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The decision-making process of consumers regarding custom wardrobe 
furniture transcends product functionality to include the sensory 
experience, notably the tactile aspect. This study focuses on the tactile 
experience to assist consumers in evaluating the tactile feel of custom 
wardrobe finishes, such as cognitive fuzziness during the experience, the 
challenge of clearly describing the connection between touch sensation 
and the physical attributes of the custom wardrobe, and reducing 
communication costs between users and designers. The research first 
clarifies the hierarchical cognitive structure of the tactile sensation of 
custom wardrobe finishes, then explores the logical relationships between 
levels through linear regression models. Subsequently, a nonlinear 
relationship model between the “Physical Attributes Layer” and the “Tactile 
Sensation Layer” is constructed using a Backpropagation Neural Network, 
and the connection between the “Tactile Sensation Layer” and the 
“Comprehensive Evaluation Layer” is mapped through a multiple linear 
regression equation. This comprehensive evaluation system for the tactile 
feel of custom wardrobe finishes provides designers with a tool to optimize 
the tactile characteristics of products, thereby shortening the design 
iteration cycle and improving design precision. It also helps users better 
express their emotional needs in terms of tactile sensations, enhancing 
the connection between tactile experience and emotion. 
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INTRODUCTION 
 

The rise of customized furniture signifies a shift in the furniture industry from mass 

production to a focus on personalization and consumer involvement, aligning with the 

growing demand for individual expression and customized products. This shift reflects 

consumers’ pursuit of furniture that meets personal aesthetic and functional needs, driving 

an increase in preferences for more personalized and meaningful products (Pedrazzoli et 

al. 2014). Advances in production technology, especially the application of Computer-

Aided Design (CAD) and 3D printing technologies, have removed barriers between 

traditional production and customization, making custom furniture appealing not just to the 

high-end market but to a broader audience (Murmura and Bravi 2017). The development 

of the digital marketplace offers consumers a platform for full participation from design to 

material selection, ensuring products better reflect personal preferences. Moreover, custom 

furniture design integrates multisensory experiences including touch, hearing, and smell, 

enriching user interaction and emphasizing the importance of sensory elements in fulfilling 
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emotional needs and enhancing satisfaction (Sakamoto and Watanabe 2017). This sensory-

centric design philosophy, which is closely tied to contemporary furniture needs, not only 

provides visual and emotional pleasure but also deepens physical interaction with users, 

marking a significant evolution towards more personalized and consumer satisfaction-

oriented furniture design (Saxena et al. 2023). 

As consumers increasingly seek personalization in both the form and substance of 

furniture, the tactile quality of wardrobe finishes emerges as a crucial element, significantly 

affecting user satisfaction and engagement. Touch, as a primary sensory channel, conveys 

delicate information about material temperature, texture, and quality. In custom wardrobes, 

every detail is tailored to personal preferences; for instance, a smooth, delicate wood finish 

might evoke warmth and a connection to the natural world, whereas a cool, sleek metal 

finish might appeal to those seeking minimalism and contemporary aesthetics, with its 

smoothness suggesting precision and modernity (Ornati 2019). Therefore, the choice of 

finish in custom wardrobes is not a trivial aspect of design but a thoughtful decision aligned 

with users’ sensory expectations and lifestyles. The tactile response elicited by different 

materials can significantly affect the overall perception of the wardrobe, including feelings 

of comfort, luxury, or practicality, especially in personal spaces such as bedrooms, where 

the sensory quality of furniture contributes to the atmosphere and emotional tone. 

Additionally, emphasizing the tactile experience in custom wardrobe finishes reflects a 

growing awareness of the psychological impact of touch. Studies have shown that tactile 

perception can affect mood and stress levels, highlighting the importance of tactile design 

in creating an aesthetically pleasing and psychologically comfortable environment (Jang 

and Ha 2021). By integrating tactile considerations into the design and customization 

process, manufacturers and designers are expanding the narrative of what furniture can 

be—not just a visual interaction with objects but a dialogue between objects and human 

sensory organs (Tavakoli 2014). 

Although the furniture industry has made progress in customization practices, 

sensory research on furniture finishes has been primarily focused on the visual aspect, with 

relatively little exploration of the tactile sense. How touch influences consumer preferences 

for customized furniture and interaction with it remains under-explored. Inspiration can be 

gleaned from other related fields of haptic research, which recently has focused on three 

primary levels: emotion and sentiment, tactile perception, and the physical properties of 

materials. At the level of emotion and sentiment, identifying a product’s intangible 

characteristics—such as semantics, associations, emotions, and values—is crucial before 

selecting descriptive terms. For instance, “comfort” is a common descriptor in textiles and 

apparel research, whereas “surprise” and “pleasure” are used to convey emotions in gift 

packaging studies. In the realm of tactile perception, Tang et al. (2017) analyzed the 

principles of visual-tactile experience testing for thirty-eight types of automotive interiors. 

They developed an evaluation system and model to address the challenges posed by both 

personalized custom products and mass-produced items, continually amassing data on the 

material preferences and equivalent thresholds of target user groups for future innovative 

concept products. Similarly, Nagai and Georgiev (2011) constructed concept networks to 

investigate the deep impressions of artificial and natural materials, aiming to understand 

user tactile habits. Regarding material physical properties, Wastiels et al. (2012) conducted 

sensory evaluation experiments on ten types of stone with varying roughness and colors to 

study warmth perception. Their findings indicated that color changes had a greater impact 

on warmth perception than roughness variations, and that among stones of the same color, 

rougher surfaces were perceived as warmer. Klöcker et al. (2013) examined 12 different 
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materials, identifying factors influencing pleasantness by measuring the normal and 

tangential force components and fingertip trajectories. They concluded that the average 

friction force generated by finger sliding and the surface topography were critical factors. 

In summary, haptic research in related product fields focuses on the influence of 

product surfaces on tactile perception, establishing a hierarchical system of material 

physical properties, perception dimensions, and emotions. Sensory experiments measure 

data across various perception dimensions and emotions, linking these to specific physical 

properties of materials. This clarifies the relationship between material properties and 

human emotions, offering valuable references for material design and selection. However, 

given the complexity and ambiguity of human emotions, conventional regression analysis 

has limitations in addressing these mapping relationships. In an era of rapid advancements 

in artificial intelligence, the introduction of advanced algorithm models such as machine 

learning can more accurately capture and predict the complex relationships between 

materials and emotions, thereby enhancing the scientific rigor and effectiveness of design 

decisions. 

Inspired by previous research in other fields, this study aims to contribute to a 

broader understanding of the tactile sensory experience in custom furniture design. By 

examining the hierarchical cognition of tactile sensations and integrating regression 

analysis with machine learning algorithms, this research seeks to develop a tactile 

evaluation model for custom wardrobe finishes. This model aims to quantitatively express 

users' subjective tactile feelings towards finishes and assist designers in understanding how 

touch influences consumer choices and satisfaction. 

 

 
EXPERIMENTAL 
 

Theoretical Framework Construction: Hierarchical Cognition of Tactile 
Sensation in Custom Wardrobe Finishes 

Emotion is an important characteristic in the domain of psychological cognition, 

possessing multiple levels of attributes. In Emotional Design, Professor Donald Norman 

examines how design affects users’ emotions and perceptions. He argues that design 

transcends functionality and holds significant emotional value. People’s perceptions and 

reactions to products occur on three levels: visceral, behavioral, and reflective. The visceral 

level pertains to the sensory attributes of product design, such as color, texture, and smell. 

