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To address the current inefficiencies and subjective nature of manual 
observation in maize cultivation, with the aim of achieving high efficiency 
and productivity, this study focused on the DeMaya D3 maize variety. It 
proposes a maize growth stage recognition method based on the 
MobileNet model, which is a lightweight convolutional neural network 
architecture. The method was tested and achieved recognition accuracies 
of 0.98, 0.96, 0.92, 0.85, and 0.97 for different growth stages, respectively. 
Additionally, a maize growth prediction model was developed. Based on 
data collected from experimental plots regarding maize plant height and 
stem diameter, the Prophet model and an optimized version of the Prophet 
model were used to forecast maize growth trends. The Prophet model is 
an open-source tool for time series forecasting. Comparative analysis was 
conducted between the predictions of the original Prophet model and the 
optimized version. The relative errors of the Prophet model predictions 
were 0.85%, 2.11%, and 0.79%, while those of the optimized Prophet 
model were 0.76%, 0.47%, and 0.71%. Compared to the Prophet model, 
the optimized model reduced errors by 0.09%, 1.64%, and 0.08%, 
respectively. The maize plant growth control system was designed to 
obtain the information through the collection layer. The decision-making 
layer judged the soil nutrient absorption and growth status. Finally, the 
management layer controlled water and fertilizer. 
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INTRODUCTION 
 

 As one of the three major crops in China, maize is an important food crop and 

industrial raw material (Liu et al. 2021). Traditional crop growth cycle identification has 

been mainly based on manual field observation and drawing on historical experience. For 

example, the seedling stage is centered on nutrient growth. The above-ground part of the 

plant, leaves and stems, grow slowly, about 2 cm, and is impacted by seedling air 

permeability and light transmission (Chen et al. 2021). The nodulation stage is around 7 to 

9 leaves and focuses on water and nutrient supplementation (Huang 2023). The stemming 

period involves the conversion from nutrient growth to reproductive growth. Female ear 

development is dominant, and the morphological characteristics of the period show that the 

top male ears are exposed from the leaf sheaths, focusing on the reasonable control of 

exuberance (Gu et al. 2023). The external characteristics of the milk ripening period are 

the bottom of the maize plant flowering maize cobs. The perfect ripening stage is the best 

time to harvest maize, as the plant is full of kernels and dry leaves. Accurate identification 
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of the growth period of maize not only can scientifically grasp the growth cycle of the plant 

through morphological changes, reflecting the growth status information, but also it can 

rely on information technology to improve the field management decision support for 

farmers. Identification will guide the agricultural activities and realize efficient and high-

yield planting. Therefore, it is important to study the growth period recognition of maize 

plants. 

Maize plant growth period recognition research mainly focuses on the training of 

multi-layer recognition model parameter optimization for supervised learning and image 

preprocessing image enhancement for migration learning in two forms. The two forms are 

intended to improve the model performance and enhance the expressive ability of the 

model to improve the accuracy of image recognition. Zhang et al. (2018) proposed a 

multilevel support vector machine (SVM) modelling method, using the particle swarm 

optimization (PSO) algorithm to iteratively find the optimal SVM model, select the 

appropriate kernel function, and construct a maize growth period recognition model. The 

recognition result was 94.8%. Li et al. (2021) proposed a multilevel R-CNN model with 

supervised learning to classify the growth period recognition study. The sample recognition 

result was 96%. Xu et al. (2021) proposed RAdam optimization of ResNet50 model for 

identification of key reproductive periods with 97.3% recognition accuracy. Zhao et al. 

