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Pretreated carboxymethylated nanofibrillated cellulose (CM-NFC) was 
tested as a strength enhancer for specialty paper, such as banknotes 
made from cotton linter mixed pulp (CLMP). The pretreatment agent was 
cationic poly(acrylamide) (C-PAM). The CM-CMF prototype was supplied 
by a Korean manufacturer. Laboratory tests and pilot trials were performed 
to evaluate the strength enhancement of banknotes incorporated with 
surface-modified CM-NFC and determine the process problems 
encountered in a pilot paper machine. The CM-NFC was surface modified 
with 0.1% C-PAM without any agglomerates. The prepared laboratory 
handsheets had high paper strength, which was attributed to the higher 
nanofibril content of surface-modified CM-NFC compared with that of 
unmodified CM-NFC. Pilot trials showed that the incorporation of 3% 
surface-modified CM-NFC was highly effective in promoting the strength 
of banknote without low retention and drainability on the wet-end part of 
the pilot paper machine. Therefore, surface-modified CM-NFC at a 
controlled dosage could be used as a strength enhancer for specialty 
paper without incurring serious problems in a paper mill. 
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INTRODUCTION  
 

 Many high-value-added specialty papers have been manufactured, such banknotes, 

personal identity documents, checks, and share certificates (Bobalek et al. 2016; Hubbe 

2020). Specialty papers often require high quality because they are utilized in diverse 

environments. Among the types of specialty papers, banknotes require high durability and 

strength because they are usually exposed to harsh environments (Kyrychok et al. 2014; 

Hubbe 2020; Wang and Sun 2020; Rafiei et al. 2023). A commonly used material for 

banknotes is cotton linter mixed pulp (CLMP), which has high cellulose content and 

crystallinity index (Sczostak 2009; Lee et al. 2023). Various synthetic additives are utilized 

to enhance their physical properties (Wang and Sun 2020).  
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 Although diverse synthetic paper strength enhancers have been proposed, their 

wide usage is limited because most of them are petrochemical products and can be 

carcinogenic (Bender 2006; Amirabad et al. 2018). Therefore, developing an eco-friendly, 

safe, and functional strength enhancer is necessary for continuously producing eco-friendly 

banknotes. 

Nanofibrillated cellulose (NFC), which also has been called cellulose nanofibril, is 

derived from the natural polymer cellulose, processed into nanometer dimensions. NFC is 

produced by mechanical fibrillation using a homogenizer, a microgrinder, or a 

microfluidizer (Nechyporchuk et al. 2016; Djafari Petroudy et al. 2021). This material is 

sustainable, biodegradable, and harmless to the human body because it is made of natural 

cellulosic resources (Sharma et al. 2019; LakshmiBalasubramaniam et al. 2021; Mokhena 

et al. 2021). The NFCs have low density and high aspect ratio, strength, and stiffness and 

thus have various applications, such as in nanocomposites, electronics, biomedical devices, 

packaging, and papers (Sharma et al. 2019; Mokhena et al. 2021). In particular, the unique 

characteristics of NFC have raised great interest in their application in the paper industry 

(Panchal et al. 2018; Yusuf et al. 2024). The NFCs are effective for manufacturing high-

strength paper and barrier-coated packaging paper. Their utilization as a paper strength 

enhancer has aroused research interest on the improvement of the physical and mechanical 

properties of paper (Nechyporchuk et al. 2016; Lee et al. 2020; Mokhena et al. 2021). 

Therefore, NFC is a promising eco-friendly strength enhancer for banknotes. 

 The NFC grades can be enhanced by pretreatment prior to mechanical treatment. 

Various pretreatments have been developed, and the four most common are 

carboxymethylation, TEMPO oxidation, refining, and enzyme treatments (Fernandes et al. 