These elements constitute users’ immediate perceptions when interacting with a product, 

instantly influencing their emotions and psychological state. The behavioral level centers 

on actual usage of the product, addressing its functionality, usability, comprehensibility, 

and the intuitiveness of user interactions. This level emphasizes the user’s experience 

during product use, focusing on optimizing these experiences to fulfill users’ needs and 

expectations. The reflective level concerns how a product reflects and shapes the user’s 

personal and social identity. It focuses on users’ reflections and evaluations after using the 

product, including their recollection of experiences and how these experiences affect their 

emotions and cognition. Success at this level relies on the product’s ability to resonate with 

users’ values, self-perception, and social expectations.  

The tactile sensation of custom wardrobe finishes is an emotional experience 

perceived through the user’s sense of touch. From a cognitive perspective, this experience 

is formed by first perceiving the external physical attributes of the finish through touch, 

which is influenced by the individual or combined effects of various physical properties. 
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Secondly, different physical properties lead to distinct emotional perceptions, described 

using adjectives. Finally, based on an individual’s knowledge and experience, an overall 

emotional judgment is formed (Saxena et al. 2023). From a design thinking perspective, 

designers create layered designs based on the constraints of finish materials, textures, and 

processes under tactile conditions, as well as the cognitive characteristics and preferences 

of the target users. This approach aims to achieve a differentiated emotional experience for 

the product. 

From the perspective of emotional design, the tactile sensation of custom wardrobe 

finishes can be conceptualized in three distinct levels. The visceral level pertains to the 

physical attributes of the finish’s surface, serving as the foundational basis for tactile 

sensation. The behavioral level encompasses the multi-sensory perceptions users develop 

in response to these physical properties. The reflective level pertains to the comprehensive 

evaluations users form regarding the tactile sensation, influenced by personal preferences 

and past experiences. Consequently, the hierarchical perception of the tactile sensation of 

custom wardrobe finishes is delineated into three levels: the Physical Attributes Layer, the 

Tactile Sensation Layer, and the Comprehensive Evaluation Layer. The Physical Attributes 

Layer includes a set of surface physical properties affecting the tactile sensation of custom 

wardrobe finishes, such as roughness, thermal conductivity, coefficient of friction, and 

hardness. The Tactile Sensation Layer refers to the various tactile sensation adjectives 

formed by users under the influence of one or multiple physical properties, such as smooth, 

skin-friendly, and delicate. The Comprehensive Evaluation Layer is the comprehensive 

subjective judgement formed by users based on their life experiences, knowledge 

backgrounds, and preferences on various tactile emotional factors, such as satisfaction, 

surprise, and tolerance. The following experiments will be conducted based on the 

progressive relationship between the three levels (Fig. 1): 

Experiment 1: Explore the relationship between the "Physical Attributes Layer" and 

the "Tactile Sensation Layer." 

Experiment 2: Explore the relationship between the "Tactile Sensation Layer" and 

the "Comprehensive Evaluation Layer."  

 

 
 
Fig. 1. Tactile evaluation model for the finish of custom wardrobes 
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Data Collection and Processing 
Sample selection 

In the domain of custom wardrobes, engineered wood is used as the base material, 

which is then surface-decorated with various veneering materials to offer products that are 

both stable, durable, and provide diverse tactile and visual experiences. This study 

conducted on-site research at the China (Guangzhou) International Building Decoration 

Fair, examining 189 products from 68 well-known domestic brands, including Sophia, 

Oppein, and Federal Gordon. Data were collected and categorized regarding the materials 

used for custom wardrobe finishes. The findings revealed that the mainstream materials in 

the market include melamine impregnated decorative paper, plastic film, and leather. 

Among these, plastic film was the most prevalent (42.9%), followed by melamine 

impregnated decorative paper (28.6%) and leather (15.3%). Based on these results, 

commonly used and widely found finishes in the custom wardrobe market were selected 

from these three mainstream materials as research samples, totaling 42 (including 20 plastic 

film finishes, 17 melamine impregnated decorative paper finishes, and 5 leather finishes). 

These samples were analyzed for their texture and tactile properties to provide data support 

for the subsequent development of a tactile perception evaluation model. 

 

Measurement of the physical attributes layer 

The tactile feel of custom wardrobe finishes is influenced by a variety of physical 

properties, including surface roughness, thermal conductivity, hardness, stickiness, 

moisture, and surface tension (Yanagisawa 2015). To identify the key physical properties 

affecting user tactile perception, a survey questionnaire utilizing a 5-point Likert scale was 

designed and administered for these six attributes. The questionnaire included the 

quantification of the impact of each attribute (where 1 indicates minimal impact and 5 

indicates maximum impact). A total of 105 participants, all prospective consumers of 

custom wardrobes aged between 20 and 30, were invited to complete the questionnaire on-

site. While rating the impact of each physical property, participants were allowed to 

randomly touch samples of custom wardrobe finish materials. The analysis of their ratings 

revealed that the top three physical properties influencing tactile sensation are surface 

roughness, thermal conductivity, and hardness. The following are the measurement 

methods for these three physical properties of custom wardrobe finishing materials used in 

this study. 

Surface roughness refers to the unevenness of the processed surface, characterized 

by small spacing and minor peaks and valleys. This study measured the roughness data of 

finish samples using a 3D laser scanning profilometer. For rough surfaces, factors such as 

the height and distribution of micro-protrusions affect the skin’s perception of roughness. 

The surface arithmetic mean height (Sa) and the profile line arithmetic mean deviation (Ra) 

are associated with the perception of roughness (Zhong et al. 2013). Therefore, this paper 

selects Sa and Ra as the characterization parameters for the surface profile height of finish 

samples, studying the surface roughness sensation related to texture height features. 

Moreover, influenced by the direction of the surface texture, Ra is further divided into 

measurements along the texture direction and perpendicular to the texture direction, named 

Ra-s for along the texture direction and Ra-c for perpendicular. This study also involves a 

detailed investigation of surface texture related to texture width characteristics, hence, the 

average width of profile elements (Rsm) is chosen as the characterization parameter for the 

width direction of the surface profile (Tang et al. 2021). 
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Thermal conductivity is a physical property of a material that describes its ability 

to conduct heat. Finish materials with high thermal conductivity can quickly transfer heat 

upon skin contact, resulting in a cold sensation. Measurement methods for thermal 

conductivity mainly include steady-state and transient methods. Since the sample materials 

in this study are all insulating materials with low thermal conductivity, the steady-state 

method was used for measurement (Kraemer and Chen 2014). The steady-state method, 

also known as the heat flow meter method, calculates the thermal conductivity by defining 

the heat flow density when the material is under constant heat source conditions and its 

internal temperature no longer changes with time. 

