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This research introduces an innovative methodology for evaluating and 
predicting soundboard quality in the intricate craftsmanship of sape 
instruments. Despite the sape’s profound cultural significance, the process 
of selecting soundboard wood has been inadequately explored, resulting 
in uncertainties within the crafting community. Addressing this research 
gap, this study integrates advanced machine learning techniques and 
devises a specialized Graphical User Interface (GUI) tailored for sape 
makers. The methodology encompasses a thorough acoustic analysis of 
three distinct hardwoods—adau, merbau, and tapang—employing 
machine learning classification through Support Vector Machine with a 
Gaussian kernel. The study culminates in the development of a user-
friendly GUI for soundboard quality assessment. Results underscore the 
model’s proficiency for achieving an optimized accuracy of 87.8% in 
classifying sape audio samples. The MATLAB App Designer-based GUI 
streamlines the evaluation process, offering a practical and accessible tool 
for craftsmen. This integrated approach, harmonizing traditional 
craftsmanship with cutting-edge technology, holds the potential to 
revolutionize sape instrument manufacturing, ensuring the preservation 
and progressive evolution of this rich cultural heritage. 

 

DOI: 10.15376/biores.19.3.5523-5534 

 

Keywords: Sape; Soundboard quality; Machine learning; Traditional musical instrument; Graphical user 

interface 

 
Contact information: a: Department of Mechanical Engineering, University of Malaya, 50603, Kuala 

Lumpur, Malaysia; b: School of Foundation Studies, University of Technology Sarawak, No. 1, Jalan 

Universiti, 96000, Sibu, Sarawak, Malaysia; *Corresponding author: rahizar@um.edu.my 
 
 

INTRODUCTION 
 

The sape, a revered symbol of cultural heritage within Borneo’s indigenous 

communities, holds profound significance owing to its distinctive acoustic properties and 

exquisite craftsmanship (Lim et al. 2020). This single-piece wooden instrument, evocative 

of a guitar and illustrated in Fig. 1, has undergone an evolutionary journey from its 

historical roots to emerge as a powerful emblem of cultural identity. Despite its cultural 

importance and unique sonic attributes, the sape remains relatively understudied, 

particularly in the context of soundboard wood selection when compared to more 

mainstream instruments such as guitars or violins. 

Recent research emphasizes the critical role of assessing musical instrument quality 

in the context of music production and performance, influencing the perceptions of 

musicians and audiences alike (Hu 2022). Various methods and technologies, ranging from 

smart microphone array sensors (Li et al. 2019) to Multi-Criteria Decision-Making models, 

such as Quality Function Deployment (Chong and Lalla 2020), offer diverse approaches 
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applicable to acoustic, digital, and traditional instruments. Together, these methods 

contribute to a comprehensive evaluation of musical instrument quality. 

 

 

Fig. 1. Soundboard sample and the actual sape 

 

While various methodologies and technologies have been employed to assess 

musical instrument quality across a spectrum of instruments, including acoustic, digital, 

and traditional ones, a notable gap persists within the traditional crafting process of sape 

instruments. This gap is characterized by the absence of clear guidelines for selecting 

soundboard wood, despite the esteemed reputation of certain woods like Adau (Lim et al. 

2020). This void, coupled with subjective evaluations and uncertainties in wood selection, 

underscores the necessity for a more systematic and structured approach. 

Despite an extensive body of research delving into the categorization of musical 

compositions, exploration of evaluation criteria using deep learning networks, and the 

significance of reverberation room methods in measuring sound power (Politis et al. 2015; 

Jin et al. 2018; Qiu et al. 2021; Jin et al. 2021), the traditional crafting process of sape 

instruments lacks clear guidelines for selecting soundboard wood, posing significant 

challenges. This research gap, accompanied by subjective evaluations and uncertainties in 

wood selection, emphasizes the need for a more structured approach. 

In response to this challenge, this study endeavors to bridge the existing gap by 

integrating advanced machine learning techniques and developing a specialized Graphical 

User Interface (GUI) tailored automation specifically for sape makers. The primary 

objectives encompass the implementation of machine learning algorithms to facilitate 

impartial soundboard evaluation and the design of a user-friendly GUI aimed at 

streamlining the sound quality evaluation process. The study involved the generation of 

sound data through a flexural vibration test, qualitative assessment by seasoned sape 

experts, and the creation of an intuitive GUI dedicated to soundboard quality evaluation. 