2023). The authors’ previous study showed that carboxymethylated NFC (CM-NFC) is 

more effective in enhancing paper strength than refined NFC (RE-NFC) and enzyme-

pretreated NFC (EN-NFC) due to the higher nanofibril content. However, the higher 

viscosity of CM-NFC compared with other NFC grades reduces drainability on the wet-

end and causes a high anionic charge, leading to low retention (Kim et al. 2019). Therefore, 

the electrostatic property of CM-NFC must be modified when it is utilized as a wet-end 

additive in paper mills. 

 Many treatments have been introduced to modify the anionic charge of NFCs. 

Glycidyl-trimethyl-ammonium chloride, Girard’s reagent T, and 3-chloro-2-hydroxy-

propyl trimethyl-ammonium chloride have been used to introduce quaternary amine groups 

to NFC molecules (Song et al. 2010; Chaker and Boufi 2015). Surface modification with 

cationic polyelectrolytes has been proposed to reverse the totally or partially anionic charge 

of NFCs (Garland et al. 2022; Barrios et al. 2023). Among the many types of 

polyelectrolytes used for this purpose, cationic polyacrylamide (C-PAM) is the most 

effective in modifying the charge of RE-NFC (Lee et al. 2018). Given that organic solvents 

are not easy to handle and can be toxic to human health, surface modification with cationic 

polyelectrolytes appears to be a promising solution for neutralizing of NFC (Bourganis et 

al. 2017; Hennecke et al. 2018; Henschen 2019). However, previous surface modifications 

were carried out only on RE-NFC, and the majority of the results were derived only from 

laboratory tests. 

 This study analyzed the effect of surface-modified CM-NFC with C-PAM on the 

strength and process parameters of banknotes, a specialty paper made from CLMP, through 

laboratory tests and pilot trials.  
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EXPERIMENTAL 
 
Materials 
 The CLMP obtained from KOMSCO Co., Ltd. (Daejeon, Republic of Korea) was 

used to prepare handsheets for laboratory tests and test sheets for pilot trials. CLMP is 

composed of 70% lint and 30% noil. The CM-NFC prototype was supplied by Moorim 

P&P (Ulsan, Republic of Korea), and Table 1 shows its manufacturing conditions. The 

CM-NFC prototype was manufactured by carboxymethylation and high-pressure 

homogenization using hardwood bleached kraft pulp (HwBKP). The C-PAM was supplied 

by Kemira Chemicals Korea Corp. (Gunsan, Republic of Korea), as shown in Table 2. 

Potassium hydroxide flakes (KOH, 93.00%), ethyl alcohol (C2H5OH, 95.00%), and n-

hexane (C6H4, 86.18%) provided by Daejung were used to measure the fiber width of CM-

NFC. Titanium dioxide (TiO2) and epoxidized polyamide (PAE) resin provided by Komsco 

Co., Ltd. were used as a filler and a wet strength agent, respectively. 

 

Table 1. Manufacturing Conditions for the CM-NFC Prototype Used in this Study  

Pretreatment Carboxylate Group Mechanical Isolation Supplier 

Carboxymethylation  400 µmol/g High-pressure homogenizer Moorim P&P 

 

Table 2. Properties of the C-PAM Used in this Study 

Molecular Weight Charge Density Supplier 

5,000,000 g/mol  1.63 meq/g Kemira Chemicals Korea Corp 

 

Methods 
Characterization and surface modification of CM-NFC  

The fiber width and low-shear viscosity of CM-NFC prototype were measured to 

determine whether it was fibrillated to the nanoscale. The viscosity of NFC has been 

reported to be proportional to the nanofibril content in the suspension (Lasseuguette et al. 