Based on the national standard GB/T 1927.19-2021 “Test Methods for Physical and 

Mechanical Properties of Wood with Clear Small Defects,” there is currently no standard 

method for measuring the hardness of engineered wood in China. Moreover, to exclude the 

influence of the engineered wood base material and measure only the finish veneering 

materials, the different types of sample finish materials—plastic, melamine-impregnated 

decorative paper, and leather—have different hardness measurement units, which cannot 

be converted between different units, making it impossible to measure the surface hardness 

of all samples with a single existing instrument. Therefore, this paper uses subjective 

sensory judgement by participants to indirectly obtain the hardness data of the samples 

(Tang et al. 2017). Subjective sensory judgement scores are typically obtained using a 7-

point Likert scale. However, since participants’ sensory judgements on the hardness of 

finish materials are ambiguous, this paper introduces fuzzy set theory to eliminate the 

ambiguity and subjectivity in sensory judgement (Sun et al. 2023). The relationship 

between linguistic variables is represented by triangular fuzzy numbers, converting 

linguistic variables into fuzzy numbers through scale transformation. The linguistic 

variables of scheme evaluation are converted into triangular fuzzy numbers, as shown in 

Table 1. 

 
Table 1. Judgment Linguistic Variables and Triangular Fuzzy Number 
Correspondence 

Judgment Scoring Linguistic Variables Triangular Fuzzy Numbers 

1 Extremely Soft (0,0,0.1) 

2 Very Soft (0,0.1,0.25) 

3 Relatively Soft (0.15,0.3,0.45) 

4 Average (0.35,0.5,0.65) 

5 Relatively Hard (0.55,0.7,0.85) 

6 Very Hard (0.75,0.9,1) 

7 Extremely Hard (0.9,1,1) 

 

Assuming that n participants judge the hardness of m samples, their judgements can 

be considered as linguistic variables, transformed into triangular fuzzy number vectors, 

represented as: 

𝑌𝑡
𝑗
= (𝛼𝑡

𝑗
, 𝛽𝑡

𝑗
, 𝜎𝑡

𝑗
)        (1) 

where 𝑗 = 1,2, … ,𝑁 ; 𝑡 = 1,2,… ,𝑀 ; 𝑌𝑡
𝑗

is the triangular fuzzy number for the 𝑗 

participant’s rating of the 𝑡 sample; 𝛼𝑡
𝑗
 is the lowest value of the triangular fuzzy number 

for the 𝑗  participant on the 𝑡 sample; 𝛽𝑡
𝑗
 is the median value of the triangular fuzzy number 

for the 𝑗 participant on the 𝑡 sample; 𝜎𝑡
𝑗
 is the highest value of the triangular fuzzy number 
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for the 𝑗  participant on the 𝑡 sample. 

A triangular fuzzy number matrix for n participants against m samples is 

constructed, represented as: 

𝑌 = (

𝑌1
1 𝑌1

2 ⋯ 𝑌1
𝑁

𝑌2
′ 𝑌2

2 ⋯ 𝑌2
𝑁

⋯ ⋯ ⋯ ⋯
𝑌𝑀
1 𝑌𝑀

2 ⋯ 𝑌𝑀
𝑁

)       (2) 

If the judgment weight of the participants is denoted as 𝜑𝑖 , then the judgment 

weight vector of 𝑛 participants will be represented as: 

𝜑 = (𝜑1, 𝜑2, ⋯𝜑𝑁)
          (3) 

The fuzzy number set of 𝑛 testers for the surface hardness of sample m is denoted 

as 𝑋𝑖, then: 

𝑋 = (𝑋1, 𝑋2, ⋯ , 𝑋𝑚)
          (4) 

𝑋𝑚 = (𝜇𝑚, 𝜃𝑚, 𝜀𝑚)
          (5) 

𝜇𝑚 = ∑  𝑁
𝑗=1 𝛼𝑡

𝑗
⋅ 𝜑𝑗

          (6) 

𝜃𝑚 = ∑  𝑁
𝑗=1 𝛽𝑡

𝑗
⋅ 𝜑𝑗

          (7) 

𝜀𝑚 = ∑  𝑁
𝑗=1 𝜎𝑡

𝑗
⋅ 𝜑𝑗

          (8) 

𝑋𝑚 =
(𝜇𝑚+2𝜃𝑚+𝜀𝑚)

4
            (9) 

where 𝑋𝑚 is the fuzzy value for the surface hardness of the 𝑚 sample by 𝑁 participants; 

𝜇𝑚 is the sum of the lowest values of the fuzzy values for the 𝑚 ample by 𝑁 participants; 

𝜃𝑚  is the sum of the median values of the fuzzy values for the 𝑚 ample by 𝑁 participants; 

𝜀𝑚 is the sum of the highest values of the fuzzy values for the 𝑚 ample by 𝑁 participants. 

Ten designers with over five years of experience in the custom wardrobe field were invited 

as participants to judge and score the hardness of the sample finishes. Since the professional 

backgrounds of the ten participants were the same, their judgment weights for the samples 

are considered equal, that is, 1/10. The hardness values of the samples were calculated 

using the aforementioned formula. 

 

Semantic quantification of the tactile sensation layer 

Through literature review, web searches, and user interviews, a total of 53 emotion 

adjectives related to tactile sensations were identified (Chen and Chuang 2014). To ensure 

the efficiency of the experiment and the representativeness of the adjectives, the KJ method 

was used. The classification results of these 53 relevant terms were synthesized by a 

research team consisting of three professors in the field of furniture and seven master’s 

students specializing in furniture studies, all from Nanjing, China. Synonyms and words 

with significant semantic deviations were removed. The team members then exchanged 

their screening results in pairs to further eliminate terms with low relevance. Ultimately, 

eight adjectives for describing tactile sensations in the tactile sensation layer were 

identified: smooth, clear, sharp, fine-grained, amusing, healing, elegant, and popular. The 

explanations of tactile adjectives are shown in Table 2. 
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Table 2. Explanations of Tactile Adjectives 

Tactile Adjective Semantic Explanation and Example 

Smooth 

Explanation: A smooth texture feels even to the touch, without any abrupt 
changes or harshness. It is soothing and comfortable, evoking a sense of 
calm and ease. 

Example: The polished surface of a wooden wardrobe door or the sleek 
finish of a glass cabinet panel. 

Clear 

Explanation: A clear texture is distinct and well-defined, with noticeable and 
easily recognizable features. It provides a sense of clarity and precision 
when touched. 

Example: The detailed carvings on a decorative wardrobe panel or the 
crisp, clean lines of a modern cabinet design. 

Sharp 

Explanation: A sharp texture has distinct and acute qualities that can be 
clearly felt. It often carries a sharp or cutting sensation at the raised edges 
of the texture. It can be slightly abrasive or pointed. 

Example: The sharp, distinct patterns on a faux stone veneer panel of a 
custom wardrobe or the textured ridges on an acrylic panel, where the 
edges of the ridges feel sharp to the touch. 

Fine-grained 

Explanation: A fine-grained texture feels intricate and refined, with subtle 
and detailed features. It is often associated with precision and quality. 

Example: The fine wood grain of a high-quality oak wardrobe. 

Amusing 

Explanation: An amusing texture has a whimsical and engaging quality, 
often with variations that surprise and amuse the touch. These textures can 
be regular or irregular, creating a sense of novelty and attraction. 

Example: The irregular, wavy patterns on a textured laminate surface or the 
varied, unpredictable bumps and grooves on a custom wardrobe panel 
designed to intrigue the touch. 

Healing 

Explanation: A healing texture is calming and comforting, often with a soft 
and gentle feel that promotes relaxation and well-being. 

Example: The gentle feel of a leather or fabric-upholstered wardrobe panel 
designed for comfort. 