 
 
MATERIALS AND METHODS 
 

Wood Sample Preparation 
This study focuses on investigating the acoustic properties of three distinct 

hardwoods—adau (Elmerrillia mollis), merbau (Intsia palembanica), and tapang 

(Koompassia excelsa). These specific woods were chosen based on recommendations from 

local sape artisans, ensuring a connection to the traditional craftsmanship of sape 

instruments. Moreover, the availability of wood samples further facilitated their inclusion 
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in the study. Each of these woods represents a distinct weight category: Adau, with a 

density of 300 to 705 kg/m³, is classified as a light hardwood; tapang, with a density of 800 

to 865 kg/m³, is considered a medium hardwood; and merbau, with a density of 515 to 

1040 kg/m³, is categorized as a heavy hardwood. This intentional selection allows for a 

comprehensive exploration of acoustic properties across a spectrum of wood types 

commonly used in sape instrument crafting. 

To maintain a nuanced understanding of the acoustic nuances inherent to sape 

instruments, the focus of the research is centered on the soundboard. This emphasis stems 

from the need to streamline the experimental setup and exert control over variables. 

Utilizing the complete instrument would introduce complexities due to variations in size, 

thickness, and other factors. Therefore, rectangular-shaped soundboard samples were 

chosen as optimal representations of the sape’s soundboard. Precision-fabricated through 

a Computer Numerical Control (CNC) machine, these samples mirror the typical 

dimensions of sape instruments prevalent in the market. The dimensions of the soundboard 

samples, set at 1.6 × 16.5 × 70 cm³ (tangential × radial × longitudinal), adhere to established 

market standards, as depicted in Fig. 1. Ensuring consistency and reliability across the 

study, a meticulous approach was taken in preparing three samples for each wood type, 

resulting in a total of nine samples. These samples were stored in a controlled laboratory 

environment, maintaining a relative humidity of 60 ± 2% and a temperature of 30 ± 1 °C.  

 

Data Collection 
 In conducting the flexural vibration test to assess soundboard quality, this study 

adopted a method commonly employed in prior works focused on determining the sound 

quality of musical instruments (Bremaud 2012; Yang et al. 2017). This methodological 

choice is grounded in its efficacy and relevance to the specific nuances of sape instruments. 

The flexural vibration test is particularly well-suited for this study as it provides a robust 

means of capturing the acoustic properties inherent in the selected wood types.  

The experimental setup involved a free-free flexural vibration method, utilizing a 

pendulum mechanism as shown in Fig. 2. Wood samples, representing different weight 

categories, were suspended on an aluminum profile frame at their nodal positions. A 

consistent and controlled striking force was applied to the samples using a pendulum 

weighing 13.9 g with a 15 mm diameter. This setup ensured uniform knocking on the wood 

samples, positioned strategically 2 cm from the edge.  
 

  
Fig. 2. Schematic diagram of the experimental set-up 
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To capture and analyze the resulting sounds comprehensively, a 01 dB Solo Sound 

Level Meter (SLM) was employed, and the acquired data were processed using dbBati32 

software, generating WAV format audio files. The meticulous gathering of 360 sound 

recordings, with 40 repetitions for each wood sample, allowed for a thorough exploration 

of the acoustic nuances across the weight categories. 

 

Sound Quality Features 
 The assessment of sound quality relies on a set of acoustic features to 

comprehensively characterize and evaluate audio signals. These features include dynamic 

root mean square (rms), dynamic attack time, decay time, spectral flatness, spectral 

roughness, timbre low energy, and timbre spectral flux (Alías et al. 2016). Dynamic rms 

quantifies the average power of a sound signal across varying amplitudes, capturing energy 

variations over time. Additionally, dynamic attack time and decay time delineate the onset 

and duration of sound, reflecting its rapidity in reaching peak amplitude and the duration 

taken to diminish from its peak level, respectively (Xiang et al. 2005). Spectral flatness 

and spectral roughness provide insights into the uniformity and irregularities in spectral 

components, differentiating between harmonic and noise-like qualities and assessing 

perceived roughness in spectral content. Timbre low energy and timbre spectral flux 

identify the presence of low-frequency components and track changes in spectral content 

over time, reflecting shifts in timbral color or tonal quality (Alías et al. 2016). 