2008). The fiber width was analyzed using a field emission scanning electron microscope 

(FE-SEM; JSM-7610F, JEOL, Tokyo, Japan). Wet CM-NFC pads were prepared as test 

specimens to measure the fiber width using a vacuum filtration system and then dried by 

the solvent exchange method using ethyl alcohol and n-hexane. The FE-SEM images of 

the pads were captured, and the fiber width was measured with image analysis using a 3D 

imaging software (MP-45030TDI, JEOL, Osaka, Japan). The low-shear viscosity of CM-

NFC slurry with 1.0% solids was determined using a low-shear viscometer (DV-IP, 

Brookfield Engineering Laboratories, Inc., Middleborough, MA, USA) with a spindle 

number of 64 and a speed of 60 rpm. The temperature of CM-NFC slurries was maintained 

at 25 °C during the viscosity measurement. The average zeta potential of CM-NFC slurry 

with 0.01% solids was measured using a zeta potential analyzer (Nano ZS, Malvern 

Panalytical, Malvern, UK).  
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The C-PAM with 0.5% concentration was used for the surface modification of CM-

NFC. The CM-NFC slurry was diluted to 0.5% consistency using distilled water, and C-

PAM was added into this CM-NFC slurry. The dosages of C-PAM were 0.1%, 0.3%, 0.5%, 

and 0.7% of the oven-dried CM-NFC amount as previously described (Lee et al. 2023). 

After C-PAM was added, the CM-NFC slurry was mixed at 1,000 rpm for 20 min. 

Agglomeration was observed to determine the minimum dosage of C-PAM needed for the 

surface modification of CM-NFC. 

 

Handsheet preparation at laboratory scale and measurement of sheet strength 

Laboratory tests were performed to identify the effect of surface-modified CM-

NFC on the physical properties of the sheets. The CLMP with 1.57% solids was soaked in 

tap water and then beaten to 425 ± 5 mL CSF using a laboratory-scale Hollander beater. 

The beaten pulp suspension was then diluted to 0.7% consistency for handsheet 

manufacturing. The surface-modified CM-NFC slurry was added to the diluted pulp 

suspension, and the mixture was blended for 5 min at 600 rpm. The dosage of surface-

modified CM-NFC slurry was 1%, 3%, and 5% of the oven-dried CLMP. Unmodified CM-

NFC was used as a control. Handsheets with a grammage of 170 ± 5 g/m2 were then 

prepared in accordance with TAPPI T205 sp-06 (2006). Afterward, the chemical oxygen 

demand (COD) of the white water was measured using a COD reactor (HI 839800; 

HANNA Instruments, Smithfield, RI, USA) and a COD detector (DR890; HACH 

Company, Loveland, CO, USA) was used to qualitatively analyze the retention of CM-

NFCs.  

The handsheets were wet-pressed at 345 kPa for 5 min and dried at 120 °C using a 

laboratory wet press (model 326; Wintree Corporation, Osaka, Japan) and a cylinder dryer 

(Daeil Machinery Co., Ltd., Daejeon, Republic of Korea), respectively.  

The handsheets were conditioned at 23 °C and 50% relative humidity (RH) to 

maintain their moisture content at 8%. Tensile strength (TAPPI T494 om-06 (2006)), 

folding endurance (TAPPI T511 om-08 (2008)), and bulk (TAPPI T411 om-10 (2010)) 

were measured. For the analysis of the change in the bonding area in the sheets, the light 

scattering coefficient was measured using a spectrophotometer (Elrepho, Lorentzen and 

Wettre, Kista, Sweden) and calculated with Eq. 1, 
 

𝑆 =  
𝑠𝑊

𝑤
× 10         (1) 

 

where S is light scattering coefficient, sW is scattering power of the material, and w is 

grammage of the sheet. 

 

Pilot trial  

Pilot trials were carried out at Komsco Co., Ltd. in Daejeon to determine the effect 

of surface-modified CM-NFC on the process parameters and physical properties of the test 

sheets. A pilot paper machine was operated at the R&D center of Komsco Co., Ltd. as 

shown in Fig. 1. This vat machine has a 300 mm web, runs at a speed of 2 m/min, and 

produces a sheet in basis weight from 70 to 100 g/m2. 

