficient (>0) implies a positive 

correlation, while a negative correlation coefficient (<0) suggests a negative correlation 

(Zhang et al. 2022). 

 

Principal Component Analysis (PCA) 
The Principal Component Analysis (PCA) is to achieve dimensionality reduction 

through orthogonal transformation of the original data. It uses a set of linearly independent 

principal components to represent the majority of information in the original data. The 

method is generally divided into the following steps (Zhu et al. 2021): 

1) To eliminate the influence of different scales, the original data is standardized 

using mean normalization. This standardization method retains the variation information 

among variables of the same type while eliminating the interference of different scales. 

The calculation is as follows, 

MXab =
Xab

MeanXa
          (2) 

where MXab represents the standardized value of the b-th data point of the a-th variable, 
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Xab represents the original value of the b-th data point of the a-th variable, and Mean Xa 

represents the mean value of the a-th variable. 

2) The correlation matrix P of the standardized values MXab is calculated. 

3)  The eigenvalues (βa) and eigenvectors of P are calculated, and the eigenvectors 

are arranged in descending order. 

4) The cumulative variance contribution rate to determine the number of principal 

components is calculated. The sum of the previous y eigenvalues accounts for the 

percentage of the total eigenvalues as the cumulative variance contribution K. 

5) The values of principal component Fa are calculated and the overall composite 

score of the principal components F is obtained by Eq. 3. 

 

F = ∑
βa

β1+β2+β3+⋯…+βy
Fa1≤a≤y         (3) 

The BP Artificial Neural Network Analysis 
The BP artificial neural network, also known as backpropagation neural network, 

is a commonly used artificial neural network model. It consists of neural units as the 

smallest building blocks, with multiple neural units forming the input layer, hidden layers, 

and output layer (Shlens 2014). The information is shared among these three layers with 

different permissions and boundaries. To start the algorithm, a set of random weights and 

thresholds ɑix is generated. The term ɑix represents the weight from the j-th neuron in the 

previous layer to the i-th neuron in the current layer; ɑix represents the threshold of the i-

th neuron in the x-th layer, where x = 1,2, ..., M, and M is the number of layers;i = 1,2, ..., 

SM; j = 1,2, ..., Sx-1; Sx represents the number of neurons in the x-th layer. After running 

the neural network, the network adjusts the weights and thresholds based on the error 

between the output values and the actual values, in order to minimize the error tolerance. 

The error in the output layer can be represented as follows, 

F(x)=[t(n)-b(n)]T[t(n)-b(n)]        (4) 

where t(n) represents the target variable matrix at the n-th iteration, and o(n) represents the 

output variable matrix at the n-th iteration. When the output values do not meet the set 

accuracy, the backpropagation (BP) neural network will propagate the error backward. 

Under the influence of training error, the weight correction value is calculated as follows, 

wx
i j(n+1)=wx

i j(n)+£[wx
i j(k)-wx

i j(n-1)]-ɑ(1-£)sx
i bx-1

 j      (5) 

The adjusted value of the threshold is 

ɑx
i (n+1)=ɑx

i (n)+£[ɑx
i (n)-ɑx

i (n-1)]-ɑ(1-£)si
x       (6) 

where si
x represents the sensitivity of the i-th neuron in the x-th layer; £ (0 ≤ £ < 1) is the 

momentum factor; α is the learning rate (Chen et al. 2020). 

 

Data Fitting Method 
Using SPSS data analysis software (IBM SPSS Statistics 27.0.1), curve estimation 

was performed. The software provides multiple selectable function models. When it is not 

clear which model fits the sample data best, several models can be simultaneously selected. 

SPSS automatically performs parameter estimation for the models and displays statistics 

such as the F-value, p-value, R2, etc. Finally, the model with the highest likelihood is 

chosen as the regression model, and predictions are made based on that model, 
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RESULTS AND DISCUSSION 
 

Correlation Analysis of Water Quality Parameters 
Correlation analysis can be used to study pollution trends, explore potential sources 

of pollution, and provide data support for risk management. Additionally, for some water 

bodies, it is possible to establish related models and prediction methods for surface water 

resources, thereby enhancing the diversity and accuracy of surface water quality 

measurement (Chen et al. 2020). There may be a certain correlation between different 

water quality parameters. 