(2020) used cascaded convolutional neural grid to improve the Yolov3 model to achieve 

recognition of targets with 98.1% accuracy. Zheng et al. (2022) constructed CustomNet 

(DenseNet) to a VGG16 multi-model for fertility recognition, respectively and the results 

showed that the average accuracy of the CustomNet model was 98.6%, which provides a 

comparable method.  Lanlan et al. (2022) established a dataset by taking pictures from a 

drone and applied the Swin Transformer model to classify the different growth stages of 

maize, with an overall accuracy rate of 98.7%, which can better meet the needs of actual 

production in farmland. Ma et al. (2023) proposed a network model of YOLO v5s-CBD to 

enhance the image sample data to improve the recognition accuracy and convergence speed 

of the model. Xu et al. (2020) constructed a recognition model based on migration learning, 

which shortens the convergence time of the model by extracting the key information of the 

target through the convolutional layer. Zhao et al. (2020) constructed the CNN-based 

image recognition model, divided the training set and dataset, and optimized the parameters 

of the model by combining with Adam. The data enhancement technique effectively 

alleviated the problem of overfitting recognition results. Xiong et al. (2020) pre-segmented 

and processed the captured images to remove the redundant background feature 

information and trained the Mask R-CNN model to classify the pictures. Fan et al. (2021) 

improved the Faster R-CNN model by optimizing the training strategy to distinguish 

seedlings from weeds, which has applicability and generalization. Wang and Wang (2021) 

improved the model performance by improving the residual module in the migration 

learning, enhanced the expressive ability of the model, and provided a reference basis for 

the identification in the actual agricultural production environment. Ikasari et al. (2016) 

used remote sensing technology to collect images and regularization learning and multi-

algorithm fusion to form a multi-layer neural network algorithm to classify the growth 

stages of rice. The dataset identification accuracy was 70.28%. Gupta et al. (2020) built a 

convolutional neural network to categorize weeds and crops, and the ResNet50 neural 

network recognized 95.23% of crop classification. 

 The Demeria D3 maize variety was the research object, focusing on its growth 

morphology characteristics of each period. The research proposes the recognition method 

of the critical growth period of maize plants and builds the MobileNet model. Using 
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Python, it seeks the optimal model parameter to improve the accuracy of the image 

recognition, and on this basis, through the prediction of the plant height model, it produces 

the growth trend of the maize plants in each period. The research will allow improved 

mastery of the growth condition and assist the decision-making of its human intervention. 

 

 

EXPERIMENTAL 
 

Growth Period Identification 
 The experimental area was planted with maize varieties of Demeria D3. A camera 

was used to take pictures, as shown in Fig. 1. The design of the recognition model for the 

growing period mainly consisted of three parts, namely, the model construction of the 

training set, the model validation of the test set, and the visualization processing of the 

model results. This process included taking the preprocessed pictures as the input of the 

MobileNet model, setting up the model parameters, constructing the MobileNet model, and 

visualizing the output of the model. Visualization processing, due to the PyQT5 library had 

the advantages of multiple controls. Cross-platform and mature technology, through the 

Python language call PyQT5 library to design the image interface. The recognition resulted 

in the output layer of the visualization processing to achieve the image classification of the 

growth period of maize plants. 
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Fig. 1. Architecture of maize plants 
 

 The growth stages of corn are divided into five phases: seedling stage, jointing 

stage, tasseling stage, milk ripening stage, and full ripening stage. The seedling stage 

generally occurs from the 15th to the 20th day after sowing. During this stage, the soil needs 

to be kept moist, and adequate amounts of nitrogen, phosphorus, potassium, and other 

fertilizers should be applied to help the seedlings establish healthy roots and leaves. The 

jointing stage typically occurs from the 20th to the 50th day after sowing. During this stage, 

the soil still needs to be irrigated to maintain moisture, and the application of nitrogen, 

phosphorus, potassium, and other fertilizers should be increased to meet the needs of plant 

growth. The tasseling stage generally occurs from the 50th to the 64th day after sowing. 

During this stage, potassium and phosphorus fertilizers can be applied in moderate amounts 

to promote grain formation. The milk ripening stage generally occurs from the 64th to the 
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104th day after sowing. During this stage, the demand for water and nutrients by the plants 

remains high, especially for potassium and phosphorus. The full ripening stage generally 

occurs from the 104th to the 164th day after sowing. During this stage, the frequency and 

amount of irrigation can gradually be reduced, and potassium fertilizer can be applied in 

moderate amounts to promote grain maturation and improve quality. The DeMaya D3 corn 

used in this study has a shorter growth cycle and faster growth rate compared to field corn. 