Elegant 

Explanation: An elegant texture is sophisticated and refined, with a surface 
that conveys a sense of luxury and high quality. It exudes an atmosphere of 
grace and opulence. 

Example: The refined, luxurious feel of a velvet-upholstered panel on a 
wardrobe. 

Popular 

Explanation: A popular texture is familiar and widely appreciated, often 
found in everyday furniture. It is accessible and has a broad appeal. 

Example: The typical pine wood grain texture of laminate surfaces used in 
budget-friendly custom wardrobes, featuring straight or slightly wavy lines. 

 

The Semantic Differential Method aggregates various scales into a numerical score 

to indicate the attitude levels of participants, with the grading scale typically being 5-point 

or 7-point. This study employed a 7-point scale to conduct a quantification experiment on 

tactile imagery words, involving 56 master’s students in furniture design as participants, 

including 28 males and 28 females. They were asked to sequentially assess the correlation 

between 6 physical properties and 8 tactile adjectives for 42 samples. Participants needed 

to rate each tactile adjective based on their feelings on the scale, ranging from 1 (strongly 

disagree) to 7 (strongly agree), to quantify their subjective sensations for each tactile 

description. To ensure the reliability and validity of the data, excluding external 

disturbances and the influence of other senses such as vision and hearing, participants 

conducted the experiment in a quiet, isolated space while wearing blindfolds and earplugs. 

Detailed instructions were given before the experiment to ensure that all participants could 
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accurately understand the rating scale and the experimental procedure. In the semantic 

quantification experiment of tactile adjectives, the state of the samples actually touched by 

the participants is shown in Fig. 2. The scoring data from all participants were collected, 

and the quantified scores for the 8 tactile adjectives of the 42 samples were calculated. 

 

 
 

Fig. 2. Participants touched the samples in the tactile adjective quantification experiment 

 

Quantification of the comprehensive evaluation layer 

Tactile sensations require a comprehensive emotional evaluation metric to 

accurately capture and reflect the emotional needs and overall experience of the target user 

group. This study used tactile satisfaction to express the comprehensive evaluation layer, 

as tactile satisfaction is directly linked to users’ psychological feelings and emotional 

responses (Delong et al. 2012). It can comprehensively reflect the degree to which users 

accept the tactile characteristics of a product, their level of liking, and the strength of 

emotional connection. This satisfaction not only reflects the users’ subjective evaluation 

but it can also objectively indicate the product’s market acceptance and potential success 

rate. After completing the quantification experiment of tactile imagery words, the 

evaluation of tactile satisfaction in the comprehensive evaluation layer is conducted using 

a 7-point scale, with scores ranging from 1 to 7, where 1 represents the least liked and 7 

represents the most liked. Other experimental environment and process requirements are 

the same as those described in the previous experiment. The scoring data from all 

participants are collected and the tactile satisfaction scores for the 42 samples are calculated. 
 

Model Establishment 
Mapping model construction between “physical attributes layer” and “tactile sensation 

layer” 

In subsequent Experiment 1, it was found that the relationship between the 

“Physical Attributes Layer” and the “Tactile Sensation Layer” was nonlinear. To address 

this issue, a BP (Backpropagation) neural network was introduced. A BP neural network 

is a type of multilayer feedforward neural network, characterized by its core feature of 

training through the backpropagation algorithm. This effectively updates the weights and 

biases within the network to minimize the network’s prediction error, thus achieving the 

ability to solve nonlinear problems (Zhao et al. 2012). The BP neural network model used 

in this paper was developed and coded in Matlab R2022a software. It collects experimental 

data from custom wardrobe finish samples and sets the input layer as the 42 samples’ 
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Surface Arithmetic Mean Height (Sa), Profile Line Arithmetic Mean Deviation 

perpendicular to the grain (Ra-c), Profile Line Arithmetic Mean Deviation along the grain 

(Ra-s), Average Width of Profile Elements (Rsm), Thermal Conductivity, and Surface 

Hardness. The output layer is the semantic scoring of eight tactile adjectives: smooth, clear, 

sharp, fine-grained, engaging, soothing, elegant, and popular, utilizing a three-layer BP 

neural network model with a single hidden layer. The performance and accuracy of the BP 

neural network largely depends on the setting of its parameters, including data 

normalization, the loss function, the number of neurons in the hidden layer, the training 

function, and the activation function. To accurately predict the semantic scoring of the 

tactile adjectives for custom wardrobe finish samples, data from 42 samples were randomly 

extracted, with data from 30 samples used as the training set, data from 6 samples as the 

validation set, and data from the remaining 6 samples as the test set. This approach tests 

and selects the most suitable number of neurons in the hidden layer, training function, and 

activation function, thereby optimizing the BP neural network model. 

Due to the different dimensions of Sa, Ra-c, Ra-s, Rsm, Thermal Conductivity, and 

Surface Hardness, untreated raw data often contain different magnitudes and dimensions, 

which may lead to unstable gradients during the training process or even affect the 

convergence of the model. Normalization scales the values in the original data to a uniform 

range, improving training efficiency and prediction accuracy (Singh and Singh 2020). In 

this study, the most common method of linear normalization was used, which scales the 

data to a range of [0,1] through linear transformation. The normalization formula is: 

𝑥norm =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
            (10) 

Here, 𝑥norm  represents the normalized data, 𝑥  represents the original data, and 

min(𝑥)  and  max(𝑥)  are the minimum and maximum values in that feature column, 

respectively. 

The loss function serves as a criterion to measure the difference between the 

network's predicted values and actual values, playing a crucial role in guiding the training 

process (Popoola et al. 2019). Considering that the objective of this study is to predict the 

semantic scoring of tactile adjectives, which is a regression problem, the Mean Squared 

Error (MSE) was chosen as the loss function. The calculation formula for MSE is: 

MSE =
1

𝑛
∑ (𝑦pred,𝑖 − 𝑦true,𝑖)

2𝑛

𝑖=1

         (11) 

where 𝑦pred,𝑖 represents the model's predicted output, 𝑦true,𝑖 represents the true value, and 𝑛 

represents the number of samples. 

MSE quantifies the size of the error between predicted and actual values. Its 

optimization goal is clear and intuitive, facilitating the updating and optimization of 

weights through the backpropagation algorithm. Moreover, the continuity and 

differentiability of MSE in its mathematical properties ensure stability and efficiency in 

optimization algorithms. 

The selection of the number of neurons in the hidden layer essentially seeks a 

balance to ensure that the network can capture complex data patterns without overfitting 

due to excessive model complexity (Qiao and Sun 2013). Too many neurons can enhance 

the model’s representation ability but may lead to excellent performance on training data 

with poor generalization on new data; conversely, too few neurons might result in the 

model's inability to fully learn the patterns in the data, leading to underfitting. In practice, 
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an experimental approach is often used to gradually adjust the number of neurons, 

monitoring the model’s performance on an independent validation set through techniques 

such as cross-validation to guide the adjustment of neuron numbers. Therefore, when 

setting the number of neurons in the hidden layer of the BP neural network, empirical 

formulas and experimental methods were used to determine the optimal number of neurons. 

The commonly used empirical formula is as follows, 

𝑟 = √𝑙 + 𝑘 + 𝑢                           (12) 

where 𝑟 is the number of neurons in the hidden layer, 𝑙 is the number of nodes in the input 

layer, 𝑘 is the number of nodes in the output layer, and 𝑢 is a constant between 1 and 10. 