Through the analysis of pH, water temperature, dissolved oxygen, turbidity, 

conductivity, COD, ammonia nitrogen, nitrate nitrogen, total phosphorus, total nitrogen, 

cyanobacteria and Chla, the water quality of the reservoir was similar to that of the year 

2018 and 2019 (Zhang et al. 2020), and eutrophication related parameters such as total 

nitrogen, total phosphorus and ammonia nitrogen exceeded the requirements of national 

standards in some times. This reservoir faced a slight eutrophication problem during in  

summer and autumn. If agriculture and industry in the upstream of the water body 

discharges excessive N and P, this will lead to excessive algae growth in the water body, 

and the reservoir will face eutrophication problems. The analysis and prediction research 

on water quality parameters related to eutrophication was particularly important for the 

reservoir. 

According to the test results, the ORP of Shih River Reservoir ranged from 235 to 

314 mV without very significant variation. Similar findings have been also reported in 

other studies, such as the ORP values testing in Shanxi Reservoir, showing certain 

fluctuations at different time periods but in the range of 221 to 286 mV (Yang et al. 2023). 

There was a correlation between ammonia nitrogen, total phosphorus, total nitrogen, Chla, 

cyanobacteria concentration, and ORP, with correlation coefficients of -0.204, 0.293, 

0.373, -0.320, and -0.225, respectively. This suggested that ORP can be related to these 

eutrophication parameters through certain methods. However, the correlation between 

other parameters and ORP was extremely weak. Krom et al. (1991) believed that external 

factors such as wind, rain, and flow velocity may suddenly affect the transformation 

process of certain substances in water bodies. This might result in weak interrelationships 

between water body parameters. For example, dissolved oxygen did not form significant 

relationships with ORP (Absolute value of the correlation coefficients was less than 0.1). 

This result was different from what was expected, which may be due to the large surface 

area of the reservoir and there were significant differences between the characteristics of 

reservoirs and wastewater treatment plants. And when the dissolved oxygen concentration 

in the water was high, nitrogen organic matter in the water and sediment would decompose 

under aerobic microbial action, resulting in the production of reducing agents such as 

ammonia nitrogen. The dissolved oxygen of the reservoir did not directly show a 

significant positive correlation with ORP. 

Notably, there were different positive and negative correlations between pollutant 

concentrations (ammonia nitrogen, total phosphorus, total nitrogen, Chla, cyanobacteria 

concentration) and ORP, which require further analysis. Ammonia nitrogen, Chla, and 

cyanobacteria concentration had a negative correlation with ORP, while total nitrogen and 

total phosphorus had a positive correlation with ORP. The total phosphorus and total 

nitrogen include partially oxidized substances, which may increase the ORP (Wang et al. 

2020). However, ammonia nitrogen refers to free ammonia and ionized ammonia in the 

water. Free ammonia and ionized ammonia are reducing substances that can directly affect 
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the oxidation-reduction potential of water body. Furthermore, Chla plays a role as a 

reducing agent in physiological processes and is involved in the electron transfer process 

of photosynthesis. When the Chla content in the water is high, it consumes oxidants in the 

water, forming a reducing environment and reducing the oxidation-reduction potential 

(Long et al. 2006). Therefore, there may be a negative correlation between Chla content 

and ORP. The reproduction of cyanobacteria results in the death and degradation of aquatic 

organisms and the production of reducing substances (Wu et al. 2015). A negative 

correlation was observed between cyanobacteria concentration and ORP. Based on 

previous study, there were also correlations between these eutrophication parameters 

(ammonia nitrogen, Chla, cyanobacteria, total nitrogen, and total phosphorus). It is 

necessary to comprehensively analyze these parameters and their relationship with ORP. 

 

Principal Component Analysis and Calculation of Eutrophication-Related 
Index 

Principal Component Analysis (PCA) was conducted on parameters including 

ammonia nitrogen (Z1), total phosphorus (Z2), total nitrogen (Z3), chlorophyll-a (Z4), and 

cyanobacteria (Z5). Prior to performing factor analysis, the suitability of the raw data was 

evaluated using the Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity test, with results 

presented in Table 1. The KMO value was 0.784, exceeding 0.7 (indicating suitability for 

factor analysis), and Bartlett's test yielded a sig value much lower than 0.05, confirming 

the data's suitability for factor analysis.  