The amalgamation of these seven sound quality features into machine learning 

classification models enables comprehensive analysis and differentiation of audio signals 

based on their dynamic, temporal, spectral, and timbral characteristics. This integration 

facilitates the development of robust classification systems capable of precise recognition 

and categorization of audio signals, enhancing the understanding of their perceptual 

attributes with greater granularity (Weidman et al. 2018). 

 

Sape Experts Evaluation 
 The assessment methodology employed by five experienced Sarawak sape makers 

to evaluate the quality of 360 audio samples reflects a comprehensive approach rooted in 

their extensive expertise in sape craftsmanship. Utilizing a 5-point Likert scale for rating 

audio quality, albeit ordinal, served as a standardized framework for evaluating 

perceptions. To ensure consistency in ratings, qualitative descriptions were utilized 

alongside the Likert scale, despite the absence of “distance” information between 

categories. 

The demographic profile of these five candidates, highlighting their experience and 

qualifications, is outlined in Table 1. Notably, the analysis revealed that most of the sample 

populations lacked formal music training, aligning with the traditional mode of 

transmitting sape craftsmanship within the Borneo tribe. Importantly, this absence of 

formal training did not hinder the sape makers professionalism, underscoring the 

significance of their practical knowledge in sape making. Their expertise was chiefly 

determined by the number of years devoted to crafting sape instruments, consistent with 

the community’s traditional approach. 

Nonetheless, limitations should be considered. The inherent subjectivity in the 

rating process, combined with the specialized nature of the sape community, could 

introduce biases in evaluation. Despite these potential biases, as all candidates are 

recognized as sape experts within their community, their assessments offer valuable 

insights into the perceived audio quality of the samples. Moreover, the restriction of 
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conducting the listening test once due to workload constraints may limit the classical test 

theory-based reliability assessment. Nevertheless, exploring inter-rater reliability through 

non-parametric statistical tests could provide robust insights into the consistency among 

expert assessments. 

 
Table 1. Demographic Information of Candidates 

Candidate A B C D E 

Age 32 28 42 29 71 

Gender M M M M M 

Ethnicity Kenyah Iban French Iban Kenyah 

Formal musical training 1 year None 2 years None None 

Years of experience 9 8 7 7 30+ 

 

Support Vector Machine in Machine Learning 
 Support Vector Machine (SVM) is a widely embraced classifier rooted in the 

statistical learning theory developed by Vapnik (1998). Its core principle involves seeking 

an optimal linear hyperplane to minimize generalization errors when classifying unknown 

test samples. The objective is to create a linear hyperplane that maximizes the margin, 

representing the separation between different categories. This margin serves as a decisive 

boundary, effectively categorizing new test samples based on their position relative to this 

hyperplane. 

In instances where a linear hyperplane falls short in segregating data in a 2-

dimensional space, SVM leverages the “kernel trick,” transforming the input space to 

overcome limitations and enabling effective segregation in higher dimensions. In this 

research, SVM is proposed as a robust method for classifying sape audio samples based on 

evaluations from experienced sape makers. In a binary classification scenario, where two 

distinct quality categories exist (e.g., “Good” and “Poor” audio samples), SVM endeavors 

to find the hyperplane that maximizes the margin between the nearest data points of each 

class, often referred to as support vectors. This hyperplane serves as the decision boundary, 

facilitating the classification of new, unseen data points. 

To implement SVM in this study, a framework incorporating a Gaussian kernel 

function, as expressed in Eq. 1, was adopted:  

𝐾(𝑥, 𝑥′) = exp (−
‖𝑥−𝑥′‖

2

2𝜎2
)       (1) 

The Gaussian kernel assesses the similarity between data points without explicitly 

mapping them into higher dimensions. It computes similarity based on the Euclidean 

distance between points, with σ representing the kernel’s width parameter. A box constraint 

value of one was selected within the SVM model to regulate its flexibility and prevent 

overfitting. This parameter, C, balances the trade-off between maximizing the margin and 

minimizing classification errors. The classification of quality was conducted in MATLAB 

2022b, utilizing an AMD Ryzen 7 2700U CPU with 16 GB RAM. The dataset underwent 

a 70/30 train-test split, following methodology by Vabalas et al. (2019) to assess the SVM 

model’s performance. Additionally, to evaluate the predictive accuracy of the model with 

limited data, a k-Fold Cross Validation approach with k = 5, advocated by Elmaz et al. 