Using this formula, the initial estimate for the number of neurons was calculated to be a 

constant between 4 and 13. 

The initially estimated number of neurons was sequentially inputted into the BP 

neural network for simulation. During the iterative process, the code constructed neural 

networks with varying numbers of neurons in the hidden layer and trained them. By 

calculating the performance of each network on the validation set and comparing it with 

the previous minimum MSE, the code dynamically updated and recorded the best number 

of neurons in the hidden layer and the corresponding minimum MSE, with results shown 

in Fig. 3. When the number of neurons increased from 4 to 7, the Mean Squared Error 

(MSE) dropped sharply, indicating a significant improvement in model performance. At 7 

neurons, the model reached a local minimum of MSE, after which there was a slight 

increase in error. Considering the overall trend, this might indicate that the current network 

structure did not significantly improve performance with an increased number of neurons. 

As the number of neurons in the hidden layer increased to 10, a noticeable downward trend 

appeared in the graph, and the model’s MSE reached its lowest point. Thereafter, as the 

number of neurons continued to increase, the MSE consistently rose, thereby determining 

that the model's performance was optimized when the number of neurons in the hidden 

layer was set to 10. 

 

 
 

Fig. 3. Performance of models with different numbers of neurons in the hidden layer 
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A set of candidate training functions was established, covering a wide range of 

algorithms including the Levenberg-Marquardt algorithm (trainlm), BFGS quasi-Newton 

method (trainbfg), and conjugate gradient descent method (trainscg), to encompass a broad 

spectrum of network training strategies (Sadeghi 2000). In the selection process of training 

functions, this study employed an iterative approach in which each candidate training 

function was applied to the same BP neural network structure, which had been configured 

based on the optimal number of nodes in the hidden layer determined from previous 

experiments. The data segmentation strategy for the network was set to random division, 

with 70% of the data used for training and the remaining 30% evenly distributed between 

validation and test sets, ensuring fairness and comprehensiveness in model evaluation. In 

each iteration, the network was trained using the current training function with a maximum 

of 1000 training iterations, followed by performance evaluation on the validation set. MSE 

was used as the performance metric, aiming to quantify the difference between model 

predictions and actual target values, with results shown in Fig. 4. The results in the figure 

show significant fluctuations in MSE across different training functions, indicating that the 

choice of training function has a significant impact on model performance. The MSE value 

corresponding to the Levenberg-Marquardt algorithm (trainlm) was the lowest, indicating 

it had the best performance among the set of training functions. The minimum error 

indicates that this algorithm produced the smallest difference between predictions and 

actual values on the validation set, making it the optimal choice among the experiments 

conducted. 

 

 
Fig. 4. The relationship between different training functions and model mean squared error 

 
In the process of constructing a neural network, selecting the appropriate activation 

function is crucial, as it directly affects the network’s ability to handle nonlinear problems 

(Pan et al. 2020). To determine the best combination of activation functions, this study 

conducted experimental evaluations on the BP neural network using different combinations 

of activation functions. Four commonly used activation functions were selected, including 

two saturating functions (tansig and logsig) and two non-saturating functions (purelin and 

ReLU). Initially, each of these functions was paired with itself to form a set of activation 
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functions for the input and output layers. Secondly, since the semantic scoring values of 

tactile adjectives do not require dimension normalization, the impact of the two linear 

functions on the accuracy of the neural network was specifically tested in the output layer. 

The output range of the purelin function is from negative infinity to positive infinity, while 

the output range of the ReLU function is from zero to positive infinity. Given that the 

semantic scoring values for tactile adjectives are all positive, it was sufficient to test only 

one of these, and for this study, the purelin function was chosen as the activation function 

for the output layer and paired with the remaining three for the input layer for testing. 

Experiments were conducted on the BP neural network with different activation 

function configurations to evaluate their performance on specific tasks. In the experiments, 

each network formed by a combination of activation functions underwent a complete 

training cycle, with the maximum number of training iterations set to 1000. Mean Squared 

Error (MSE) was used as the performance metric to evaluate the accuracy of the model's 

predictions. After the training was completed, performance metrics were calculated on the 

validation dataset. The results are shown in Fig. 5. 

 

 
Fig. 5. The impact of different activation function combinations on model mean squared error 
 

The MSE of the Tansig+Purelin combination was the lowest (approximately 

0.68861), indicating that this combination provided the best performance under the current 

experimental setup. The advantage of using the tansig function as the activation function 

for the input layer lies in its non-linear characteristics, enabling the network to effectively 

capture and learn complex data relationships. Additionally, the relatively smooth derivative 

of the hyperbolic tangent function helps to avoid the vanishing gradient problem, ensuring 

the effective transmission of gradient information during the training of deep networks. 

Applying the purelin function to the output layer simplifies the learning process and 

accelerates network training, making the final model's output more directly reflect the 

transformation results from the input layer to the hidden layer. It provides a flexible output 

range for the network, especially suitable for regression tasks. Therefore, the Tansig 

function is chosen as the activation function for the input layer, and the Purelin function is 

selected for the output layer. 
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In summary, the neural network's input layer consists of parameters of 6 physical 

properties for 42 samples, and the output layer consists of the quantified scores of these 

samples on 8 tactile adjectives. The hidden layer has one layer with 10 neurons. The 

activation function for the input layer is the Tansig function, and the activation function 

for the output layer is the Purelin function. The training function is trainlm, with Mean 

Squared Error used as the loss function, and the maximum number of training iterations is 

capped at 1000. This setup constructs a mapping model between the "Physical Attributes 

Layer" and the "Tactile Sensation Layer" based on the BP neural network. 

 

Mapping model construction between " tactile sensation layer " and " comprehensive 

evaluation layer " 

In exploring the intrinsic connection between the “Tactile Sensation Layer” and the 

“Comprehensive Evaluation Layer,” the tactile satisfaction scores obtained from the 

comprehensive evaluation layer of 42 samples were selected as the dependent variable S. 

The scores of the eight tactile adjectives—smooth (h1), clear (h2), sharp (h3), fine-grained 

(h4), amusing (h5), healing (h6), elegant (h7), and popular (h8)—were used as independent 

variables. These were imported into SPSS Statistics 27 software for correlation analysis. 

Combined with multiple linear regression, a mapping relationship model between the two 

was established to facilitate the prediction of tactile satisfaction. 

 

RESULTS AND DISCUSSION 
 

Experiment 1 "Physical Attributes Layer-Tactile Sensation Layer" 
Linear regression analysis 

To analyze the relationship between the Physical Attributes Layer and the Tactile 

Sensation Layer, the correlation coefficients between the parameters of various physical 

properties and the semantic scores of tactile adjectives, as well as the determination 

coefficients in regression analysis, were calculated. This helps reveal whether there is a 

correlation and linear relationship between them. The parameters of 6 physical properties 

from the Physical Attributes Layer of 42 samples were used as independent variables, and 

the semantic scoring of 8 tactile adjectives were used as dependent variables. All data were 

imported into SPSS Statistics 27 software for Pearson correlation analysis and regression 

analysis, resulting in Table 3.  