Under specific growth conditions, it can grow and mature more quickly, which is 

advantageous for repeated experiments. The HIKVISION MV-CU120-10GC industrial 

camera was used to capture images of corn plants in this study. This camera has a resolution 

of 4024 × 3036, a maximum frame rate of 9.7 fps, and a pixel size of 1.85 μm × 1.85 μm. 

Images of maize plants were captured at regular intervals using a camera to record the 

growth process of maize at various stages, as shown in Table 1. Maize was planted for a 

total of 116 days, with 1000 pictures taken in each period, totaling 5000 pictures to 

construct the maize plant image dataset. The dataset was then divided into training and 

testing sets in a ratio of 0.8:0.2, with 4000 pictures in the training set and 1000 pictures in 

the testing set. The pictures in the training set were used to train the MobileNet model, 

while the pictures in the testing set were used to validate the training effectiveness of the 

MobileNet model. 

 

Table 1. Planting Status of Maize Plants was Recorded 

Period Planting Date Planting Days 

Seedling Stage From May 26th to June 20th 26 

Jointing Stage From June 21 to July 15 25 

Stamen Extraction Stage From July 16 to August 7 23 

Milk Stage From August 8 to August 27 20 

Full Ripe Stage 
From August 28 to 

September 18 
22 

  

 On-site images of maize plants at seedling, nodulation, and stamen extraction stages 

were taken to build a dataset with which to perform data preprocessing operations. The 

integrity and accuracy of the images were retained while serving the purpose of data 

enhancement of the original images to improve the generalization ability when training the 

model. Due to variations in shooting angles, the captured images exhibit different 

orientations, necessitating normalization of the obtained images. Converting the color 

images to grayscale aids in extracting structural details, better reflecting the target area of 

the maize plants compared to the original images. Finally, during the process of image 

equalization, adjustments are made to the pixel grayscale values to find the optimal 

threshold for maize plant images, thereby reducing issues such as overexposure or 

underexposure during image acquisition.  

 

 
 

Fig. 2. Image processing 
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 Through image equalization, the grayscale values of pixels are adjusted, and the 

cumulative distribution function of the original image is computed to find the optimal 

threshold for maize plant images. This further extends the dynamic range of pixel grayscale 

values, ensuring a more uniform distribution of grayscale level distribution values, 

effectively enhancing the contrast and clarity of maize plant images while minimizing 

issues arising from excessive brightness or darkness during image capture, as shown in Fig. 

2. 

 

Growth Period Modelling 
 The MobileNet network model consisted of an input layer, convolutional layer, 

pooling layer, fully connected layer, and an output layer (Pan 2022). The deep learning 

framework of PyTorch was written using Python language. The number of training rounds 

of the model was set through the input layer to read the matrix information in the collected 

images of maize plants. The convolution layer reduced the dimensionality of the images of 

maize plants. The pooling layer turned the 3 × 3 depth convolution into a 1 × 1 point-by-

point convolution. The local features of the maize plants in each period of growth were 

extracted through the convolution kernel to realize the classification of the images. Finally, 

the output layer calculated the error range of the number of iterations in each round to 

improve the growth period of maize plant recognition accuracy. The model results were 

obtained by the following equations, 
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where W is the width of the image, W1 is the width of the original image, W2 is the width 

of the image after the convolution layer processing, W3 is the width of the image after the 

convolution layer processing, H is the height of the image, H1 is the width of the original 

image, H2 is the width of the image after the convolution layer processing,  H3 is the height 

of the image after the pooling-layer processing, S is step, F is the size of the convolutional 

kernel, K is the number of convolutional nuclei, and P is the zero fill size.  
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Plant Height Prediction Modelling and Optimization 
 The Prophet model was based on the overall trend modelling of arrays with the 

advantages of fast training speed and high prediction accuracy to predict future trends 