(2020), was employed. 
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Graphical User Interface (GUI) 
The research methodology in this study combines various computational and 

machine learning techniques to evaluate and classify soundboard quality in sape 

instruments. Central to this methodology was the development and implementation of a 

GUI using MATLAB App Designer (MathWorks, MATLAB version 2023b, Natick, MA, 

USA). The GUI, crafted within the MATLAB environment, served as the primary tool for 

feature extraction and classification of soundboard quality. Leveraging MATLAB’s 

extensive signal processing capabilities, the GUI facilitated the extraction of seven 

fundamental acoustic features crucial for soundboard quality assessment, including 

dynamic RMS, dynamic attack time, decay time, spectral flatness, spectral roughness, 

timbre low energy, and timbre spectral flux. 

Furthermore, the GUI seamlessly integrated a pre-trained SVM model. This SVM 

model, trained on a diverse and comprehensive dataset of various soundboard qualities, 

utilized the extracted acoustic features as inputs for classification. The model underwent 

optimization to discern and categorize soundboard qualities based on the uploaded sound 

files. Upon uploading sound files representative of sape soundboard samples, the GUI 

executed algorithms designed to systematically extract the essential acoustic features, 

capturing intricate nuances relevant to sape soundboard quality assessment. 

The user-friendly interface of the GUI ensured a straightforward process for users 

to upload sound files. Upon processing the uploaded file, the GUI provided immediate 

classification results indicating the predicted quality of the soundboard. This seamless 

interaction facilitated efficient assessment and classification of sape soundboard qualities 

based on extracted acoustic features, enhancing the research’s ability to evaluate 

soundboard quality accurately and expediently. 

 

 

RESULTS AND DISCUSSION 
 

 The collected dataset of 360 sound samples underwent initial processing steps 

involving volume normalization and noise reduction. Following this preprocessing, 

experienced sape makers assessed the sound samples, providing ratings using a 5-point 

Likert scale. Subsequently, the features inherent in these sound samples were extracted and 

imported into MATLAB for machine learning purposes. Finally, a GUI was then developed 

to facilitate streamlined user interaction and seamless application of the machine learning 

model. 

 

Acoustic Feature Extraction and Experts’ Evaluation 
 In preparation for classification, seven key acoustic features were extracted using 

the MIRToolbox. A correlation mapping analysis confirmed minimal multicollinearity 

among these features, ensuring their independence for subsequent analyses. The average 

values of the features are shown in Table 2. Five sets of quality rating scores were collected 

and shown in Table 3, revealing a conservative tendency in assigning the lowest score, 

with no wood samples rated as “very poor” quality. Candidate C consistently provided 

slightly lower ratings on average, indicating varying interpretations of sound quality.  

The correlation analysis between the acoustic features and the evaluations by the 

raters, presented in Table 4, shows varying degrees of correlation. Most raters exhibited 

significant correlations with one or more features, suggesting the relevance of these 

features in their evaluation process. For example, candidate B showed moderate negative 
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correlations with spectral flatness and spectral flux, indicating that as these features 

increased, the quality rating decreased. Conversely, candidate E demonstrated a weak 

positive correlation with RMS, highlighting their consideration of this feature in assessing 

soundboard quality. These findings underscore the subjective nature of the evaluations and 

the importance of considering multiple expert opinions to capture a comprehensive 

understanding of sound quality. 

Table 2. Average Features Values of the Wood Samples 

Sample RMS 
Attack 
Time 

Decay 
Time 

Spectral 
Flatness 

Spectral 
Roughness 

Low 
Energy 

Spectral 
Flux 

A1 0.2544 -0.00961 0.5307 -1.2167 -0.0520 0.3686 -1.0319

A2 0.5179 0.15424 0.6398 -1.0631 -0.8931 0.2286 -1.0276

A3 0.0178 0.48193 0.5367 -1.1454 0.0913 0.6648 -1.0559

T1 -0.3473 0.21259 -0.1605 0.8188 -0.1641 -0.1596 0.2435 

T2 -0.7177 -0.04103 -0.2242 1.0194 -1.0275 0.2406 -0.0227

T3 0.7172 -0.23967 0.0166 0.4816 0.3552 -1.0440 1.0547 

M1 0.7710 -0.22396 -0.4244 0.0433 0.0911 -0.7639 1.2517 

M2 -0.7037 0.12618 -0.4342 0.6314 -0.1348 0.2846 0.2154 

M3 -0.5130 -0.48931 -0.4867 0.4501 1.7172 0.1502 0.3732 

Table 3. Cross Table of Rating across 9 Wood Samples 

Score 
Adau 1 Adau 2 Adau 3 

A B C D E A B C D E A B C D E 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 8 10 0 0 0 15 13 0 0 0 9 19 0 