 

Table 3. Correlation Coefficients and Determination Coefficients between Each 
Physical Property and Tactile Adjectives 

Tactile 
Adjective 

Pearson Correlation Coefficient 

R2 
Sa Ra-c Ra-s Rsm 

Thermal 
Conductivity 

Surface 
Hardness 

Smooth -0.712** -0.752** -0.628** -0.605** 0.229 -0.290 0.741 

Clear 0.336* 0.358* 0.215 0.323* 0.214 0.113 0.133 

Sharp 0.584** 0.633** 0.477** 0.373* -0.224 0.494** 0.717 

Fine-
grained 

-0.669** -0.714** -0.554** -0.526** 0.240 -0.402** 0.744 

Amusing 0.640** 0.670** 0.517** 0.557** 0.119 0.100 0.467 

Healing -0.364* -0.412** -0.390* -0.302* 0.315* -0.522** 0.377 

Elegant -0.323* -0.379* -0.378* -0.343* 0.347* -0.490** 0.494 

Popular -0.701** -0.724** -0.650** -0.655** 0.313* 0.349* 0.442 

Notes：*p<0.05 **p<0.01 
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The Pearson correlation results indicate that, overall, there was a general correlation 

between the six physical properties and the eight tactile adjectives, with Sa, Ra-c, and Rsm 

showing significant correlations with all eight tactile adjectives. Ra-s showed significant 

correlation with Smooth, Sharp, Fine-grained, Amusing, Healing, Elegant, and Popular; 

Thermal Conductivity with Healing, Elegant, and Popular; and Surface Hardness with 

Sharp, Fine-grained, Healing, Elegant, and Popular. While other correlations were 

apparent, they were weaker. Considering the comprehensive impact of the physical 

properties on the semantic scoring of the tactile adjectives, these weaker correlations 

should not be overlooked. 

The results of the linear regression analysis show that the adjectives Fine-grained, 

Smooth, and Sharp had a good fit with the six physical properties, with determination 

coefficients (R2) all greater than 0.5. The determination coefficients for the rest were less 

than 0.5, indicating that fitting the relationship between the “Physical Attributes Layer” 

and the “Tactile Sensation Layer” using a linear regression equation was not ideal. It must 

be recognized that descriptions of tactile sensations and semantic scoring by users are often 

vague and complex. The nature of these evaluations not only includes varying personal 

preferences but also reflects a wide range of cultural and emotional factors, which often 

interact in a nonlinear manner. Traditional linear regression models are inadequate in this 

context because they typically can only capture linear relationships between variables and 

fail to effectively model the underlying complex and ambiguous structures. Therefore, this 

study employed a BP neural network model to fully capture and analyze nonlinear 

relationships, accurately depicting the dynamic link between the “Physical Attributes 

Layer” and the “Tactile Sensation Layer.” 

 

Training Results and Analysis of the BP Neural Network Model 

To accurately predict the quantification values of tactile adjectives for typical 

samples of custom wardrobe finishes, a random sampling method was used to segment the 

42 typical samples during the initial phase of model development. This data segmentation 

method ensures the independence of the training, validation, and test datasets, thereby 

enhancing the persuasiveness and scientific rigor of the model evaluation results. 

Additionally, random segmentation of the samples helps reduce data selection bias and 

improves the reliability of the model’s prediction results. The fitting performance of the 

mapping model between the “physical parameter layer” and the “tactile sensation layer” is 

shown in Fig. 6. 
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Fig. 6. The fitting effect of the BP neural network 

 
The correlation coefficient R measures the fit of the mapping model, indicating the 

linear correlation between the model’s predicted values and the actual values. When R is 

close to 1, it means that the predicted values are highly correlated with the actual values, 

indicating that the model fits the data well. Conversely, when R is close to 0, it indicates a 

weak linear relationship between the predicted and actual values, implying a low fit. The 

results shown in the figure demonstrate a high degree of consistency and accuracy in the 

predictive performance of the mapping model between the “physical parameter layer” and 

the “tactile sensation layer” across the training, validation, and test sets. The correlation 

coefficient R between the predicted and actual values was 0.89261 for the training set, 

0.93710 for the validation set, and 0.92613 for the test set. In the scatter plots of each 

dataset, data points were evenly distributed on both sides of the fitted line. Additionally, 

the dashed line Y=T represents a perfect match between predicted and actual values, and 

the smaller the deviation of the fitted line from this dashed line, the more accurate the 

model's predictions. In summary, the model’s performance across the datasets 

demonstrates its effectiveness in predicting the quantification values of tactile adjectives 

for custom wardrobe finishes. 

 

BP Neural Network Model Performance Validation 

After the parameters of the BP neural network model were determined and training 

was completed, an independent validation set was used to validate the model, to evaluate 

its generalization ability and prediction accuracy. This validation set consists of samples 

that did not participate in the training process, selected to cover the entire range of materials 

to ensure comprehensive validation. Fourteen new samples were collected for validation 

of the neural network model, measuring the physical parameters of the 6 properties in the 
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Physical Attributes Layer for these samples. Thirty master’s students specializing in 

furniture design, including 15 males and 15 females, were invited as participants. They 

used the semantic quantification method for the Tactile Sensation Layer mentioned in the 

research method to obtain the semantic scores for the 6 physical properties of the 14 new 

samples on the 8 tactile adjectives. The physical parameters of the 6 properties and the 

semantic quantification values of the tactile adjectives were input into the input and output 

layers of the trained BP neural network, respectively. The network model then performed 

forward propagation on the input data to obtain the predicted values of the emotional 

scores. 

In this study, a backpropagation neural network model was utilized to map the six 

physical property parameters of custom wardrobe finishes to the semantic quantification 

values of eight tactile adjectives, exploring the quantitative relationship between physical 

properties and sensory experiences. After initial training with 42 samples, the model was 

further validated on 14 new samples. Furthermore, the BP neural network predicted the 

semantic scores of the 14 new samples on the eight tactile adjectives. The relationship 

between predicted and actual values was visualized through line graphs, with each tactile 

adjective represented by a graph, as shown in Figs. 7 and 8. By calculating the Mean 

Squared Error (MSE) and determination coefficient (R²) for each tactile description, the 

model’s performance on each semantic node was evaluated.  

 
Fig. 7. Line graph of the predicted and actual values for the nodes "amusing," "fine-grained," 
"popular," and " smooth" 
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The analysis results show that the determination coefficients (R²) were all greater 

than 0.72, exhibiting a performance level higher than traditional linear regression analysis 

across the tactile adjective nodes. This demonstrates the BP neural network’s effectiveness 

in capturing complex nonlinear relationships and significantly enhancing prediction 

outcomes. Specifically, the determination coefficients (R²) for “Fine-grained,” “Healing,” 

and “Smooth” nodes were all above 0.9, reflecting the model’s high accuracy and reliability 

in predicting these three tactile descriptions. Meanwhile, for the “Clear,” “Sharp,” and 

“Elegant” nodes, with determination coefficients (R²) all above 0.8, it indicates the neural 

network’s precise capture of the associations between physical properties and tactile 

adjectives. The determination coefficients for “Amusing” and “Popular” were lower, at 

R²=0.74222 and R²=0.72083, respectively, likely due to the higher ambiguity of the 

corresponding tactile descriptions. Such ambiguity might stem from semantic polysemy or 

subjective sensory differences, making the relationship between these two tactile 

descriptions and physical properties less clear than others. Although the “Popular” node 

had the highest MSE value, the mean error of 0.211 on a 7-point scale rating had a minimal 

impact and the prediction trend generally aligns with the actual observational data, 

indicating that this error level is acceptable in tactile assessment. 