 

Table 1. KMO and Bartlet Test of Principal Component 

KMO Approximate chi square df Sig. 

0.784 1429.131 15 0.000 

 

Table 2. Eigenvalues and Contribution Rates of Each Component in Principal 
Component Analysis 

Component Eigenvalues 
Contribution rates of each 

component 
Cumulative contribution 

rate 

1 1.939 38.787 38.787 

2 1.127 22.539 61.326 

3 1.024 20.487 81.814 

4 0.690 13.801 95.615 

5 0.219 4.385 100.00 

 

By conducting factor analysis on these parameters, the eutrophication-related index 

of water quality in the reservoir could be calculated. The formulas and expressions for the 

three principal components are shown in Eqs. 7 through 10, 
 

F1=-0.115Z1-0.359Z2-0.485Z3+0.873Z4+0.894Z5       (7) 

F2=0.188Z1+0.689Z2+0.634Z3+0.357Z4+0.296Z5       (8) 

F3=0.939Z1-0.364Z2+0.101Z3+0.011Z4+0.019Z5       (9) 

F=0.474F1+0.275F2+0.25F3       (10) 
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where Z1 represented ammonia nitrogen concentration (the standardized value), Z2 

represented TP concentration (the standardized value), Z3 represented TN concentration 

(the standardized value), Z4 represented Chla concentration (the standardized value), and 

Z5 represented cyanobacteria concentration (the standardized value). "F" stands for 

eutrophication index. 

 

 
Fig. 1. Main components of Principal Component Analysis (PCA) 

 

 A rotated component matrix was obtained (Fig. 1). According to the PCA results 

(Fig. 1, Table 2, and Eqs. 7 through 10), the first component (F1) exhibited the highest 

contribution to variance, 38.8%, which was strongly correlated with chlorophyll-a (Z4) and 

cyanobacteria (Z5), emphasizing its significance over other components. The second 

component contributed 22.5% of the variance, which was closely associated with total 

phosphorus (Z2) and total nitrogen (Z3). The third component contributed 20.49% of the 

variance, which was closely related to ammonia nitrogen (Z1). This conclusion aligned with 

previous correlation analysis findings. In Fig. 1, arrows represent principal component 

loadings, reflecting correlation coefficients between the original variables and the principal 

components. Each arrow corresponds to an original feature. The arrows labeled Z1, Z2, Z3, 

Z4, and Z5 denote ammonia nitrogen, total phosphorus, total nitrogen, chlorophyll-a, and 

cyanobacteria, respectively. The direction of the arrows indicates the orientation of the 

feature in the principal component space. Taking the composition of F1 as an example, 

arrows for Z1, Z2, and Z3 roughly shared the same direction, and arrows for Z4 and Z5 

exhibited a similar direction. The length of the arrows represents the contribution or weight 

of the feature in the principal component space. Both the direction and length of the arrows 

are calculated through PCA of the raw data. This result was completely consistent with the 

formula of F1 (Eqs. 7). At the same time, during the PCA computation using SPSS, a third 

principal component was identified, contributing 20.487% of the variance, leading to a 

subdivision into three principal components (Table 2). 

Compared with other studies, Mishra conducted an analysis on 16 physicochemical 

and bacteriological variables. PCA was applied to extract the most significant parameters 

for assessing water quality changes. Four main factors were identified (nutrient factors, 

sewage and fecal contamination, sources of physicochemical variability, and water 

pollution from industrial waste and organic load), which collectively account for 90% of 
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the total variance (Mishra 2010). Ibrahim et al. (2023) used PCA and Artificial Neural 

Network (ANN) to study the potential pollution that caused spatial variations in water 

quality and the results demonstrated that the PCA and ANN methods can serve as decision-

making and problem-solving tools for better river water quality management. Therefore, it 

can be seen that the use of PCA for the comprehensive analysis of water pollution is an 

effective and feasible approach. 