3 0 11 17 18 20 0 20 17 18 9 1 12 20 14 10 

4 33 25 14 10 10 2 20 8 8 31 25 21 9 7 30 

5 7 4 1 2 10 38 0 0 1 0 14 7 2 0 0 

Score 
Tapang 1 Tapang 2 Tapang 3 

A B C D E A B C D E A B C D E 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 2 2 0 0 7 35 8 0 0 19 22 3 0 

3 38 30 37 31 0 0 33 5 31 40 25 20 18 21 0 

4 2 10 1 7 0 21 0 0 1 0 10 1 0 14 30 

5 0 0 0 0 40 19 0 0 0 0 5 0 0 2 10 

Score 
Merbau 1 Merbau 2 Merbau 3 

A B C D E A B C D E A B C D E 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 18 3 24 0 1 14 37 0 0 39 5 20 0 

3 0 35 20 28 16 1 39 23 3 9 0 1 30 20 20 

4 36 5 1 9 0 35 0 3 0 31 27 0 5 0 20 

5 4 0 0 0 0 4 0 0 0 0 13 0 0 0 0 

Table 4. Correlation between Features and the Evaluations by the Raters 

Rater RMS 
Attack 
Time 

Decay 
Time 

Spectral 
Flatness 

Spectral 
Roughness 

Low 
Energy 

Spectral 
Flux 

A 0.043 0.157** 0.212** -0.214** -0.291** 0.140** -0.346**

B 0.102 0.166** 0.214** -0.524** -0.241** 0.248** -0.472**

C 0.292** 0.025 0.162** -0.341** -0.082 -0.058 -0.063

D 0.092 -0.070 0.025 -0.121* 0.253** -0.028 0.029 

E 0.389** -0.070 -0.025 -0.263** 0.117* -0.171** 0.236** 

** Correlation is significant at the 0.01 level (2-tailed) 
* Correlation is significant at the 0.05 level (2-tailed)
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To draw meaningful conclusions, statistical tests were conducted on the ordinal 

data. Non-parametric tests, including Kruskal-Wallis H test, Krippendorff’ α, and 

Kendall’s tau-b, were used to compare rating scores. The Kruskal-Wallis H test revealed 

no consistent significant similarities between rating score combinations, suggesting 

personal preferences contribute to statistically significant variations in sape wood quality 

ratings. Krippendorff’s α and Kendall’s tau-b also showed disagreements and lack of 

significant correlations, emphasizing a notable lack of inter-rater reliability. 

In summary, all three non-parametric statistical tests consistently revealed 

statistically significant differences among the sets of rating scores, indicating a lack of 

inter-rater reliability. Candidate E, Mr. Mathew Ngau, emerges as the preferred source for 

rating scores due to his extensive experience exceeding 30 years, his prestigious position 

as a National Living Heritage, and his role as a mentor, adding credibility to his evaluations. 

Additionally, from the non-parametric tests, Mr. Mathew demonstrated consistency in 

rating similar wood samples, underscoring his expertise in identifying soundboard quality. 

His reliability and proficiency further solidify his selection as the primary evaluator in this 

study. 

SVM Machine Learning 
The features dataset was combined with Mr. Mathew's rating scores for 

classification using SVM. Accuracy, along with the confusion matrix, was examined to 

detect any bias in the model's decisions. A frequency plot of Mr. Mathew’s ratings 

indicated class imbalance, raising concerns about potential biases. 

To address this imbalance, the Synthetic Minority Oversampling Technique 

(SMOTE) was employed to generate synthetic samples for underrepresented classes (Ishaq 

et al. 2021). This expanded the dataset to 604 observations without introducing identical 

duplicates, mitigating the risk of overfitting associated with random oversampling. The 

classification results from the SVM model using the normalized dataset are shown in Table 

5. The Gaussian Kernel SVM model achieved a validation accuracy of 90.3% and sustained

an accuracy of 87.8% on unseen data, demonstrating its strong generalization capability.