(Huan et al. 2023). The results were the values obtained by adding the trend term, the 

period term, the holiday term, and the error term. The trend term described the linear or 

nonlinear changes. The period term described the periodic change rule. The holiday term 

handled the missing values of the data. The error term made the model prediction results 

closer to the actual situation. The predicted values of Prophet algorithm can be found 

through Eq. 7, 

)()()()()(y tthtstgt +++=       (7) 

where g(t) is the trend term, s(t) is the periodic term, h(t) is the holiday items, (t) is 

the error term, and t is time. 

 The logistic curve model is also known as the pear curve model.  It is a saturated 

growth model and its essence is to use the growth rate to reflect the rate of change. It has 

the advantages of good identification, high prediction accuracy, and strong extension 

capacity. It can be used to simulate the growth process of the crop growth indicators with 

the change of the number of days (Cai et al. 2020). The parameters of the logistic equation 

can be obtained from Eq. 8,  
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where M is the maximum value achievable in the current environment, and a and b are 

undetermined coefficients.  

 The Numpy library was invoked through Python to read the plant height 

measurements of maize plants at seedling, nodulation and stamen pulling stages. Daily 

seasonality trend was changed to establish the plant height prediction model and get the 

predicted values. The predicted values were substituted into the logistic model, and the 

parameters of the model were set (M, a, and b) to obtain the predicted values of the height 

of the maize plant and evaluate the performance of the model with the relative error as the 

evaluation index to complete the model optimization of the Prophet algorithm. 
 

Maize Plant Growth Control System 
 Based on the agronomic requirements outlined in "GB1353-2018 Corn Planting 

Techniques Regulations," the soil nutrient information collection module and the water-

fertilizer regulation module were determined, and the overall structural design of the corn 

plant growth control system was completed (GB 1353-2018). Soil nutrient information is 

mainly obtained through sensors and uploaded to the PLC. The collected data is displayed 

on the user interface of the touchscreen, as shown in Fig. 3, showing soil temperature, 

humidity, pH value, nitrogen, phosphorus, and potassium content of maize plants in the 

experimental field. Based on the collected data, the system evaluates the suitability of the 

soil environment and categorizes it into five levels: unsuitable, suitable, moderately 

suitable, and most suitable. If the assessment indicates unsuitability and the pH is less than 

6.5, the plant growth condition is considered as water deficiency; if pH > 8, the plant 

growth condition is considered as nutrient deficiency. Finally, based on the predicted maize 

plant growth and the assessed soil environment suitability, the system adjusts the ratio and 

amount of water and fertilizer sprayed. As shown in Fig. 4, the system testing was 

conducted according to the spacing and ridge spacing of maize planting in the field. During 
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system operation, water is pumped into the water injection tank, and the pressure gauge on 

the left measures the inlet pressure. The fertilizer tank sucks in fertilizer through the 

fertilizer inlet, the Wenchi fertilizer applicator mixes water and fertilizer, and the mixture 

is then injected into the experimental field. The pressure gauge on the right measures the 

outlet pressure, and the valve controls the quantity of fertilizer entering and exiting. Each 

part is connected by PVC pipes. 

 

 
 

Fig. 3. Soil nutrient information collection interface 

 
Fig. 4. Overall structural design of the system: 1. Image acquisition equipment; 2. Water and 
fertilizer control device; 3. Remote terminal; 4. Electric control box; 5. Soil sensor 

 

 The maize plant growth control system was divided into three parts: acquisition 

layer, decision-making layer, and management layer. The acquisition layer primarily 

utilizes sensors and cameras to gather information on soil nitrogen, phosphorus, potassium, 

temperature, humidity, pH levels, as well as images of maize plants. The decision-making 

layer assesses the current soil nutrient status, suitability, and the growth condition of maize 

plants based on the information gathered from the acquisition layer.. The management layer 

mainly carried out water and fertilizer regulation and control, and information management 

of the remote end through the information judged by the decision-making layer. 