Observing the relationship between the water eutrophication-related index and the 

month (Fig. 2), the eutrophication index was higher during the summer, indicating poor 

water quality. This may be due to the elevated summer temperatures and increased light 

intensity, promoting the growth of aquatic plants and nutrient cycling. Additionally, the 

summer season typically experiences frequent rainfall. Increased precipitation results in 

more runoff entering reservoirs, carrying a significant amount of nutrients and pollutants 

into the water. These nutrients and pollutants may originate from activities such as 

agricultural fertilization and urban emissions, further intensifying the degree of 

eutrophication in the reservoir. The eutrophication problem in reservoirs requires better 

monitoring, which once again confirms the significance of this study. 

 

 
 

Fig. 2. Changes of eutrophication-related index in different months 

 

Neural Network Analysis 
At the same time, if some models can be used to predict and analyze water quality, 

it will solve the problem of delayed response to water quality changes in current water 

quality monitoring. For instance, Zhao et al. (2007) conducted a study on water quality 

dynamic prediction using BP neural network technology and analyzed the predictive 

performance of the model with the example of Yuqiao Reservoir in Tianjin City. Ye et al. 

(2019) proposed a LSTM-RNN (Long Short Term Memory -Recurrent Neural Network) 

network water quality parameter prediction model based on an improved RNN (Recurrent 

Neural Network) network structure to predict the trend of water quality change. Ma et al. 

(2021) applied the neural network model to predict the water quality status and trend of 

Nansi Lake. Their use of neural networks for water quality prediction showed promising 

results. In this study, to establish the relationship between the ORP and eutrophication-

related index, the BP neural network analysis was used to predict the eutrophication index 
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at different ORP levels. After multiple predictions, there was a certain level of error 

between the predicted eutrophication index and the actual eutrophication index and the 

error reached 15% (Table 3). Therefore, although neural network analysis could be 

performed, simulation analyzes in other forms should be performed to ensure reliability. 

 

Table 3. Neural Network Prediction Analysis (Partial Data) 

ORP Actual Index Prediction Index Error (%) 

280.88 0.57 0.58 1.72% 

274.1 0.53 0.61 13.11% 

275.65 0.52 0.61 14.75% 

274.13 0.53 0.59 10.17% 

275.74 0.52 0.58 10.34% 

274.15 0.53 0.6 11.67% 

277.32 0.51 0.6 15% 

242.98 2.38 2.55 6.67% 

 

The Polynomial Fitting Analysis 
The polynomial fitting method can be used to establish a closed functional 

expression that captures the general trend and characteristics of the sample data through 

curve fitting. It is a type of curve fitting method commonly used in regression analysis. 

This fitting method can better correspond the data to the quadratic polynomial form, thus 

improving the prediction and analysis of the data. 

It is important to note that fitting a quadratic polynomial may lead to underfitting. 

Therefore, before applying the quadratic polynomial fitting, it is necessary to perform an 

appropriate analysis on the data to ensure that the established quadratic polynomial 

function accurately reflects the characteristics and trends of the data. To better identify the 

exact relationship between variables, the distribution of the sample data in the graph should 

be observed and then the model that matches the function characteristics and the point 

distribution could be determined (Chen et al. 2022). 

By analyzing the data on ORP and the eutrophication-related index, it was observed 

that a stage-wise curvilinear relationship existed between ORP and the eutrophication 

index (Fig. 3). Moreover, this relationship could be divided into three segments, as shown 

in Fig. 4. 

 
Fig. 3. Scatter plot of overall distribution between ORP and eutrophication-related index (Shihe 
Reservoir) 
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Fig. 4. Fitted Relationship between ORP and eutrophication-related index of Shihe Reservoir (a: 
First Segment Fit; b: Second Segment Fit; c: Third Segment Fit) 

 

After fitting, the expressions for the three segments of the relationship between the 

eutrophication-related index (Y) and the ORP (x) were determined as follows: 

 

Y1= 0.0011×x3 - 0.782×x2 + 192.2×x - 15727;R2=0.943 (230≤X≤270)    (11) 

Y2= -0.0008×x2 + 0.4243×x - 58.84;R2 = 0.9599; (270≤X≤306)      (12) 