The surface-modified CM-NFC slurry was prepared with C-PAM. The CM-NFC 

with 2% solids was diluted to 0.5%, followed by the addition of C-PAM at 0.1% of the 

oven-dried NFC amount and mixing for 5 min at 600 rpm. Unmodified CM-NFC was used 

as a control. 
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Fig. 1. Pilot paper-machine installed in Komsco Co., Ltd.  

 

Table 3 and Fig. 2 show the dosage of additives and flow diagram of the pilot trials, 

which were performed twice depending on whether the surface-modified CM-NFC was 

added or not. The CM-NFC prototype was treated with 0.1% C-PAM prior to the pilot 

trials. The CLMP at 1.50% solids was soaked in tap water and then beaten to 425 ± 10 mL 

CSF using a pilot-scale Hollander beater. The beaten CLMP furnish was transferred to a 

beater chest. Then 6% titanium dioxide was added into a beater chest, and 3% PAE resin 

was added into a vat machine chest in both pilot trials. The surface-modified CM-NFC was 

added into the beater chest following titanium dioxide addition. Finally, the prepared stock 

was delivered to the pilot paper machine, and test sheets with basis weight from 70 g/m2 to 

80 g/m2 were produced. 

 

Table 3. Dosage of Additives in Pilot Trials  

Experiment 
NFC Dosage 

(on o.d. CLMP) 

Filler Dosage 

(on o.d. CLMP) 

Wet Strength Agent 

Dosage 

(on o.d. CLMP) 

TiO2 PAE resin 

No CM-NFC (control) 0% 6%   3% 

Surface-modified; CM-NFC  

(0.1% C-PAM on o.d. CM-NFC) 
3% 6% 3% 

 

 

 
 

Fig. 2. Flow diagram of pilot trials  

 

During the pilot trials, the process parameters of the pilot paper machine were 

analyzed. Stock in vat and white water in wire tray were collected to calculate the first pass 

retention (FPR) with Eq. 2 (Krogerus 1997) by measuring their consistencies (TAPPI T240 

om-93 (1993)). The dryness (TAPPI T412 om-94 (1997)) of the test sheets after press was 

also measured to analyze the drainability of stock containing surface-modified CM-NFC.  
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The sheets were conditioned at 23 °C and 50% RH to maintain their moisture 

content at 8%. Tensile strength (TAPPI T494 om-06 (2006)), folding endurance (TAPPI 

T511 om-08 (2008)), bulk (TAPPI T411 om-10 (2010)), and ash content (TAPPI T211 om-

93 (2007)) were measured. 
 

First pass retention (FPR) =  
𝐶ℎ−𝐶𝑤

𝐶ℎ
× 100     (2) 

 

where Ch and Ch refer to headbox and wire tray consistencies (%), respectively.   

 

 

RESULTS AND DISCUSSION 
 
Characteristics and Surface Modification of CM-NFC 

Table 4 shows the CM-NFCs characteristics. The fiber width was 13.5 nm, which 

was lower than the 100 nm standard that defines nanofibers. According to the fiber width, 

the CM-NFC used in this study was sufficiently nanosized. The low-shear viscosity was 

approximately 2,300 cPs, which was relatively higher than that of other NFCs. The 

viscosity of the NFC slurry was proportional to its nanofibril content, and a higher 

nanofibril content can effectively improve paper strength (Saarikoski et al. 2012; 

Grüneberger et al. 2014). Thus, the CM-NFC qualified as a paper strength enhancer. The 

zeta potential was −36.0 mV due to the introduction of carboxymethyl groups on the CM-

NFC molecules. Therefore, the CM-NFC used in this study can be used as a paper strength 

enhancer because it contains many nanofibrils. However, surface modification using a 

cationic polyelectrolyte is necessary to improve its wet web retention. 