Considering that the maize plants were planted in outdoor operation, as shown in Fig. 5, 
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the battery supplies power to the electric control cabinet. The soil status information was 

monitored through the soil integrated sensor. The pump carried out water and fertilizer 

regulation through the venturi fertilizer applicator. The WIFI hotspot connected the MCGS 

touch screen and the remote end, and through the debugging assistant, it realized the cloud 

login. The remote end built a model through Python to identify the growth period of the 

maize plants and process the results of growth prediction and display the current operating 

status of the equipment. 
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power supply
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Information 
interaction
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water pump

Milpa Growth 
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Fig. 5. Overall functional design of the system 

 
Methods of Regulation of the System 
 The experimental area was planted with maize, and the camera captured the growth 

characteristics of maize at different periods. A MobileNet model was built through Python 

to identify the growth period and was combined with the measured plant height data in the 

field to judge the growth of the maize plant by the day-by-day growth rate of the plant 

height. It predicted the trend of the plant height through the optimized model. Maize plant 

growth period identification and growth prediction were used to better target the critical 

period of maize for regulation.  

 As shown in Fig. 6, the water-fertilizer concentration was jointly determined by the 

amount of fertilizer injected into the pipe and the amount of incoming water in the pipe. It 

was assumed that during the water-fertilizer mixing process, there is always a flow of water 

in the pipe and that the concentration of fertilizer is uniformly distributed in all parts of the 

pipe. Since the volume of the pipe serves as a constant, the pipe can be intercepted and 

analysed in terms of the unit volume of the pipe. 

 

Mixed channel 
of water and 

fertilizer

Qin(t)

Qpour(t)·θpour(t)

Qout(t)·θout(t)

VG·CG(t)
 

 

Fig. 6. Water and fertilizer mixed regulation method 
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 According to the conservation of solution volume, the amount of water input into 

the pipeline plus the amount of fertilizer solution was equal to the amount of mixed solution 

in the pipeline plus the amount of solution output from the pipeline, which can be obtained 

from Eq. 9, 

dttQVdttQtQ G +=+  )(]）[ outinpour （）（
 

(9) 

where Qin(t) is water intake per unit of time (m3/h).  

 Considering the water-fertilizer mixing process, there existed a certain proportional 

relationship between the concentration of fertilizer injected and the concentration of 

fertilizer out of the pipe. The concentration of fertilizer injected can be configured in 

advance, and the amount of fertilizer injected was derived from Eq. 10, 
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 General crop fertilizer spraying concentration requirements did not exceed 0.3%, 

of which urea was between 0.4 to 0.6%. The sensor collects soil nutrient data, and when 

the collected monitoring data is lower than the demand, the difference between the two is 

calculated as the amount of fertilizer applied to the crop (Chen 2021). In this case, the 

specific calculation of fertilizer application time was obtained from Eq. 11 and 12,  
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where Tspread is fertilization time (h), Twater is water supplying time (h), Qfertilizer is fertilizer 

demand (m3/h), Qwater is water supply demand (m3/h), and Qmax is maximum flow (m3/h).   

 
 

RESULTS 
 
Analysis of the Effect of Growth Period Identification 
 As shown in Fig. 7, the preprocessed image was used as input to the MobileNet 

model. The number of training rounds of the model was 10 rounds. The error was corrected 

using the Adam optimizer. The error rate of the model in the training set of maize plant 

growth stage recognition decreased with the number of training rounds, and the maize plant 

growth stage recognition model was verified by the test set to verify the effectiveness of 

the model.  