Y3=-0.0781×x2 + 48.448×x - 7507.4; R2=0.949(306≤X≤314)       (13) 
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Fig. 5. Scatter Plot of Overall Distribution between ORP and eutrophication-related index 
(Yanghe Reservoir) 
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Fig. 6. Fitted Relationship between ORP and eutrophication-related index of Yanghe Reservoir 
(a: First Segment Fit; b: Second Segment Fit; c: Third Segment Fit) 
 

As shown by the fitted curve, the relationship between ORP and eutrophication 

index (Y) exhibited three distinct segments as follows: (1) within the range of 235 to 260 

mV, the eutrophication index decreased after equilibrium; (2) in the range of 260 to 308 

mV, the eutrophication index gradually decreased with increasing ORP; and (3) within the 

range of 308 to 314 mV, the eutrophication index first increased and then decreased. 

To verify this interrelationship, the same method was used to study the water 

quality of Yanghe Reservoir. There was a three-stage relationship between ORP and water 

eutrophication index (Figs. 5 and 6). 
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The data of Yanghe reservoir were divided into three sections as follows: 

Y1= 9×10-5×x3 - 0.0719x2 + 19.228x -1710.5; R2 = 0.9332 (250≤X≤280 )  (14) 

Y2 =-0.0002x2 + 0.1446x - 21.161 ; R2 = 0.8851  (280≤X≤310)    (15) 

Y3 =-0.0016x2 + 1.0388x - 168.56; R2 = 0.8191  (310≤X≤340)       (16) 

The eutrophication index and ORP exhibited an inverse relationship, where higher 

ORP values corresponded to lower eutrophication index and better water quality. An 

increase in pollutants or the occurrence of eutrophication in water can lead to deteriorated 

water quality. The decomposition of these pollutants often consumes oxygen, resulting in 

a reduction of the oxidation-reduction potential (ORP). Hence, the eutrophication index 

and ORP often display an inverse relationship (Martín et al. 2012). However, when ORP 

increases, it may also indicate the presence of other oxidizing pollutants entering the water 

or the release of pre-existing oxidizing pollutants from sediment, leading to new water 

pollution. Therefore, the relationship between the eutrophication index and ORP may 

occasionally exhibit a positive correlation (Zhang et al. 2018). Additionally, flow velocity, 

sudden rainfall, and other biological factors in the water can also influence the ORP of the 

water. In this study, a stage-wise change pattern was identified, which could be used to 

predict water quality, especially eutrophication, using ORP in the future. 

In general, Shihe Reservior and Yanghe Reservoir are both drinking water sources 

with eutrophication phenomena. Therefore, samples were taken from the two water sources 

and the same analysis was conducted. Although ORP ranges were different, there was still 

a three-stage shared relationship, and ORP and eutrophication index were negatively 

correlated in most cases. It is fully explained that the three-stage formula was still 

applicable in other water sources, so as to prove the feasibility of the research. This result 

could confirm the hypothesis proposed in the introduction section. The relationship 

between ORP and eutrophication is not simply a positive or negative correlation, and there 

may be a phased change relationship. 

Although this study established a mathematical relationship between ORP and 

eutrophication, which could predict the trend of eutrophication in water bodies through 

changes in ORP, no corresponding evaluation mechanism has yet been established, and 

further analysis is needed in future research. 

 

 

CONCLUSIONS 
 
1. This study examined the relationship between water eutrophication and the oxidation-

reduction potential (ORP) to achieve a rapid analysis of eutrophication parameters in 

water bodies, thus enabling better monitoring of ecosystem health. The results showed 

that various parameters related to eutrophication, such as ammonia nitrogen, total 

nitrogen, total phosphorus, chlorophyll a (Chla), and cyanobacteria, showed certain 

correlations with ORP.  

2. Principal Component Analysis (PCA) was used to comprehensively analyze 

eutrophication-related parameters and obtain an index, with the cumulative 

contribution of the principal components reaching 81.8%.  

3.  BP neural network analysis was employed for water quality prediction. The results 

indicated that utilizing BP neural networks for predictive analysis is a promising 
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method. 

4.  A mathematical fitting method was applied to establish a three-segment relationship 

between ORP and eutrophication-related index, allowing the calculation of the 

eutrophication-related index based on the ORP value. 
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