The C-PAM was used to change the electrostatic properties of CM-NFC. However, 

CM-NFC aggregates were formed as a consequence of the C-PAM addition. Aggregates 

are unfavorable to the strength enhancement resulting from the addition of CM-NFC 

because they can cause irregularities in paper sheet. Therefore, it is necessary to select the 

minimum dosage of C-PAM in which no aggregates are formed and the charge of CM-

NFC is partially changed.  

 

Table 4. Characteristics of CM-NFC Prototype 

NFC Type Fiber Width 
Low-shear Viscosity 

(1.0%, 25 ℃) 
Zeta-potential 

Carboxymethylated NFC  

(CM-NFC) 
13.5 nm 2,300 cPs -36.0 mV 

 
 

 
 

Fig. 3. Images of surface-modified CM-NFC depending on the dosage of C-PAM  
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Figure 3 shows images captured from the top view of 200 mL beakers containing 

CM-NFC slurries with varying C-PAM dosages. When the dosage of C-PAM was 0.1% of 

the oven-dried CM-NFC amount, aggregation was not observed. However, aggregates 

appeared when the dosage of C-PAM was increased from 0.3% to 0.7%. The dosage of C-

PAM for CM-NFC surface modification was determined to be 0.1%. 

 

Laboratory Handsheet Strength  
Handsheets were prepared with CLMP to investigate the effect of surface-modified 

CM-NFC on their physical properties. Figure 4 shows the effect of CM-NFCs on the tensile 

index and folding endurance of the handsheets, and Fig. 5 shows the influence of CM-

NFCs on the light scattering coefficient and bulk of the handsheets.  

 

 
 

Fig. 4. Effect of CM-NFCs on the (a) tensile index and (b) folding endurance of handsheets   

 

 
 

Fig. 5. Effect of CM-NFCs on the (a) light scattering coefficient and (b) bulk of handsheets   
 

 

As the dosage of CM-NFCs increased, the tensile index and folding endurance 

increased linearly irrespective of surface modification. Meanwhile, the bulk of the sheets 

decreased as the strengths increased, indicating the consolidation of the paper structure by 
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the addition of CM-NFCs (Boufia et al. 2016; Pego et al 2020; Zeng et al. 2021). The 

nanofibrils are located in the interfiber voids and effectively promote the paper strength by 

increasing the bonded number and area between fibers (Ahadian et al. 2023; Andze et al. 

2024). The increase in bonded number and area can also affect the decrease in light 

scattering coefficient, because the number of the voids that cause light scattering decreases 

when the bonded area between fibers becomes enlarged (Hirn and Schennach 2017). 

Comparison of paper strength enhancement revealed that the surface-modified CM-

NFC gave relatively higher strengths than the unmodified CM-NFC because the partially 

charge-reversed CM-NFC could be retained on the handsheets more than the anionic 

unmodified CM-NFC. The retention trend of CM-NFCs can be confirmed by the COD 

measurement of the stock supernatant as shown in Table 5. The COD of the stock 

containing the surface-modified CM-NFC was relatively lower than that of the stock 

containing the unmodified CM-NFC, indicating that the retention of surface-modified CM-

NFC was higher than that of unmodified CM-NFC.  

Therefore, the surface-modified CM-NFC was more effective in promoting the 

strength of the specialty paper made from CLMP compared with the unmodified CM-NFC. 

 

Table 5. Effect of CM-NFCs on the COD of Stock  

CM-NFC Dosage (on o.d. CLMP) 1% 3% 5% 

Unmodified CM-NFC 50.5 mg/L 133.0 mg/L 202.0 mg/L 

Surface-modified CM-NFC 41.0 mg/L 116.0 mg/L 184.5 mg/L 

 

Pilot Trial  
The strength of the laboratory handsheets increased linearly as the dosage of 

surface-modified CM-NFC increased to 5%. Thus, the dosage of surface-modified CM-

NFC was selected as 5% in the pilot trials. However, the commercialization of CM-NFC 

did not proceed at the time of the authors’ pilot trials. Consequently, the supply of CM-

NFC prototype was not sufficient. Therefore, the dosage of surface-modified CM-NFC was 

lowered to 3%, which was found to be an intermediate dosage in the laboratory tests.  