 The results showed that the maize plant was in the seedling stage, the node pulling 

stage, and the male-pulling stage. The accuracies of maize plants at seedling, node pulling, 

staminate pulling, milk ripening and maturity stage were 98%, 96%, 92%, 85%, 97%, 

respectively. 
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Fig. 7. Growth-term recognition of maize plants 

 

Analysis of Plant Height Prediction Model Results 

 Based on the measured data of maize plant height during the seedling stage, jointing 

stage, and tasseling stage, a maize plant height prediction model was established using the 

training set, consisting of a Prophet model and an optimized Prophet model coupled with 

the Logistic model. The predictive performance of the models was verified using the test 

set. To compare and analyze the actual prediction effect of each model, the relative error 

was used as the evaluation index, and the smaller values indicated that the prediction value 

was closer to the value of the test set (Liang et al. 2023). The error of the model can be 

obtained from Eq. 13, 

 
%100/error −= iii yyf

       (13)
 

where fi is predicted value and yi is trial value. 

 

 
Fig. 8. Prediction of plant height model in maize seedling images  
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 The parameters of Prophet model were set, the growth trend was set as linear, and 

the seasonal pattern of data series was set as additive as well as the daily trend change being 

automatically identified. The values of model parameters M, a, and b of the optimized 

Prophet model were 14.05, -0.96, and -0.002, respectively, and the effect of predicting the 

height of seedling maize plants is shown in Fig. 8. 

 As shown in Fig. 9, compared to the seedling stage, the growth rate of maize plant 

height was more obvious at the nodulation stage, and the Prophet model parameters were 

set to keep the same with the seedling stage parameters. The Prophet model was optimized 

with the value of M taken as 87.75, the value of a taken as -0.94, and the value of b taken 

as -0.005. 

 

 
Fig. 9. Prediction of plant height model in maize jointing phase images 

 

 As shown in Fig. 10, compared with the nodulation stage, the plant height growth 

rate of maize plants in the period of staminate extraction was relatively slow, and the 

predicted values of Prophet model were substituted into the logistic model. M had a value 

of 289, a had value of -0.90, and b had a value of 0.001 to obtain the predicted values of 

plant height. 

 Under the PyCharm compilation environment, the plant height prediction models 

for seedling stage, nodulation stage, and staminate extraction stage were established in 

Python. The planting date of seedling stage was from May 26 to June 20, with a total of 26 

days, and the mean value of plant height was 233 mm. The planting date of nodulation 

stage was from June 21 to July 15, with a total of 25 days, and the mean value of plant 

height was 1,194 mm. The planting date of nodulation stage was from July 16 to August 7, 

with a total of 23 days, and the mean value of plant height was 2,825 mm. The planting 

date of the stigmatic stage was from July 16 to August 7, with a total of 23 days, and the 

average value of plant height was 2825 mm. The relative errors of the Prophet model's 

predicted values were 0.85%, 2.11%, and 0.79%, while those of the Prophet optimization 

model were 0.76%, 0.47%, and 0.71%, which were reduced by 0.09%, 1.0%, 1.0%, and 

1.0%, respectively, compared with those of the Prophet model. reduced by 0.09%, 1.64% 

as well as 0.08%. 
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Fig. 10. Prediction of plant height model in maize maturation period Images 

  

Table 2. Evaluation of the Plant-Height Prediction Model 

Period Of Growth 
Prophet Model Fractional 

Error 
Prophet Optimize the Model 

Fractional Error 

Seedling Stage 0.85 0.76 

Shooting Period 2.11 0.47 

Tasseling Stage 0.79 0.71 

 

 Using McgsPro configuration software, the configuration interface design of soil 

nutrient information acquisition was carried out. To obtain PLC data, in the equipment 

window, the driver of Delta PLC was set. Soil temperature, humidity value, pH value and 

nitrogen, phosphorus and potassium content of maize plants in the experimental field were 

read through the user window. The suitability of the soil environment was judged by 

detecting the pH value of the soil, which was divided into five grades of unsuitable, suitable, 

sub-suitable and the most suitable. If the judgment result was unsuitable and the pH was 

less than 6.5, the plant growth condition was water shortage, and if the pH was more than 