 
Fig. 8. Line graph of the predicted and actual values for the nodes "clear," "elegant," "sharp," and 
"healing" 
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Experiment 2 "Tactile Sensation Layer-Comprehensive Evaluation Layer" 
Data results and analysis 

The Pearson correlation results are presented in Table 4. Satisfaction had a 

correlation coefficient of -0.360 with “Amusing,” indicating a significant negative 

correlation between the two, which was validated at the 0.05 significance level. 

Additionally, satisfaction showed strong positive correlations with “Fine-grained” 

(correlation coefficient of 0.688), “Popular” (correlation coefficient of 0.535), “Smooth” 

(correlation coefficient of 0.646), “Elegant” (correlation coefficient of 0.739), and 

“Healing” (correlation coefficient of 0.744), and these correlations were confirmed at the 

0.01 significance level. This means that as the tactile experiences of “Fine-grained,” 

“Popular,” “Smooth,” “Elegant,” and “Healing” increase, satisfaction correspondingly 

improves. Conversely, satisfaction showed significant negative correlations with “Clear” 

(correlation coefficient of -0.403) and “Sharp” (correlation coefficient of -0.766), also 

confirmed at the 0.01 significance level, indicating that the enhancement of these tactile 

experiences led to a decrease in satisfaction. 

Subsequently, a multiple linear regression analysis was conducted. The results 

showed that the model’s determination coefficient R² was 0.765, indicating that the eight 

tactile adjectives were able to explain the variation in tactile satisfaction. An F-test was 

performed on the model (F=13.437, p<0.05), indicating that the eight tactile adjectives had 

an impact on tactile satisfaction. However, the presence of Variance Inflation Factor (VIF) 

values greater than 10 in the model suggests the existence of collinearity issues, meaning 

there were certain correlations among the independent variables in the model. To address 

the impact of collinearity on the model, it is necessary to first conduct a principal 

component analysis (PCA) on the eight tactile adjectives, followed by a linear regression 

analysis of the component scores and tactile satisfaction. 

 

Table 4. Pearson Correlation Coefficients between Tactile Adjectives and 
Satisfaction 

Tactile Adjectives Satisfaction 

Smooth 0.646** 

Clear -0.403** 

Sharp -0.766** 

Fine-grained 0.688** 

Amusing -0.360* 

Healing 0.744** 

Elegant 0.739** 

Popular 0.535** 

 

The scores of the eight tactile adjectives were imported into SPSS for principal 

component analysis. The Bartlett’s test of sphericity results showed KMO=0.877>0.6 and 

p<0.05, indicating that the data were suitable for principal component analysis. The 

analysis yielded variance explained by the tactile adjectives, extracting 2 principal 

components. Principal component 1 explained 77.889% of the variance, and principal 

component 2 explained 12.122%, with a cumulative explanation rate exceeding 90%. The 

loadings and linear combination coefficients matrix of the eight tactile adjectives were 

calculated, as shown in Table 5. 
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Table 5. Factor Loadings and Linear Combination Coefficients for Tactile 
Adjectives 

Tactile 
Adjectives 

Factor loadings 

Communality 

Linear Combination 
Coefficients 

 
Composite 

Score 
Coefficient 

Principal 
Component 

1 

Principal 
Component 

2 

Principal 
Component 

1 

Principal 
Component 

2 

Smooth 0.974 -0.064 0.953 0.390 -0.065 0.347 

Clear -0.943 0.130 0.906 -0.378 0.132 0.345 

Sharp -0.964 -0.143 0.951 -0.386 -0.145 0.354 

Fine-
grained 

0.981 0.045 0.964 0.393 0.045 0.346 

Amusing -0.752 0.500 0.816 -0.301 0.508 0.329 

Healing 0.810 0.486 0.892 0.324 0.493 0.347 

Elegant 0.855 0.425 0.912 0.342 0.432 0.355 

Popular 0.741 -0.509 0.808 0.297 -0.517 0.326 

Weights 0.865 0.135 — 0.865 0.135 — 

 

From Table 5, which shows the loading coefficients of the tactile adjectives, it is 

clear that the communalities for all eight tactile adjectives were higher than 0.4. Thus, there 

was a strong association between each adjective and the principal components, indicating 

that the two principal components can effectively extract information. The relationship 

equation between the principal components and each tactile adjective can be established 

using the linear combination coefficients. Component 1 = 0.390h1 - 0.378h2 - 0.386h3 + 

0.393h4 - 0.301h5 + 0.324h6 + 0.342h7 + 0.297h8; Component 2 = -0.065h1 + 0.132h2 - 

0.145h3 + 0.045h4 + 0.508h5 + 0.493h6 + 0.432h7 - 0.517h8. The composite score = 

0.865Component 1 + 0.135Component 2. 

Using the composite score from the principal component analysis as the 

independent variable and the tactile satisfaction scores as the dependent variable for 

correlation analysis, the model R² was 0.604. An F-test on the model (F=60.900, p<0.05) 

indicates that the composite score from the principal component analysis had an impact on 

tactile satisfaction, with a regression coefficient of 0.167 (t=7.804, p<0.01) and an intercept 

of 3.720, indicating a significant positive correlation between the composite score of 

principal component analysis and tactile satisfaction. Furthermore, by observing the 

cumulative probability plot of the standardized residuals of the regression model, as shown 

in Fig. 9, it is apparent that the deviation between the model’s predicted values and the 

actual observed values is minimal, implying no significant differences compared to a 

standard normal distribution. Analyzing the scatter plot of standardized predicted values 

against standardized residuals, as can be seen in Fig. 10, as the standardized predicted 

values increased, the residuals fluctuated within a range of positive and negative 2, without 

any systematic changes as the predicted values increase, indicating constant variance of 

residuals, or homoscedasticity. 
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Fig. 9. Cumulative probability plot of standardized residuals 
 

 
Fig. 10. Regression prediction scatter plot 

 

Based on these observations, the fit of this regression model was judged to be 

acceptable, as it demonstrated good predictive consistency and stable error variability. The 

final multiple linear regression equation was: S = 3.720 + 0.055h1 - 0.052h2 - 0.059h3 + 

0.058h4 - 0.032h5 + 0.058h6 + 0.059h7 + 0.031h8. From the equation, it is evident that 

tactile satisfaction was positively correlated with “Smooth,” “Fine-grained,” “Healing,” 

“Elegant,” and “Popular,” and negatively correlated with “Clear,” “Sharp,” and “Amusing.” 

This indicates that users prefer custom wardrobe finishes with subtle surface textures, a 

Fine-grained touch, and common appeal. Such finishes can provide emotional value, 

relieve stress, and align with the functional tone of bedroom spaces. 