Table 6 shows the effect of surface-modified CM-NFC on the process parameters 

in pilot trials. When 3% of surface-modified CM-NFC was added, the consistencies of vat 

stock and white water increased slightly. The FPR was 55.2% under the control conditions, 

but the FPR decreased slightly to 51.7% when 3% of surface-modified CM-NFC was added. 

Given that the difference in retention was less than 5%, surface modification using 0.1% 

C-PAM was considered effective for retaining CM-NFCs. The dryness of wet web was 

29.0% under the control conditions but it increased to 32.4% when 3% of surface-modified 

CM-NFC was added. The difference in dryness was approximately 3.4%, which did not 

reach statistical significance. Therefore, the incorporation of 3% surface-modified CM-

NFC did not adversely affect the drainability and retention on the wet-end part of the pilot 

paper machine.  

Table 7 shows the effect of surface-modified CM-NFC on the physical properties 

of the test sheets produced in pilot trials. The ash content showed a difference of 

approximately 1%, but this value did not reach statistical significance. Strength comparison 

revealed the tensile strength increased 24.5% in machine direction (MD) and 42.9% in 

cross directions (CD), and the wet tensile strength increased 13.9% in MD and 23.4% in 
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CD when surface-modified CM-NFC was added. In particular, a relatively high increase 

in folding endurance was observed upon the addition of surface-modified CM-NFC, with 

increase percentages of 356% in MD and 506% in CD. The improvement of folding 

endurance by CM-NFC was much higher than that of tensile index, which was consistent 

with previous studies (Kim et al. 2019). 

The pilot trials showed that 3% surface-modified CM-NFC was effective in 

promoting the strength of banknotes without causing low retention and drainage on the 

wet-end part of the pilot paper machine. 

 

Table 6. Effect of Surface-modified CM-NFC on the Process Parameters in Pilot 
Trials 

Experiment 
Consistency (%) 

Retention (%) Dryness (%) 
Vat stock White water 

No NFC (control) 0.067 0.030 55.2 29.0 

Surface-modified CM-NFC 0.092 0.045 51.1 32.4 

 
Table 7. Effect of Surface-Modified CM-NFC on the Physical Properties of 
Sheets in Pilot Trials   

Experiment 
Grammage 

(g/m2) 

Thickness 

(μm)   

Density 

(cm3/g) 

Ash 

Content 

(%) 

Tensile Index 

(N·m/g) 

Wet Tensile 

Index (N·m/g) 

Folding 

Endurance 

(Double Folds) 

MD CD MD CD MD CD 

No NFC 

(control)  
71.4 100.4 0.68 3.6 46.5 22.6 10.8 6.4 281 94 

Surface- 

modified 

CM-NFC 

79.6 111.8 0.73 2.6 57.9 32.3 12.3 7.9 1,282 570 

 
 
CONCLUSIONS 
 

1. The carboxymethylated nanofibrillated cellulose (CM-NFC) did not agglomerate when 

incorporated with 0.1% of cationic acrylamide (C-PAM). However, agglomerates were 

observed with a C-PAM dosage of 0.3% and higher. Therefore, 0.1% C-PAM was 

needed to modify CM-NFC surface without inducing agglomeration. 

2. Compared with unmodified CM-NFC, surface-modified CM-NFC was more effective 

as a strength enhancer of banknotes made from CLMP due to its higher retention during 

sheet formation.  

3. Pilot trials showed that 3% surface-modified CM-NFC was effective in promoting the 

strength of banknotes without causing serious problems on the wet-end part of the pilot 

paper machine. 

4. These results are expected to be applicable not only to banknote papers but also to 

products such as security paper, maps, and wallpaper, where high strength 

characteristics are required.  
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