8, the plant growth condition was fertilizer shortage. If pH > 8, the plant growth condition 

was fertilizer deficiency. Water and fertilizer control management was mainly divided into 

manual mode and automatic mode. The user can switch to choose and control the start and 

stop of the pump. The system operation indicator showed the current system operation 

status. Remote end acquisition enabled cloud-based off-site login to view the current 

operating status of the device. The configuration interface script was designed to display 

the predicted value of plant height by determining that the maize plant was in a certain 

lifetime and combining it with the number of days of planting (Fig. 11) by substituting the 

formula of the prediction model for the plant height of the maize plant into the MCGS 

screen. 
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Fig. 11. Commissioning of the maize growth control system 
 

System Fertilization Performance Analysis 
 Measurement of the system's fertilizer absorption performance indicators were 

three types of fertilizer absorption, fertilizer concentration, and fertilizer absorption 

efficiency (Zhang and Li 2019). The fertilizer absorption M was used to reflect fertilizer 

quantity. The fertilizer concentration θ was used to reflect the performance of fertilizer 

suction good or bad, and the fertilizer efficiency η was used to evaluate the comprehensive 

fertilizer suction performance of fertilizer suction. The higher the efficiency was, the more 

significant the comprehensive fertilizer suction performance on behalf of the Venturi 

Fertilizer Apparatus. As shown in Fig. 12, when the inlet pressure of the venturi fertilizer 

applicator varied within the range of 0.01 to 0.1 MPa, the inlet flow rate ratio increased 

from 5.8 to 12.1% with the continuous increase of the inlet pressure.  

 

 
Fig. 12. The relationship between the import flow ratio and the import pressure 
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 The test results showed that with the increase of the inlet pressure, it reached the 

peak at 0.06 MPa, and the working performance reached the optimal state. The value of 

the inlet flow rate ratio tended to be in the stable state, and it did not change with the inlet 

pressure.  

 As shown in Fig. 13, when the inlet pressure of the venturi fertilizer applicator 

varied within the range of 0.01 to 0.1 MPa, the trend of the fertilizer concentration was first 

fast and then slow, and the fertilizer concentration increased from 5.7% to 10.5%. The test 

results showed that with the increase of the inlet pressure, the upward trend was the largest 

in 0.04 MPa, at which time the concentration of fertilizer was 9.9%, and the value of the 

fertilizer concentration tended to be in the stable state and did not change with the inlet 

pressure changes. 

 
Fig. 13. Relationship between the fertilizer fluid concentration and the inlet pressure 

 
Fig. 14. Relationship between fertilizer efficiency and inlet pressure 
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 As shown in Fig. 14, when the inlet pressure of the venturi fertilizer applicator 

varied within the range of 0.01 to 0.1 MPa, the fertilizer absorption efficiency of the venturi 

fertilizer applicator decreased from 2.8 to 0.6%. The results showed that when the outlet 

of the venturi fertilizer applicator was in the state of self-flowing, and the inlet pressure 

was 0.05 MPa, the efficiency of the fertilizer absorption was 1.1%, which can satisfy the 

actual demand. 

 
 

CONCLUSIONS 
 
1. The maize variety Demeria D3 was the research object. Python language was used to 

write the deep learning framework of PyTorch. The recognition method of the growth 

period of maize plants was proposed based on the MobileNet model. The validity of 

the model was verified through the test set. Results showed that the maize plants in the 

seedling stage, the nodulation stage, the staminate stage, the milky ripening stage, and 

the completion stage were 98%, 96%, 92%, 85%, and 97%, respectively. 

2. Based on the plant height measurements of maize plants in the experimental area at the 

seedling, nodulation, and stamen pulling stages, a comparative analysis of the 

prediction models before and after optimization was conducted by applying the Prophet 

model and the optimized Prophet model. Results showed that the predictive model of 

maize plant height was applicable and that the relative errors of the predicted values of 

the Prophet model were 0.85%, 2.11%, and 0.79%. The relative errors of Prophet 

optimization model were 0.76%, 0.47% and 0.71%. Compared to the Prophet model, 

the optimized errors were reduced by 0.09%, 1.64% and 0.08%. 
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