The dataset was normalized to values between 0 and 1 before applying machine learning,

as SVM relies on Euclidean distance.

Assessing misclassifications or errors made by the model, referred to as the ‘Total 

Cost’, revealed promising outcomes. The reduction in total cost from the validation phase 

(41) to the testing phase (22) following the optimization of the Gaussian kernel SVM

indicates improved model performance on unseen data. Through careful fine-tuning of key

parameters, the model demonstrated enhanced generalization, effectively capturing

underlying patterns in sape audio samples.

Table 5. Accuracies of Gaussian Kernel SVM Model 

Model Type Category 
Validation Test 

Accuracy % Total Cost Accuracy % Total Cost 

Gaussian Kernel SVM 90.30 41 87.80 22 

The adjusted box constraint level (445.7) played a crucial role in achieving a 

balanced trade-off between maximizing the margin and minimizing misclassifications. The 

optimization of the kernel scale parameter (0.64) also contributed to creating an optimized 

decision boundary, effectively separating different classes within the sape audio samples. 
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The optimization process addressed concerns related to overfitting, ensuring the model’s 

complexity was well-suited to the characteristics of the sape audio data. 

In summary, the reduction in total cost underscores the effectiveness of the 

optimized Gaussian kernel SVM in accurately classifying sape audio sample quality, 

demonstrating improved generalization and robustness on unseen data. Figure 3 displays 

the confusion matrix of the SVM model, revealing effective predictions for classes 2 and 

5 but challenges with classes 3 and 4. The satisfactory accuracy demonstrated by the 

Gaussian Kernel SVM model reflects its capability to predict the soundboard quality of the 

sape instrument. This model holds promise as a reliable tool for evaluating and predicting 

soundboard quality within sape instrument crafting, contributing to the enhancement of 

traditional instrument craftsmanship. 

Fig. 3. Normalized confusion matrix of Gaussian Kernel SVM model against dataset 

Graphical User Interface 
The GUI, developed using MATLAB's App Designer, prominently features the 

utilization of the trained Gaussian Kernel SVM model as the core classification tool. This 

model serves as the underlying engine for soundboard quality prediction within the sape 

instrument manufacturing process. The GUI is designed to offer a seamless experience to 

potential users, providing an intuitive platform to upload their unique sound files as shown 

in Fig. 4. Empowered by an ‘Upload Sound File’ button, users can upload their sound files 

directly onto the interface. Upon selection, the GUI promptly displays essential details, 

such as the file location and name, ensuring transparency and easy reference throughout 

the process. 

Integral to the interface is a ‘Prediction’ button that, when activated, triggers the 

Gaussian Kernel SVM model to perform real-time quality classification of the uploaded 
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sound file. Subsequently, the predicted result is exhibited in a dedicated box within the 

interface, providing immediate feedback on the soundboard quality. This functionality 

empowers users involved in sape instrument manufacturing by enabling swift and informed 

decision-making based on the model’s predictions. 

Furthermore, GUI is enriched with quality guidelines, serving as a reference point 

for users. This guideline encompasses criteria and information utilized by the Gaussian 

Kernel SVM model during the classification process. Through integrating the trained 

model and user-friendly functionalities, this GUI streamlines the soundboard quality 

assessment during the sape manufacturing process, offering an accessible and efficient tool 

for manufacturers and craftsmen. 

Fig. 4. GUI for soundboard quality classification by MATLAB App Designer 

CONCLUSIONS 

This study presents an innovative approach to assessing and predicting soundboard 

quality in sape instrument crafting by combining acoustic analysis and machine learning 

techniques.  

1. The research addresses the understudied aspect of selecting soundboard wood for

sape instruments, offering a structured methodology. Utilizing three distinct

hardwoods (adau, merbau, and tapang) representing different weight categories, the

study employs a flexural vibration test for sound sample collection.

2. The acoustic features extracted are then analyzed using a Gaussian Kernel SVM

model. The model, validated with expert ratings, demonstrates a notable accuracy

of 87.8%, showcasing its potential as a reliable tool for sape instrument

manufacturing.

3. The study not only contributes to the preservation and advancement of the sape

instrument's heritage but also bridges traditional craftsmanship with advanced

technology through the development of a user-friendly GUI.
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Future research could explore additional machine learning techniques and extend 

the methodology to other traditional instruments, promising continued innovation in 

instrument craftsmanship and the preservation of diverse musical heritages. 
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