 
Evaluation Model for Tactile Sensations of Custom Wardrobe Finishes 

By integrating physical experimental measurements with subjective quantification 

methods, data samples were obtained for each layer. To investigate the mapping 

relationship between the “Physical Attributes Layer” and the “Tactile Sensation Layer,” a 
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BP neural network was employed. This approach addressed the issue of low determination 

coefficients in multiple linear regression equations, which had previously hindered the 

precise prediction of quantitative values for tactile adjectives. Consequently, a mapping 

model based on the BP neural network was developed to capture the nonlinear relationship 

between the “Physical Attributes Layer” and the “Tactile Sensation Layer.” This model 

predicts the quantitative values of target tactile adjectives based on the physical parameters 

of various design elements of custom wardrobe finishes. For the relationship between the 

“Tactile Sensation Layer” and the “Comprehensive Evaluation Layer,” a multiple linear 

regression equation was utilized to establish a correlation model, enabling the prediction 

of user satisfaction with tactile sensations based on the quantitative values of target tactile 

adjectives. The combination of the BP neural network and multiple linear regression 

equations resulted in a hierarchical prediction pathway for evaluating tactile sensations of 

custom wardrobe finishes, spanning from the “Physical Attributes Layer” to the “Tactile 

Sensation Layer” and finally to the “Comprehensive Evaluation Layer.” This evaluation 

model is depicted in Fig. 11.  

 
 

Fig. 11. Tactile evaluation model for custom wardrobe finishes 
 

Utilizing this model, designers can predict the quantitative values of target tactile 

adjectives for new finishes based on the physical parameters of custom wardrobe design 

elements. This capability assists designers in understanding target users’ tactile perceptions 

of new finishes and in predicting their satisfaction with the tactile sensations, thereby 

guiding subsequent design work. 

 

 

DISCUSSION 
 

Academic Significance 
  This study addresses a critical research gap by constructing a tactile evaluation 

model for custom wardrobe finishes in China, thereby enriching the existing theoretical 

foundation. From an interdisciplinary perspective, the research integrates tactile perception 

theory from psychology, physical attribute measurement from materials science, and BP 

neural network modeling from computer science, comprehensively exploring various 
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aspects of tactile evaluation. This cross-disciplinary approach enhances both the 

comprehensiveness and depth of the study, providing new research ideas and methods for 

researchers in related fields and promoting knowledge integration and innovation across 

disciplines. The tactile evaluation model developed in this study has practical value not 

only in the design of custom wardrobes but also in other furniture domains, such as custom 

panel furniture and solid wood furniture, demonstrating its broad applicability and potential 

for widespread adoption. Furthermore, the methods and findings of this research offer 

important references and insights for subsequent studies.  

Future research can refine and expand the tactile evaluation model by exploring 

larger sample sizes, more diverse physical attributes, and a wider range of tactile 

sensations. Subsequent studies could also investigate the model’s applicability in different 

cultural contexts and enhance its predictive accuracy and usability by integrating virtual 

reality technology and artificial intelligence algorithms, thereby advancing the field of 

tactile evaluation. In summary, the tactile evaluation model constructed in this study not 

only fills a gap in the evaluation of tactile sensations for custom wardrobe finishes but also 

enhances research comprehensiveness and depth through an interdisciplinary approach. 

The model shows broad applicability and potential for adoption in the design of custom 

wardrobes and other furniture domains. The study’s findings provide a crucial reference 

for future work, and the integration of emerging technologies will further promote the 

development of the tactile evaluation field. 

 

Academic Significance 
  The tactile evaluation model developed in this study holds significant practical 

applications and relevance in three primary areas: product design optimization, capturing 

user needs, and market positioning and promotion. 

  Firstly, for product design optimization, the model enables designers to predict the 

tactile effects of various materials and surface treatments in advance. This capability allows 

for optimized material selection during the design phase, reducing trial-and-error costs and 

shortening the design iteration cycle, thereby improving design efficiency and accuracy. 

The model offers a data-driven approach for scientifically adjusting surface treatment 

processes, including parameters such as surface roughness, thermal conductivity, and 

hardness, to achieve optimal tactile experiences. Additionally, the model can be applied to 

personalized design customization, allowing designers to use quantified tactile data to 

tailor products to individual tactile preferences, meeting specific user needs. This data-

driven approach to personalized design enhances product quality and user satisfaction, 

boosting market competitiveness. 

  In addition, the model aids designers in understanding users’ implicit needs and 

tactile preferences by quantifying their emotional responses to touch. Integrating user 

feedback into the design process creates a positive feedback loop between user needs and 

design improvements. The model’s data-driven method ensures precise capture and 

analysis of user requirements, allowing designers to adjust and optimize based on actual 

user feedback, thus enhancing the product’s user experience. By accurately capturing and 

responding to users’ tactile needs, designers can create products that are not only highly 

functional but also emotionally satisfying, thereby increasing user satisfaction. 

  Lastly, enterprises can utilize the model’s predictive data to identify user groups 

with different tactile preferences, facilitating precise market segmentation. This accurate 

market positioning helps companies develop products tailored specifically to target user 

groups, increasing market penetration and share. For marketing strategy, companies can 
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leverage the data provided by the model to design more appealing marketing campaigns. 

By highlighting the unique tactile experiences of their products, companies can attract more 

potential customers and enhance brand awareness and market influence. The tactile 

evaluation model also provides new avenues for differentiation in a highly competitive 

market. Currently, the custom wardrobe market suffers from product homogenization. 

Enterprises and designers can use the model’s data to innovate from the perspective of 

touch and tactile sensation, helping them stand out in a competitive market, achieve 

differentiated competition, and enhance brand uniqueness and market appeal. 

  In summary, the tactile evaluation model developed in this study exhibits 

significant application value in optimizing product design, capturing user needs, and 

market positioning and promotion. Despite the notable achievements of this research, 

limitations such as the sample size may impact the model’s generalizability. Future 

research can enhance the model’s accuracy and applicability by expanding the sample set, 

exploring alternative neural network structures, and incorporating additional physical 

parameters related to tactile sensations. Furthermore, integrating genetic algorithms, deep 

learning algorithms, or virtual reality technology could bolster the model’s predictive 

capability and ease of application, thereby advancing the field of tactile evaluation. The 

authors believe that this model offers a valuable reference for the design and manufacturing 

of custom wardrobes, with promising application prospects and practical value. 

 

 

CONCLUSIONS 
 

1. This study successfully developed an evaluation model based on a back propagation 

(BP) neural network for accurately predicting and evaluating the tactile experience of 

custom wardrobe finishes. Utilizing Matlab software, a mapping model between the 

“Physical Attributes Layer” and the “Tactile Sensation Layer” of custom wardrobe 

finishes was constructed. Demonstrated on 42 training samples and 14 validation 

samples, the model showed outstanding predictive consistency and accuracy, proving 

its significant advantages over traditional multiple linear regression analysis in 

predicting the quantitative values of tactile adjectives in the “Tactile Sensation Layer.” 

2. The research found that tactile adjectives significantly influence users’ tactile 

satisfaction between the “Tactile Sensation Layer” and the “Comprehensive Evaluation 

Layer.” Users in Nanjing, China, prefer finishes that are delicately textured, gentle to 

the touch, and common, which not only helps to alleviate stress and provide emotional 

value but also matches the functional needs of personal spaces like bedrooms. 

Furthermore, the issue of collinearity in the model was addressed through principal 

component analysis, constructing an effective method to predict tactile satisfaction. 

3. The model equips designers with a predictive tool to ascertain quantitative values of 

target tactile adjectives for new finishes, based on the physical parameters of custom 

wardrobe design elements. This enables designers to comprehend target users’ tactile 

perceptions of new finishes and forecast their satisfaction with the tactile experience. 

Consequently, this guidance informs subsequent design work, markedly reduces the 

design iteration cycle, and enhances design accuracy. 
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